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Abstract

The innate immune response, particularly the interferon response, represents a first line
of defense against viral infections. The interferon molecules produced from infected cells
act through autocrine and paracrine signaling to turn host cells into an antiviral state. Al-
though the molecular mechanisms of IFN signaling have been well characterized, how the
interferon response collectively contribute to the regulation of host cells to stop or suppress
viral infection during early infection remain unclear. Here, we use mathematical models
to delineate the roles of the autocrine and the paracrine signaling, and show that their im-
pacts on viral spread are dependent on how infection proceeds. In particular, we found that
when infection is well-mixed, the paracrine signaling is not as effective; in contrast, when
infection spreads in a spatial manner, a likely scenario during initial infection in tissue, the
paracrine signaling can impede the spread of infection by decreasing the number of suscep-
tible cells close to the site of infection. Furthermore, we argue that the interferon response
can be seen as a parallel to population-level epidemic prevention strategies such as contact
tracing or ring vaccination. Thus, our results here may have implications for the outbreak
control at the population scale more broadly.
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1 Introduction
The innate immune response provides critical protection against pathogen invasion of humans
and other animals prior to establishment of adaptive immunity. It relies on multiple cytokines,
chief among them being interferons (IFNs), a large, diverse family of signaling proteins that
together induce a protective response [1]. The importance of IFN in the defense against viral
infections is demonstrated by the fact that essentially all viral pathogens have developed mech-
anisms to interfere with or suppress the host IFN response [2, 3, 4]. Indeed, viral evasion of
the IFN response strongly determines the rate of viral replication, the success of transmission
and infection establishment in new hosts [5] and the range of species infected [6]. The capac-
ity to inhibit the IFN response determines species tropism for human immunodeficiency virus
[7], dengue virus [8], rotavirus [9], measles virus [10], and influenza virus [11]. Interestingly,
multiple lines of recent evidence show that severe symptoms and life threatening disease from
SARS-CoV-2 infection is linked to inhibition or dysfunction of antiviral response mediated by
IFN signaling or inborn deficiency in IFN immunity [12, 13, 14, 15].

The IFN response is commonly described by its two components: first, viral induction of
IFN, and second, IFN induction of antiviral genes [16]. Upon infection, viral RNAs or DNAs
are detected by the cell triggering a signaling cascade that results in the production of Type I
IFNs [17, 18]. These IFN molecules are then secreted and bind to surface receptors located
on the cell membrane. IFN binding to the surface of the cell from which it is produced is
referred to as autocrine signaling, whereas binding to the surface of any other cell is referred to
as paracrine signaling. This binding initiates a series of signaling events that ultimately result
in the production of Interferon Stimulated Genes (ISGs), the expression of which repress viral
replication in the cell at multiple steps [19]. In an uninfected cell, binding of IFN to its receptor
and subsequent IFN signaling renders the cell refractory to viral infection, while in an infected
cell, this signaling can suppress viral replication and decrease release of viral progeny from the
cell. An elegant analysis of the virus-induced IFN response at the single cell level demonstrated
that paracrine signaling early in infection shapes the overall IFN response [20]. However, the
inflammatory response elicited by IFN can have deleterious effects on the host if uncontrolled
[21, 22, 12, 15].

Although the molecular mechanisms of IFN signaling have been well characterized, the
systems-level properties arising from the individual host cell response, particularly how the
host cells collectively stop viral infection at the site of exposure before the infection becomes
systematic remain unclear. To address these questions, we use modeling approaches to under-
stand how IFN signaling can stop early infection (e.g. at the site of initial entry) before adaptive
immunity is developed. Previous modeling of virus infection and the IFN response has focused
on the role of IFN response after the infection becomes systematic and used ordinary differential
equations (ODEs) [23, 24, 25, 26]. ODE models necessarily include the implicit assumption
that the host is treated as a single well-mixed compartment, and thus they neglect the spatial
structure of infection. Influenza infection, for example, starts at the epithelial lining of the up-
per respiratory tract, which is an inherently a spatial process [27]. Therefore, to investigate the
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interaction between virus and the IFN response early in infection, a spatially explicit model is
most appropriate. We previously modelled the spread of virus infection and the effectiveness
and robustness of IFN signaling among host cells using a network approach [28, 29]. however,
the explicit roles of autocrine and paracrine signaling in suppressing virus spread are not clear.

Here, we develop various models with or without explicitly considering the impact of the
spatial arrangement of cells to examine the roles of autocrine and paracrine IFN signaling. We
first show that, in well-mixed ODE models, autocrine signaling can impact the course of infec-
tion by inhibiting virus production from already infected cells, whereas paracrine signaling has
negligible impact on the growth of viral load during early infection when target cells are abun-
dant. In contrast, in models explicitly considering spatial spread, IFN paracrine signaling can
stop viral infection by segregating susceptible cells from areas of infection with an insulating
layer of protected cells. This strategy parallels the control strategies of ”ring vaccination” and
”contact tracing” in epidemiology and outbreak control which aim to stop spread of infection
by targeting the most at-risk individuals [30, 31, 32].

