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Abstract 48 

Background: The SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) 49 

cycle of threshold (Ct) has been used to estimate quantitative viral load, with the goal of 50 

targeting isolation precautions for individuals with COVID-19 and guiding public health 51 

interventions. However, variability in specimen quality can alter the Ct values obtained from 52 

SARS-CoV-2 clinical assays. We sought to define how variable nasopharyngeal (NP) swab 53 

quality impacts clinical SARS-CoV-2 test sensitivity. 54 

Methods: We performed amplification of a human gene target (β-actin) in parallel with a clinical 55 

RT-PCR targeting the SARS-CoV-2 ORF1ab gene for 1311 NP specimens collected from 56 

patients with clinical concern for COVID-19. We evaluated the relationship between NP 57 

specimen quality, characterized by high Ct values for the human gene target β-actin Ct, and the 58 

probability of SARS-CoV-2 detection via logistic regression, as well as the linear relationship 59 

between SARS-CoV-2 and β-actin Ct. 60 

Results: Low quality NP swabs are less likely to detect SARS-CoV-2 (odds ratio 0.654, 95%CI 61 

0.523 to 0.802). We observed a positive linear relationship between SARS-CoV-2 and β-actin Ct 62 

values (slope 0.169, 95%CI 0.092 to 0.247). COVID-19 disease severity was not associated 63 

with β-actin Ct values. 64 

Conclusions: Variability in NP specimen quality accounts for significant differences in the 65 

sensitivity of clinical SARS-CoV-2 assays. If unrecognized, low quality NP specimens, which are 66 

characterized by a low level of amplifiable human DNA target, may limit the application of 67 

SARS-CoV-2 Ct values to direct infection control and public health interventions. 68 

 69 
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Introduction: 71 

As the COVID-19 pandemic continues to drive morbidity and mortality around the world, interest 72 

has grown in using SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) 73 

cycle of threshold (Ct) values as a means of quantifying viral load (1, 2). It has been proposed 74 

that SARS-CoV-2 Ct values may correspond with viral burden and infectivity, and that SARS-75 

CoV-2 values may be used to predict disease severity and guide isolation precautions for 76 

individuals with COVID-19 (3–7). SARS-CoV-2 Ct values have been shown to correspond with 77 

community COVID-19 burden, and it has also been proposed that community Ct values may 78 

help to guide non-pharmaceutical interventions to control COVID-19 (8). 79 

We sought to understand the impact of nasopharyngeal (NP) specimen swab quality on the 80 

measurement of SARS-CoV-2 Ct and the sensitivity of virus detection. To collect an NP swab 81 

for SARS-CoV-2 testing, healthcare workers are instructed to advance a synthetic fiber swab 82 

with plastic or wire shaft through the nostril until contacting the posterior nasopharynx at a depth 83 

equal to the distance from the nostril to the opening of the ear, then to rub and roll the swab, 84 

leaving the swab in place for several seconds to collect secretions, before rotating the swab 85 

further as it is removed from the nostril (9). Variability in practice and patient tolerance of the 86 

procedure has been observed, and may impact the sensitivity of SARS-CoV-2 detection, as well 87 

as the cycle threshold (Ct) value observed when SARS-CoV-2 is detected (10–12). 88 

To measure variability in the quality of NP swab collection, we performed amplification of a 89 

human gene target (β-actin) in parallel with RT-PCR targeting the SARS-CoV-2 ORF1ab gene. 90 

High β-actin Ct values have been previously validated as a marker of poor NP swab quality (2, 91 

13). Below we report the relationship between quality of NP swab collection, sensitivity of 92 

SARS-CoV-2 detection, and the range of impact we expect sub-standard NP swab collection 93 

may exert on SARS-CoV-2 Ct values. We also examine the possibility of confounding by 94 

COVID-19 disease severity. 95 
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 96 

Materials and Methods: 97 

Study Design, Setting, and Population: We performed a retrospective cohort study, capturing 98 

consecutive SARS-CoV-2 RT-PCR tests performed at the Clinical Microbiology Laboratory of 99 

the Hospital of the University of Pennsylvania between March 26 and July 4, 2020. We included 100 

all SARS-CoV-2 RT-PCR results performed on NP specimens via the BD Max SARS-CoV-2 101 

assay (Becton Dickinson) for which a positive PCR control analyte (MS2 phage DNA) was 102 

detected. A total of 1311 NP specimens were included. All specimens were assayed for β-actin 103 

and MS2 phage DNA in parallel with SARS-CoV-2. A waiver of informed consent was granted 104 

by the University of Pennsylvania Institutional Review Board (IRB protocols #843085 & 105 