2 Methods

2.1 A non-spatial model of well-mixed viral infection
We first develop a model of viral infection with IFN signaling using ordinary differential equa-
tions (ODEs). In this approach, we assume that cells, viruses and IFN are well mixed and thus
spatial structure is not considered. Such models have been well established by previous work on
in vivo models of virus-immune interaction during systemic infection [23, 25]. The equations
of our model are as follows:

dT

dt
= −βV T − φFT + ρR

dI

dt
= βV T − δI − kI − φFI

dI∗

dt
= kI + φFI − δI∗

dR

dt
= φFT − ρR

dV

dt
= pI + (1− f)pI∗ − cV

dF

dt
= πp(I + I∗)− cF

(1)

In this model (see Figure 1(a) for a schematic), cells are categorized into one of four states:
uninfected target cells T , productively infected cells I , infected cells that are in an antiviral state
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I∗ and refractory cells R. Uninfected cells are infected by virions V at rate β or become refrac-
tory to infection through paracrine signaling of IFN (F ) at rate φ. Binding of IFN molecules to
IFN receptors on infected cells (I), including both autocrine and paracrine IFN signaling, may
trigger an antiviral response in those cells, such that virus production is inhibited or reduced
[24]. We model the impacts of autocrine and paracrine signaling using two separate terms,
i.e. kI and φFI . Note that F in our model represents the ambient concentration of unbound
IFN (under the assumption of homogeneous concentration of IFN). We assume that autocrine
signaling occurs independent of the ambient IFN concentration, because once produced from
infected cells, IFNs preferentially bind to the producing cell due to proximity. The transition
towards an antiviral state due to autocrine signaling is thus modeled by kI , i.e. independent of
ambient IFN concentration. In contrast, the rate of transition due to the paracrine signaling is
modeled to be dependent on the IFN concentration with the term φFI .

We assume that infected cells (both I and I∗) die at the same per capita rate δ. Refractory
cells remain protected for an average time of 1/ρ before returning to the susceptible state, i.e.
becoming target cells again. Infected cells, I , release viruses at rate p, whereas infected cells
at an antiviral state, I∗, release virions at a reduced rate (1 − f)p, where f is the fraction of
reduction. For simplicity, we further assume that both I and I∗ cells release IFNs at rate πp
and that viruses and IFNs are cleared at per capita rate c. Note that since the time scale of the
dynamics of IFNs is much faster than the time scale of dynamics of the cells, we can make
the quasi-equilibrium assumption for the concentration of IFN and then the level of IFNs are
related to infected cells as F = π

c
p(I + I∗). Therefore, if IFN is cleared in the system at a rate

different from c, the level of IFN can be compensated in the system by changing the value of π.

2.2 A Spatial Model Viral Infection with IFN Signaling
We next develop a partial differential equation (PDE) model of viral infection and IFN response.
This model explicitly considers the spatial arrangement of cells, virions, and IFNs, thus more
accurately representing the dynamics of infection in an epithelial tissue. We assume that sus-
ceptible cells T are arranged on a 1-dimensional space with spatial variable x ∈ [0, L] with a
uniform initial density T0. Viruses and IFNs can diffuse to nearby locations, in contrast to the
ODE model where viruses and IFNs are assumed to instantaneously be evenly distributed once
produced. Virions and IFNs diffuse across the spatial domain with diffusion coefficients DV

and DF , where we take DF >> DV since IFNs are much smaller than virions and therefore
diffuse at a much greater rate [33, 34]. These diffusion parameters determine the characteristic
length scales on which IFNs and virions will be active [35]. The initial conditions are taken to
be such that the domain is populated only with target cells at a constant density and a single
infected cell at the position x = 0, which is achieved using a Dirac delta distribution δ0(x).
The boundary conditions are taken to be homogeneous Neumann at x = 0 to represent reflec-
tive symmetry of the spread of infection, and homogeneous Dirichlet at far-field x = L. The
equations of the model are as follows:
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∂T

∂t
= −βV T − φFT + ρR

∂I

∂t
= βV T − δI − kI − φFI

∂I∗

∂t
= kI + φFI − δI∗

∂R

∂t
= φFT − ρR

∂V

∂t
= pI + (1− f)pI∗ − cV +DV

∂2V

∂x2

∂F

∂t
= πp(I + I∗)− cF +DF

∂2F

∂x2

Boundary conditions:
∂F

∂x
=
∂V

∂x
= 0 at x = 0, F = V = 0 at x = L

Initial conditions: T (x, 0) = T0, I(x, 0) = δ0(x)

(2)

2.3 A Cellular Automata Model
We lastly develop a 2D Cellular Automata model (CA) to model the spatial progression of viral
infection with IFN signaling. The CA framework allows us to consider the spatial infection
spread governed by a stochastic process. By developing a CA model, we can more accurately
depict the nature of early viral infection in epithelial tissue

In our CA model, each individual epithelial cell is tracked explicitly as a grid point on
a stationary N × N lattice. Cells interact locally with other cells near to themselves based
on predefined rules for the production and diffusion of virions and IFN particles. A cell can
be in any of five states: healthy, exposed, productively infected, protected, or dead. The CA
is initialized with a single infected cell located at the center of the grid of otherwise healthy
target cells. Furthermore, virion and interferon particles are not explicitly modeled agents, but
rather we consider their production, diffusion, and binding to recipient cells to occur within the
duration of a single iteration of the CA. This choice allows us to take large time steps and is less
costly than explicitly modeling the random walk of each particle. More detailed specifications
of the CA model can be found in Supplementary Materials.
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Figure 1: Schematic diagram of the viral infection dynamics and the IFN response and simulations
of the corresponding ODE model. (a) Schematic diagram with parameters in the model. Solid arrows
indicate transition of cells from one state to another; dashed arrows indicate the production or binding
of viruses and IFNs from cells. (b) Simulations of ODE model without IFN, with IFN, and with only
paracrine signaling demonstrate the effects of different parameter regimes on the growth of viral load.
Simulation of a model with the paracrine signaling alone (k = 0, dashed lines) shows no notable effect
on the initial exponential growth rate compared to the no-IFN case (k = 0 and π = 0, solid lines), while
both autocrine and paracrine signaling together can slow the growth of viral load (dotted lines).

3 Results

3.1 The roles of autocrine and paracrine IFN signaling in a non-spatial
well-mixed infection

We first constructed a model (see Fig. 1a for a schematic) and analyzed the roles of autocrine
and paracrine IFN signaling using ordinary differential equations (ODEs) (see Methods). To
understand the impacts of autocrine and paracrine signaling on the virus dynamics after initial
viral exposure, we calculated the basic reproductive number R0 of the virus using the Next
Generation Matrix technique [36]. Note that R0 = 1 is the threshold for establishment of
infection, and viral population only grows when R0 > 1. Thus, for an effective innate immune
response to halt viral infection, R0 has to be less than 1. For the above model we find:

R0 = T0
βp

cδ

(
1− fk

δ + k

)
This expression shows that the reduction of R0 due to autocrine signaling is fk

δ+k
, where f

is the inhibition of virus production due to the cellular antiviral response and k/(δ + k) is the
probability that an infected cell becomes antiviral by the autocrine pathway before cell death
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occurs In vitro experiments suggest that the fraction of infected cells that successfully enter an
antiviral state is in general low [37, 38, 39], i.e. k/(δ+k) is much less than 1. If this observation
is consistent with IFN response in vivo, then our results suggest that autocrine signaling has
limited impact on stopping viral infection during initial stage of infection.

Importantly, we found that the parameters governing paracrine IFN signaling (i.e. φ,π) do
not appear in the expression for R0, i.e. paracrine signaling alone does not change the infection
threshold. Therefore, the ODE model makes the surprising prediction that when cells, viruses
and IFN are well mixed (as assumed in our ODE model and other models [25, 23], paracrine
signaling has a negligible role in halting infection during early infection when the number of
target cells are abundant. We further performed simulations of the model (see Table S1 for the
parameter values used for simulation) to compare the viral dynamics with and without paracrine
IFN signaling (Fig. 1(b)). In agreement with the analytical derivation forR0, we found that IFN
paracrine signaling has negligible impact on the viral load during initial exponential growth pe-
riod. This is true even for very large (biologically unrealistic) values of π (Figure S1). We
found that IFN-mediated protection of target cells is only able to affect the course of infection
after some period of viral growth once infected cell concentration, and thus IFN concentration,
rises to a sufficiently high level that there is a notable impact on protecting target cells and in-
fected cells. The peak viral load is decreased by approximately 1/(1 + π)-fold and the time to
peak viremia is relatively insensitive to changes in π (see analytical approximations in Supple-
mentary Materials). This nominal decrease in the time to peak viremia is a consequence of the
accelerated target cell depletion due to IFN signaling to uninfected cells.

Overall, our results show that when cells, viruses and IFNs are well-mixed (no spatial seg-
regation is considered), autocrine signaling may have limited impact on the infection dynamics
when a small fraction of cells turn on an antiviral response, and paracrine signaling has no
impact on the infection dynamics during early infection.

3.2 A spatio-temporal PDE model of viral infection with IFN response
For almost all respiratory and enteric viral infections, the site of initial infection and viral repli-
cation is epithelial tissue, which is characterized by a monolayer structure [27]. Due to local
diffusion of viral progeny over the epithelium, a virion is highly likely to infect one of a small
number of neighboring cells rather than having an equal probability of infecting any target cell,
as is the implicit assumption in an ODE model of viral infection.

To incorporate the spatial structure of host cells, we constructed a PDE model (see Eqns.
2 and Methods). We then simulated the PDE model with and without IFN signaling (Fig 2;
see Table S2 for the parameter values used for simulation). In the absence of the signaling
(π = k = f = 0; Fig 2a), the solution of the PDE model exhibits a traveling wave solution
(called the infection wave below). Analyzing the PDE model, we found that a front of infected
cells propagates through healthy epithelium with a constant velocity, v∗ (see Methods). An
approximate expression for v∗ is as follows (see supplementary materials):
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v∗ ≈
√
DV

4

(√
108T0βp− 9c

)
(3)

This expression shows that the spread of infection is driven primarily by the production (p) and
diffusion (DV ) of virions, the infection of target cells (β) and the density of available target
cells leading the front of the infection wave, i.e. T0. The IFN signaling has the effect of
both decreasing the production of virions (p) and decreasing the number of cells susceptible to
infection (T0), and thus it can in principal slow the spread of infection.

We then simulated the model with or without the autocrine and/or the paracrine signaling.
With the inclusion of IFN paracrine signaling, we find that target cells at the front of infection

Figure 2: Model simulations show that paracrine IFN signaling strongly interferes with the spatial
spread of infection. Shown is the solution of the model system at successive time points, with arrows
indicating the direction of progression with time. (a) A representative simulation of the PDE model with
k = π = 0 (no IFN), exhibiting traveling wave behavior initiated from a single nexus of infected cells at
position x = 0. The infection travels an equal distance between successive times, demonstrating constant
speed of spread. (b) A representative simulation of the PDE model with cell protection included (π 6= 0)
showing how IFN signaling can stop the spread of infection by depleting target cells. The distribution
of virions and infected cells can be seen to remain localized to the left side of the domain, as the rapid
depletion of susceptible cells (as a result of increases in refractory cell population) in the domain prevent
the infection from establishing a traveling wave.
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are more likely to become refractory than infected due to the high diffusivity of IFN relative to
virions (Fig. 2b and 3a). This causes target cell density leading the front of infected cells to
decrease as the number of refractory cells rises. As the infection continues to spread, the IFN
level becomes high enough leading to the depletion of target cells (T0 in Eqn. ((3))), which in
turn impedes the spread of infection. Therefore, the PDE model predicts that paracrine signaling
can have a strong impact on the spatial spread of virus infection by protecting cells at the front
of infection.