#843274). 106 

Causal Models: We hypothesized that β-actin and SARS-CoV-2 Ct values are related because 107 

poor NP specimen collection technique results in reduced capture of NP epithelial cells and 108 

SARS-CoV-2 alike. β-actin is a commonly used endogenous reference gene, used as an 109 

internal control for PCR reactions involving human specimens. This gene has been previously 110 

validated as a marker for the presence of nasal epithelial cells, and prior research has 111 

supported its use to assess the quality of self-collected midturbinate swabs (2, 13). We 112 

additionally considered the possibility of confounding by COVID-19 severity of illness. It is 113 

possible that those with more severe infection may have greater NP epithelial cell damage, 114 

resulting in greater detection of both PCR targets, irrespective of sampling technique. 115 

Clinical Data Collection: To evaluate the possibility of confounding by disease severity, we 116 

measured two independent markers of respiratory illness: (1) the minimum room-air oxygen 117 

saturation recorded within 2 days of SARS-CoV-2 testing, and (2) whether infiltrates were 118 

observed chest computerized tomography (CT) imaging performed within 7 days of SARS-CoV-119 
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2 testing. Per Centers for Disease Control and Prevention (CDC) guidelines(14), we considered 120 

room-air oxygen saturation < 94% indicative of severe respiratory illness. Radiology reports for 121 

CT imaging that described parenchymal lung disease, including “infiltrates”, “pneumonia”, 122 

“groundglass”, or other “opacities”, were considered indicative of severe respiratory illness. The 123 

presence of lung nodules, lung masses, chronic airway disease including bronchiectasis, 124 

emphysematous changes, or pleural effusions in the absence of parenchymal disease as 125 

described above, were not considered indicative of severe acute respiratory illness. 126 

Specimen Collection, Processing, and RT-PCR Assay: Specimens were collected during 127 

routine clinical practice using a nylon flocked mini-tip swab collected in VTM or saline. 128 

Healthcare providers obtained samples using CDC guidelines for NP samples collection. 129 

Samples were transported to the laboratory at ambient temperature and stored at 4⁰C if not run 130 

immediately. Exk TNA2 extraction reagent kits (Becton Dickinson) for the BD MAX open system 131 

reagent suite were used for the lab-developed SARS-CoV-2 assay based on a previously 132 

described assay (15, 16). The BD MAX system was set to run type 1 workflow. PCR conditions 133 

consisted of a reverse transcriptase step (600s at 58⁰C, 1 cycle), denaturation step (60s at 134 

98⁰C, 1 cycle) and extension steps (10s at 98⁰C followed by 40s at 63⁰C, 40 cycles). Two 135 

different sets of primer/probe master mix were prepared and 12.5 µl was aliquoted into BD MAX 136 

0.3 mL snap-in conical tubes for storage at -70⁰C prior to use. The LUNA Universal Probe One-137 

Step RT-qPCR kit (New England Biolabs) was used to prepare the master mix according to 138 

manufacturer guidelines with modified primer and probe concentrations. Master mix 1 was 139 

composed of the SARS-CoV-2 orf1ab target (0.6 µM primers and 0.2 µM probe, sequences: 140 

unpublished data), and the internal processing control MS2 bacteriophage (0.1 µM primers and 141 

probe, sequences) (17). Master mix 2 contained the β-actin primers (0.6 µM) and probe (0.2 142 

µM) (18). Samples were prepared by adding 200µl of NP specimen and 20 µl of specimen 143 

processing control (5x106 pfu/mL MS2 Phage; Zeptometrix) to an Exk TNA2 sample buffer 144 
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tube. Sample buffer tubes containing patient specimens were loaded onto the BD MAX System 145 

racks along with the Exk TNA2 test strips. Master mix 1, neutralization buffer (25 µl NucliSENS 146 

easyMAG Extraction Buffer 3, Biomerieux) and master mix 2 were snapped in to open positions 147 

2 to 4, respectively, on the test strip prior to loading the rack onto the BD MAX system. All NP 148 

samples for which the specimen processing control target (MS2) was detected were included in 149 

the study (n=1311). Ct values for all three targets (β-actin, MS2 and SARS-CoV-2) were 150 

recorded. 151 

Definition of Exposures and Outcomes: The primary exposure of interest was the β-actin Ct 152 

value, a surrogate for the quality of NP swab collection. The primary outcome of interest was 153 