In the absence of paracrine IFN signaling (Fig. 3b), we found that surprisingly, the observed
traveling wave speed of the infection does not depend strongly on the strength of autocrine
signaling, i.e. the value of the autocrine parameter k. This is because the speed of spread is
mostly driven by virus production from cells at the wave front. These infected cells are unlikely
to be in an antiviral state, because of the waiting time (on average 1/k days) for that to occur.
Thus, the results from the PDE model is in a sharp contrast to the results form the ODE model,
with respect to the roles of the autocrine and the paracrine signaling on preventing the growth
of infection than paracrine signaling.

Figure 3: Comparison of the impacts of paracrine signaling and autocrine signaling on viral spa-
tial spread. Shown is the position x(t) of the infection front over time for various values of the IFN
production parameter π while keeping k = 0 and the autocrine-mediated transition rate k while keeping
π = 0. Here we define the front position x(t) to be the position that 1% of total cells are infected, i.e.
I(x(t), t) = 0.01T0. (a) Sufficiently strong paracrine signaling, e.g. setting π = 10 and k = 0/day, leads
to halting the spread of infectious front. (b) Strong autocrine signaling, e.g. setting π = 0 and k = 8/day,
impact modestly on the speed of the viral spread. The red lines show the predicted front position given
the analytically derived wave speed in Eqn. (3).
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3.3 A Stochastic Cellular Automata Model of the IFN response to Viral
infection

The analysis of the PDE model above identified important roles of IFN paracrine signaling on
the spatial and temporal dynamics of virus infection. However, the deterministic nature of the
PDE model neglects the inherent stochasticity present in the early stages of viral infection by
considering a continuous real-valued density of virus and IFNs rather than individual particles.
Furthermore, being a parabolic system of PDEs, the densities of virus and IFN, once produced,
become instantaneously non-zero everywhere in the domain. Thus, the PDE model predicts that
virus infection continues in locations far away from the initial site of infection over long period
of time irrespective of how strong the IFN response is (Figure S2).

Here, to understand the spread of infection in the presence of IFN signaling in a more
realistic setting, we constructed a 2D cellular automaton (CA) model, similar to previous works
[40, 33]. See the Methods and supplementary materials for detailed description.

We first simulated the CA model assuming there is no IFN produced (Fig. 4a). In this

Figure 4: High production of IFN (ifn prod) interferes with or stops the spread of infection by
insulating infected cells from target cells with a layer of refractory cells. Top row shows example
of simulations of the cellular automata (CA) model at 100 time steps on a 100 × 100 grid. Bottom row
shows log-log plots of the number infected cells verses time for 100 independent simulations of CA with
mean and standard deviation plotted in red. The approximate linear trend shown on the log-log plots
suggests that the number of infected cells fits roughly a power law in time, I(t) ∝ tγ , where γ is the
slope of the trend line. For ifn prod = 0 and 1, γ is approximately 2, consistent with a traveling
wave solution of the PDE model. γ decreases as ifn prod increases. In the images of the CA grid,
red, blue and gray dots indicate infected cells, refractory/protected cells and dead cells, respectively;
Target cells are left white.
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case, the area of infection spreads radially. In the absence of IFN, the number of infected
cells increases roughly quadratically with time, suggesting that the speed of infection spread
is constant (# cells infected can be approximated by the area of infection πr2 = π(v∗t)2),
which agrees with our analysis of the PDE model. We find the growth to be sub-quadratic in the
presence of effective IFN signaling, which we observe as the decrease in the slope in the log-log
plots of Fig. 4 as IFN production increases. When IFN particles are produced at a low level, the
infection spreads roughly the same distance as the ifn prod = 0 case (ifn prod = 1 in Fig.
4b), though a lot of cells are protected by the IFN paracrine signaling (compare log-log plots in
Fig. 4b with Fig. 4a). When IFN production increases further (ifn prod = 5), target cells
at the boundary of the front are more likely to be protected by IFN binding before becoming
infected, leading to irregular spread of infection that depends heavily on virions diffusing a
large distance before contacting a susceptible cell. Thus, virus spread becomes more stochastic
as the spread of infection depends on rarer and rarer events (Fig. 4b). When IFN production is
sufficiently large (ifn prod = 20; Fig. 4d), all target cells near to infected cells are rapidly
protected, leaving the virions produced each time step very unlikely to find a susceptible cell.
In this way, an insulating layer of protected cells makes the continued spread of infection highly
unlikely. The stronger the amount of IFN production, the thicker this layer of protected cells
becomes, decreasing the probability of a virion reaching the healthy cells on the other side.

The results of the CA model corroborate our fundamental observations from the PDE model
—that infection spreads at a constant rate when no IFN is present and that IFN signaling can
slow and stop the spread of infection by decreasing the availability of susceptible cells in ar-
eas that are close to the site of infection. This pattern is reminiscent of the ”ring vaccination”
strategy in epidemiological control [31, 32, 30] where an infectious disease outbreak can be ef-
fectively controlled by vaccinating those individuals who are close to or highly likely to contact
infected individuals. Furthermore, the CA model exhibits stochastic behaviors that are inadmis-
sible in deterministic models, highlighting infection establishment during initial infection may
be a stochastic event. Overall, we find that by modeling the infection and immune signaling
process as spatially dependent reveals how IFN signaling can halt the spread of infection on
short time and length scales by isolating infectious units from susceptible target cells.

4 Discussion
Using a variety of models, we demonstrated here the mechanisms by which the autocrine and
the paracrine IFN signaling stop an infection before it becomes systematic. Particularly, we
showed that when there exists spatial structure in host target cells (a likely scenario especially
in epithelium during initial infection), the IFN response can halt an infection by rapidly induc-
ing an anti-viral state in susceptible cells close to infected cells, thus inhibiting the ability of
the infection to spread. This is likely one important mechanism by which IFN signaling is ef-
fective in suppressing early infections in epithelial tissues. These results may have important
implications towards understanding the impact of early IFN response on viral dynamics and its

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246777doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246777
http://creativecommons.org/licenses/by-nc-nd/4.0/


long term role in defining disease outcomes of acute infections, such as SARS-CoV-2 infection
[12, 15]. Furthermore, as we argue below, the way the IFN response controls virus infection
in a host is reminiscent of the ”ring vaccination” and ”contact tracing” strategies in epidemio-
logical control. Quantitative understandings of the innate immune response may provide new
insights for developing effective control strategies at the epidemiological scale.

Our work clarifies the roles of autocrine and paracrine signaling and quantifies their impacts
on the initiation and spread of viral infection in different host cell environments. When there
exists a strong host-cell spatial structure where virion and IFN activities are restricted to loca-
tions near to where they are produced as considered in the PDE and CA models, the impact
of paracrine signaling in shaping the progression of spreading infection becomes remarkably
strong due to its ability to act locally. This is a likely scenario for initial stage of infection
where the number of infected cells are low and infection often occurs in a restricted area of tis-
sue epithelial cells. However, when infection occurs in an environment where spatial structure
of host cells is not important, e.g. during later stage of respiratory infections where the virus
population is already very large and immune response become systematic or during infections
in the blood where host cells move around and contact each other, our ODE model predicts
the role of autocrine signaling to be much more important than that of paracrine signaling in
stymieing viral growth during early infection. Therefore, our work suggests that the two mech-
anisms of IFN signaling are likely complimentary to one another, though one may be more or
less impactful than the other depending on the context of the infection.

Previous modeling works using ODEs predicted that the innate immune response has a
strong impact on viral dynamics close to or after peak viremia [23, 24, 25]. Potent IFN re-
sponse decreases the peak viral load, and decreases in IFN levels and consequently increases
in target cell numbers are important to explain viral load dynamics after viral peak. Here, by
explicitly considering the spatial structure of viral spread and the innate immune response, we
show that potent innate immune response is able to strongly act on viral spread to slow down
or even stop the virus spread during early infection. This again, highlights the important role
of the IFN response throughout the infection before adaptive immune response is developed.
Recently, it was hypothesized that early stochastic events in viral mutation and innate immune
response during influenza infection may have long term impact on infection outcomes and dis-
ease severity [41]. In SARS-CoV-2 infection, the development of severe disease symptoms is
likely due to suppression of the early antiviral response mediated by IFNs and consequently
excess production of proinflammatory cytokines [12, 15]. We believe that the model framework
we proposed here, together with the well-mixed approaches such in Refs. [23, 24, 25, 26], will
be crucial to test the role of and quantify the impact of the IFN response during early acute
infections, such as influenza and SARS-CoV-2, and how that may impact on disease outcome.

Our conclusions about how IFN response stops spatial viral spread are consistent with many
lines of experimental observations. For example, it is shown in Ref. [42] that paracrine IFN
signaling was able to arrest the spread of infection in a monolayer by a rapid induction of down-
stream immune factors in proximal cells. Another example comes from chronic HCV infection
of the liver, where the infection is highly spatially inhomogeneous, exhibiting clusters of in-

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246777doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246777
http://creativecommons.org/licenses/by-nc-nd/4.0/


fected hepatocytes surrounded by uninfected cells in which expressions of the IFN stimulated
genes are high [43]. This emphasizes that IFN signaling could play an important role in the seg-
regation of HCV-positive cells into localized clusters, preventing further spread by protecting
cells in a neighborhood of the cluster [44]. In another work, in vitro experiments have shown
that IFN-suppressing wild-type vesicular stomatitis virus (VSV) is out-competed by mutants
lacking IFN-suppression when either host-cell IFN response or monolayer spatial structure is
removed. However, when monolayer spatial structure is preserved, the IFN-suppressing phe-
notype emerges as the dominant strain universally [45], emphasizing the importance of spatial
structure in determining the effectiveness of the IFN signaling.

The IFN response to virus spread among cells at the host level has clear parallels in in-
fectious disease transmission among individuals at the epidemiological level. First, autocrine
signaling has an epidemiological parallel to testing and self-isolation in epidemiological control,
where infectious individuals self-isolate in response to becoming aware of their own infection
status through testing. In both cases, an individual cell or person’s infectivity is modulated in
response to the discovery of their own infection status. Second, paracrine signaling is in a clear
analogy to contact tracing and quarantine, where the aim is to trace the at-risk individuals who
contacted the infected individual and reduce the risk of further transmission [46]. Third, when
the viral spread is mostly spatial, we showed that the collective host response through IFN diffu-
sion leads to an outer layer of protected cells to isolate the infected cells from other susceptible
cells. This is a pattern reminiscent of ring vaccination or ring culling [31, 32, 30]. Fourth, IFNs
act as communication molecules to signal to neighboring cells is also similar to the spread of
disease awareness at the epidemiological scale. As analyzed in Ref. [47], information about a
disease spreads to those close to infected individuals in a contact network, and thus decreases
the susceptibility of the informed to infection, suppressing the spread of the thee disease.