SARS-CoV-2 Ct value. 154 

Statistical Methods: Data were organized using R statistical software version 3.6.1 (19), and 155 

plots generated using the “ggplot2” package (20). Where β-actin and SARS-CoV-2 were not 156 

detected, Ct values were imputed as 40 cycles. We examined (1) the linear relationship 157 

between β-actin and SARS-CoV-2 Ct values, as well as (2) the impact of β-actin Ct on SARS-158 

CoV-2 detection using Bayesian linear and generalized-linear mixed effects models, which were 159 

fit using Stan Hamiltonian Monte Carlo (HMC) version 2.21, via the “brms” package with default 160 

weakly-informative priors (21, 22). Prior predictive modeling was performed, and models were fit 161 

with 4 chains of 1000 iterations, confirmed with HMC diagnostics (no divergent iterations, Rhat 162 

statistic < 1.1 for all parameters, and E-BFMI > 0.2) (23–25). We examined parameter 163 

distributions at 50%, 80%, and 95% posterior credible intervals to understand the relationship 164 

between exposure and outcome variables. 165 

Power and Sample Size: We estimated the necessary cohort size based on the anticipated 166 

effect of poor NP swab quantity (26). We anticipated that approximately 800 subjects would 167 

detect a 10% reduction in sensitivity of SARS-CoV-2 detection related to a β-actin Ct increase of 168 

10, with credible intervals precision ensuring type S error < 5% (27, 28). We targeted enrollment 169 
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of 10% more subjects to allow for a margin of error in that estimate, and we exceeded our 170 

enrollment target. 171 

Availability of Data: Data, analysis scripts, and model code are available at github.com/bjklab. 172 

 173 

Results: 174 

SARS-CoV-2 Detection and Cycle of Threshold Range: Of 1311 tested specimens, 138 were 175 

found to have detectable SARS-CoV-2 within 40 cycles of PCR. Among these specimens, 176 

median SARS-CoV-2 Ct was 28.15 (IQR 20.5 to 32.98). No secular trend was observed 177 

between calendar time from local onset of COVID-19 cases and SARS-CoV-2 Ct values during 178 

the study period (Pearson correlation 0.18). Figure 1 depicts the distribution of SARS-CoV-2 Ct 179 

values. 180 

Relationship between β-Actin and SARS-CoV-2 Cycle of Threshold: We evaluated the 181 

relationship between NP specimen quality, meaured by β-actin Ct value, and SARS-CoV-2 test 182 

sensitivity with logistic regression, and we found that increasing β-actin is significantly 183 

associated with reduced detection of SARS-CoV-2 (odds ratio 0.654, 95%CI 0.523 to 0.802). 184 

Figure 2 depicts the relationship between β-actin and SARS-CoV-2 detection probability. We 185 

further evaluated the linear relationship between β-actin and SARS-CoV-2 Ct values with linear 186 

regression, and we found that SARS-CoV-2 Ct increases significantly with β-actin Ct (slope 187 

0.169, 95%CI 0.092 to 0.247). A linear model restricted to include only the 134 specimens 188 

within which both SARS-CoV-2 and β-actin were detectable (i.e., Ct < 40) also found that 189 

SARS-CoV-2 Ct increased with β-actin, but this relationship did not have high posterior certainty 190 

(slope 0.254, 95%CI -0.23 to 0.73), and linear model fit was poor. 191 

Impact of Poor NP Specimen Quality on SARS-CoV-2 Detection Sensitivity: To understand 192 

the potential impact of poor NP specimen quality, we evaluated the change in probability of 193 
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SARS-CoV-2 detection as β-actin Ct increases. We found that a 4-Ct increase in β-actin, from 194 

Ct of 28 to Ct of 32 (roughly from the first quartile of observed β-actin Ct values to the third 195 

quartile) results in a 5.4% (95%CI 2.7% to 8.2%) decreased probability of SARS-CoV-2 196 

detection. 197 

Impact of Disease Severity on Relationship Between β-Actin and SARS-CoV-2 Cycle of 198 

Threshold: Considering the possibility that the observed association between SARS-CoV-2 and 199 

β-actin Ct values is confounded by respiratory illness severity, we evaluated the relationship 200 

between β-actin Ct and independent markers of respiratory illness. Oxygen saturation data were 201 

available for 428 (32.6%) subjects; chest CT imaging was available for 111 (8.5%) subjects. 202 

Linear regression relating β-actin Ct values to oxygen saturation revealed no significant 203 

association, and the point estimate of association ran counter to concern for confounding by 204 

disease severity. Lower oxygen saturation was in fact associated with higher β-actin Ct values 205 