Overall, given that the IFN response is a highly effective immediate response employed by
host cells in a wide variety of tissues and body compartments [37, 8], we reason that it is likely
to be a highly effective and robust strategy to prevent virus spread in a host, irrespective of the
molecular details of the infection. At the epidemiological level, interventions discussed above,
i.e. testing, isolation, contact tracing, ring vaccination/culling as well as spread of awareness,
are likely to be effective and robust strategies against the spread of infectious diseases, although
their relative effectiveness may depend on how the pathogen spreads through a population.
Altogether, further experimental and modeling works on a quantitative understanding of the
IFN response against virus infection will continue to offer new insights into virus infection,
treatment and control at both the within-host level and the population level.
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Supplementary Materials

5.1 Derivation of R0 for ODE System
We will derive an expression for the basic reproductive number R0 for the ODE system (1) via
construction of the Next Generation Matrix (NGM) as outlined in ([36]). Since the dynamics of
protein and virion production are faster than those governing the cell variables, we will consider
the non-cell variables V and F to be immediately equilibrate (cite Perelson). This yields the
following expressions for the equilirbium values of V and F :

dV

dt
= pI + (1− f)pI∗ − cV = 0 =⇒ V =

p

c
(I + (1− f)I∗)

dF

dt
= πp(I + I∗)− cF = 0 =⇒ F =

πp

c
(I + I∗)

By substituting these equilibrium values into the original system, we are left with the quasi-
equilibrium system consisting only of cell species shown below.

dT

dt
= −βp

c
(I + (1− f)I∗)T − φπp

c
(I + I∗)T + ρR (4)

dI

dt
= β

p

c
(I + (1− f)I∗)T − δI − kI − φFI (5)

dI∗

dt
= φ

πp

c
(I + I∗)I + kI − δI∗ (6)

dR

dt
= β

πp

c
(I + I∗)T − ρR (7)

It is important that the NGM analysis be performed on the system in which all state variables are
cell species such that the interpretation of R0 as the number of secondary infected cells caused
by the first infected cell remains valid. We now consider the “infectious subsystem“ consisting
of consisting of equations (5) and (6) above. We compute the Jacobian of this subsystem, eval-
uating it at the disease-free equilibrium [T, I, I∗, R, V, F ]T = [T0, 0, 0, 0, 0, 0]T , which yields
the following:

J =

[
βpT0
c
− δ − k βp(1−f)T0

c

k −δ

]
The Jacobian matrix J is then partitioned as J = T + Σ, where the transmission matrix T
represents epidemiological birth events such as new infections while Σ represents exponentially
distributed transition events such as cell death and autocrine-mediated transition from I to I∗.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246777doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246777
http://creativecommons.org/licenses/by-nc-nd/4.0/


T =

[
βpT0
c

βp(1−f)T0
c

0 0

]
Σ =

[
−δ − k 0
k −δ

]

Σ−1 =

[ −1
δ+k

0
−k

(δ+k)δ
−1/δ

]
The Next Generation Matrix K is then defined to be K = −TΣ−1, and R0 is defined to be

the spectral radius of the K. We note here that Σ is always non-singular, as the death of infected
cells I and I∗ is required for R0 to be finite. The following computations were performed with
Maple.

K =

[
βpT0
c(δ+k)

+ βp(1−f)kT0
cδ(δ+k)

βp(1−f)T0
cδ

0 0

]

ρ(K) =
βpT0(−fk + δ + k)

δc(δ + k)
=
βpT0
cδ

(
1− fk

δ + k

)
We note that the value of R0 obtained from the NGM analysis of the quasi-equilibrium system
is consistent with the probabilistic interpretation of the terms of the original model, as outlined
below:

R0 =

[
# successful contacts

per time in class I

]
×
[

avg. time spent
in class I

]
+

[
# successful contacts
per time in class I∗

]
×
[

avg. time spent
in class I∗

]
×
[

prob. of entering
I∗ before cell death

]
=
βpT0
c
· 1

δ + k
+ (1− f)

βpT0
c
· 1

δ
· k

δ + k

=
βpT0
cδ
·
(

δ

δ + k
+

(1− f)k

δ + k

)
=
βpT0
cδ
·
(

1− fk

δ + k

)

5.2 Approximating Peak Viremia in ODE model
We will approximate the peak viral load in consideration of an ODE model that considers only
the protective effect of IFN signaling on susceptible cells and not the dampening of virion
output from infected cells (i.e., no I* class). Since paracrine IFN signaling is shown to be less
influential than autocrine signaling in the ODE context, we consider this model as a “best-case
scenario” for the efficacy of paracrine IFN signaling in a spatially-homogeneous setting. This
reduces the model (1) to the following system of ODEs:
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dT

dt
= −βV T − φFT + ρR

dI

dt
= βV T − δI

dR

dt
= φFT − ρR

dV

dt
= pI − cV

dF

dt
= πpI − cF

We will once again assume that the compartments V and F are near equilibrium, so we will
take the following approximation in our analysis:

0 = pI − cV =⇒ V =
p

c
I

0 = πpI − cF =⇒ F = π
p

c
I

We now consider an approximate model for the cell compartments alone that employs the
rapid equilibration of the V and F compartments. We furthermore assume that in the initial
stage of infection the target cell population remains close to the initial value T0 and that the
transition from the refractory class back to the target population is negligible during initial
infection (i.e., ρ = 0). Furthermore, we take the contact rates for borth both virions and IFNs to
be β. Since there is mutual unidentifiablity between p and beta and between πp and φ, we can
let β = φ as the parameter π can implicitly account for the difference in these contact rates as
might be present in biology. Together these assumptions yield the following pair of ODEs:

dT

dt
= −β(V + F )T = −β(1 + π)

p

c
IT

dI

dt
= β

p

c
IT − δI

We will now approximate the peak infected cell population. At peak infection, dI
dt

= 0 =⇒
Tpeak = T0/R0 where R0 = βp

δc
T0. We consider now a phase plane solution to the following:

dI

dT
=

β p
c
IT − δI

−(1 + π)β p
c
IT

= − 1

1 + π

(
1− T0

R0

1

T

)
=⇒ I(T ) = − 1

1 + π

(
T − T0

R0

ln(T ) + C
)
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Under the assumption that there is no initial infected cell population,

I(0) = 0 = − 1

1 + π

(
T0 −

T0
R0

ln(T0) + C
)

=⇒ C = −T0 +
T0
R0

ln(T0)

I(T ) =
1

1 + π

(
T0 − T +

T0
R0

ln(T/T0)
)

Since we now have I expressed explicitly as a function of T , we can substitute in the value of
Tpeak calculated previously:

=⇒ Ipeak = I(Tpeak) =
1

1 + π
T0

(
1− 1 + lnR0

R0

)
We lastly return to our assumption that under rapid equilibration V = p

c
I , so our expression for

the peak viral load is

Vpeak =
1

1 + π

p

c
T0

(
1− 1 + lnR0

R0

)
=

1

1 + π

δ

β

(
R0 − 1− lnR0

)
Since π = 0 corresponds to the case of no paracrine IFN signaling, we see that paracrine

IFN signaling has the effect of reducing peak viremia by a factor of f = 1
1+π

compared to the
case of no paracrine INF.

5.3 Approximating Time to Peak
We will find an approximate expression for the time to peak viremia. We again make the quasi-
steady state assumption in V and F , take f = 1 so that autocrine signaling completely shuts
down virion output.

dT

dt
= −βp

c
(1 + π)IT

dI

dt
= β

p

c
IT − δI

We see that peak infection (dI/dt = 0) occurs at such a time that T (tpeak) = T0/R0, where
R0 = βp

cδ
T0. Approximating growth to be exponential until that time, we have:

I(t) = I0e
(R0−1)δt while t < tpeak
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Substituting this expression into the equation for T , we can easily solve the single ODE.

T (t) = exp

[
R0

R0 − 1

I0
T0

(1 + π)
(
e(R0−1)δt − 1

)]
taking T (tpeak) = T0/R0 in the above approximate solution for T (t), we can easily solve for
tpeak and find the following approximate expression.

tpeak =
1

(R0 − 1)δ
ln

(
1 +

T0
I0

R0 − 1

R0

(1 + π) ln
T0
R0

)

5.4 Choice of parameter values
In our models, parameter values were taken or derived mostly from studies of influenza in-
fection. In the ODE model (see Table S1 for parameter values), we set the initial target cell
population, T0 to 4.0 × 108 cells according to a previous estimate of number of target cells for
influenza infection [23]. The death rate of infected cells is set to 4/day according to Ref. [23].
The rate of infected cells to become cells in an antiviral state, k, is set to 2/day, because Rand
et al. [37] showed that cells turn on interferon signaling between 12 to 24 hours post infection.
Virion production is set to a rate used in a previous influenza study [33]. Virion clearance rate
and the rate that refractory cells become target cells again are set to values estimated by Pawelek
et al. [25]. We set the value of β such that the viral load peaks around 2 days post infection as
seen in the data from Ref. [23]. The value of φ is unknown in general. Here we set it to be the
same value as β, such that the value of π represent the relative impact of IFN signaling on cells
as compared to the viral infection process.

In the PDE model (see Table S2), we model infection from the upper and the lower respira-
tory track as a one-dimensional spreading process, and the length of the one-dimensional space
is assumed to be 30cm [48]. Therefore, the target cell density is calculated as 4.0 × 108/30 =
1.3 × 107 cells/cm2. We also assumed the diffusion coefficient for IFN is much higher than
viruses according to Ref. [33] and set DF = 40 × DV . The value of β is increased to ensure
that virus population grows over time. Other parameters are kept the same to be consistent with
the ODE model.

Overall, the choice of parameter values in our model are consistent with estimates of acute
infections in the literature. The overall conclusion of our study is robust to variations of these
parameter values within biological plausible range.

5.5 Traveling Wave Analysis and Derivation of Wave Speed
We will perform a traveling wave analysis of the reduced PDE model without IFN response
given by the following equations:
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Parameter Description Units Default Value Source
T0 initial target cell population cells 4.0× 108 [23]
β virus contact rate cm particles−1 day−1 5× 10−10

φ IFN contact rate cm particles−1 day−1 5× 10−10

ρ reversion from R to T day−1 1 [25]
δ infected cell death rate day−1 4 [23]
k autocrine transition rate day−1 2 [37]
f autocrine efficacy unitless 0.9
p virion production virion cell−1 day−1 2400 [33]
π IFN production rate relative unitless 1

to virus production
c virion clearance day−1 14 [25]

Table S1: Description of parameters in the ODE model.

Parameter Description Units Default Value Source
T0 initial target cell density cells cm−1 1.3× 107 [23, 48]
β virus contact rate cm particles−1 day−1 7.3× 10−9

φ IFN contact rate cm particles−1 day−1 7.3× 10−9

δ infected cell death rate day−1 4 [23]
k autocrine transition rate day−1 2 [37]
f autocrine efficacy unitless 0.9
p virion production virion cell−1 day−1 2400 [33]
π IFN production rate relative unitless 1

to virus production
c virion clearance day−1 14 [25]
DV virion diffusion cm2 day−1 1
DF IFN diffusion cm2 day−1 40

Table S2: Description of parameters of the PDE model.