(less β-actin amplicon), with linear regression slope -0.04 (95%CI -0.273 to 0.182). Similarly, we 206 

found that the presence of parenchymal lung disease on chest CT radiography reports had no 207 

significant association with β-actin Ct values, and that the point estimate of association actually 208 

suggests lung parenchymal infiltrates are associated with higher β-actin Ct values (less β-actin 209 

Ct amplicon) with linear regression slope 0.428 (95%CI -0.655 to 1.61). These analyses of 210 

independent markers of severe respiratory disease suggest that it is NP specimen quality, not 211 

disease severity, that drives the association between SARS-CoV-2 and β-actin Ct values. 212 

 213 

Discussion: 214 

In this study, we found that higher β-actin Ct values, which have been previously validated as a 215 

marker of low NP swab quality (2, 13), were associated with reduced probability of SARS-CoV-2 216 

detection (odds ratio 0.654, 95%CI 0.523 to 0.802) and with higher SARS-CoV-2 Ct values 217 
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(linear regression slope 0.169, 95%CI 0.092 to 0.247). In our cohort, we observed 10.5% of 218 

tested NP specimens had detectable SARS-CoV-2. Based on the observed impact of NP 219 

specimen quality, we estimate that the reduction of quality NP specimen collection that results in 220 

β-actin Ct increasing from 28 to 32 (roughly 25% to 75% percentile) decreases the absolute 221 

probability of SARS-CoV-2 detection by 5.4% (95%CI 2.7% to 8.2%). This finding has several 222 

important implications. First, the correlation between β-actin Ct and SARS-CoV-2 suggests that 223 

quantitative interpretation of SARS-CoV-2 human specimens may be enhanced by adjusting for 224 

the β-actin Ct. Second, the data support the concern that poor specimen collection may 225 

contribute to false-negative results. The concern of false-negative NP SARS-CoV-2 testing has 226 

led to the recommendation to retest patients with moderate to high clinical suspicion of COVID-227 

19 (29, 30). Reporting the β-actin Ct, or a β-actin-adjusted SARS-CoV-2 Ct may allow clinicians 228 

to better interpret specimen quality when considering retesting. 229 

We considered the possibility that the observed relationship between SARS-CoV-2 and β-actin 230 

Ct values might be confounded by respiratory disease severity, but we found no significant 231 

association between independent markers of severe respiratory disease and lower β-actin Ct 232 

values. However, several limitations of our analysis must be acknowledged. Oxygen saturation 233 

data and chest CT radiography reports were only available for a small percentage (32.6% and 234 

8.5%, respectively) of our subjects. Subject demographics and medical comorbidities could not 235 

be ascertained for subjects, so unmeasured confounders may contribute to the observed 236 

association. 237 

Nevertheless, we believe that the observed association between NP specimen quality and 238 

SARS-CoV-2 RT-PCR sensitivity is an important finding. From 1311 NP specimens submitted 239 

for SARS-CoV-2 testing, we have quantified the variation in specimen quality measured by β-240 

actin Ct value, and we have defined the impact of the observed variation on test sensitivity and 241 

SARS-CoV-2 Ct values. 242 
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SARS-CoV-2 Ct values have shown promise as a means to roughly quantify viral burden and so 243 

to guide infection control and public health interventions (1, 2, 4–8). However, variability in NP 244 

specimen collection may exert large effects on observed SARS-CoV-2 Ct values, limiting these 245 

useful applications. As testing efforts expand, infrastructure to ensure quality sample collection 246 

must expand as well (9). Concurrent measurement of a β-actin human gene target may provide 247 

a means to recognize and adjust for variability in NP specimen quality. 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

Figures: 256 

Figure 1: Distribution and relationships of Ct values for SARS-CoV-2, β-actin, and MS2 257 

DNA positive control. A matrix plot depicting the observed cycle of threshold values for SARS-258 

CoV-2 RT-PCR, with MS2 DNA positive control and β-actin specimen quality control over 1311 259 

consecutive clinical assays run between March 26 and July 4, 2020. Panels on the diagonal 260 

present the distribution of each target’s Ct values. Panels off the diagonal present the 261 

relationship between Ct values for each pair of targets. Ct for specimens without detectable 262 

SARS-CoV-2 or β-actin were imputed at 40 cycles. 263 
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 264 

Figure 2: Relationship between β-actin and SARS-CoV-2 detection probability. Binomial 265 

logistic regression relating SARS-CoV-2 detection to β-actin Ct value reveals a negative 266 

association, with high β-actin Ct (i.e., low quality) NP specimens less likely to detect SARS-267 

CoV-2. The absolute probabiity of SARS-CoV-2 detection is presented in relation to the 268 

observed range of β-actin Ct values. 269 

 270 

 271 

 272 

 273 

 274 
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