∂T

∂t
= −βV T

∂I

∂t
= βV T − δI

∂V

∂t
= pI − cV +Dv

∂2V

∂x2

(8)

We will consider a traveling wave solution of the system. For each compartment ui(x, t)
there exists a function Ui(z) where the solution can be expressed as ui(x, t) = U(x+ vt). Now
for each compartment ui we make the following substitutions:
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∂ui
∂t

= vU ′i(z),
∂2ui
∂x2

= U ′′i (z)

Making the above substitutions and re-writing the second-order equation in V as two first order
equations, we arrive at the following 4 dimensional system system of first order equations:

T ′ = −β
v
V T

I ′ =
β

v
V T − δ

v
I

V ′ = W

W ′ = − p

D
I +

c

D
V +

v

D
W

This system has steady state ue = [T0, 0, 0, 0]. Evaluating the Jacobian of the system at ue

J =


0 0 −β

v
T0 0

0 − δ
v

β
v
T0 0

0 0 0 1
0 −p/D c/D v/D

 (9)

To exclude biologically irrelevant solutions to the system, we will enforce that the eigenval-
ues of the Jacobian be non-complex to avoid oscillation of the populations about zero. That is
to say, the minimum admissible wave speed will occur for the critical value v∗ at which the the
characteristic polynomial of the Jacobian takes a double real root. This of course is the thresh-
old value before which the polynomial takes complex conjugate-pair roots. The block diagonal
structure of the Jacobian reveals there to be a zero eigenvalue, so we can examine instead the
characteristic polynomial of the full-rank 3× 3 block.

p(λ; v) = det

λI −
 − δ

v
β
v
T0 0

0 0 1
−p/D c/D v/D

 = Dvλ3 + (Dδ − v2)λ2 − (c+ δ)vλ+ cδ(R0 − 1)

We note the following when R0 > 1:

lim
λ→±∞

p(λ; v) = ±∞ if v > 0 , lim
λ→±∞

p(λ; v) = ∓∞ if v < 0

p(0; v) = cδ(R0 − 1) > 0

p′(0; v) = −(c+ δ)v

.
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These three observations together ensure that p(λ) always has one negative real root and attains
an extremum for some λ > 0. We will now construct v∗ such that there exists a positive real
double root on R+. For a positive double root to exist it must also be an extremum of the
polynomial. This means we solve the following system of equations for λ and v:{

p(λ; v) = 0 λ > 0
d
dλ
p(λ; v) = 0 λ > 0

For a given parameter set, this can be done numerically to find a prediction of the traveling
wave speed.

5.6 Discriminant Method for Determining Exact Expression for Wave
Speed

With any polynomial p(λ) = Wλ3+Xλ2+Y λ+Z of degree 3 we can associate a discriminant
∆3 = X2Y 2 − 4WY 3 − 4X3Z − 27W 2Z2 + 18WXY Z.

The minimum admissible traveling wave speed of the system (8) is found to be the critical
value v∗ for which the characteristic polynomial of the Jacobian takes a double root, which is
precisely where ∆3 = 0. In terms of the discriminant, we frame the problem as:

∆3 = v2(Dδ − v2)(δ + c)2 + 4Dv4(δ + c)3 + 4(v2 −Dδ)3cδ(R0 − 1)... (10)
...− 27D2v2[cδ(R0 − 1)]2 + 18Dv2(v2 −Dδ)(c+ δ)[cδ(R0 − 1)] = 0

For the simpler problem where there is no death of infected cells and thus the total number
of cells is conserved we can further reduce the dimensionality of the problem:

∂I

∂t
= βV (T0 − I)

∂V

∂t
= pI − cV +D

∂2V

∂x2

We find the corresponding 1st order traveling-wave ODE to have jacobian about the zero
equilibrium.

J =

 0 βT0/v 0
0 0 1

−p/D c/D v/D


We will consider the discriminant of the characteristic polynomial of the above jacobian

matrix to be a function of the wavespeed v and collect terms accordingly:
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p(λ; v) = Dvλ3−v2λ2−qvλ+pT0β =⇒ ∆3 = (4T0βp+c
2)v6+(18T0βcDp+4c3D)v4−(27T 2

0 β
2D2p2)v2

We see that the discriminant here is a sixth order polynomial in v with no odd order terms and
no constant term. Since the trivial wavespeed v = 0 is not of interest, we can neglect the double
root of v = 0 and look at the following:

∆̃3(v) = (4T0βp+ c2)v4 + (18T0βcDp+ 4c3D)v2 − (27T 2
0 β

2D2p2) := Av4 +Bv2 + C

The minimal wavespeed v∗ will be the largest value of v for which ∆̃3(v) = 0. Since the
above is quadratic in v2, it is easily solved by the quadratic formula. This furthermore implies
that each positive wave speed admitted also admits an equal and opposite wave speed, as the
system is non-advective and thus has no directional bias. Letting R = T0βp, we have the
following expression for the wave speed:

(v∗)2 =
−B +

√
B2 − 4AC

2A
= Dv

−9Rc− 2c3 +
√

4c6 + 36Rc4 + 108R2c2 + 54R3

R + c2

Recalling the parameter values used from Table S2, we can choose smaller order terms to ne-
glect to arrive at a simpler expression that is sufficiently accurate for a neighborhood of our
parameter set. Here, observing R ≈ 104 and c ≈ 2 × 101, we arrive at the following reduced
expression:

v∗ ≈
√
Dv

4

(√
108R− 9c

)
This value is shown to be consistent with traveling speeds measured from numerical simulations
(relative error ≈ 5%). Since this method appears effective in producing an accurate closed form
expression for the wave speed, we wish to recycle this logic as much as possible. For the more
general case where δ 6= 0, we would like to make small simplifications that will eliminate odd
order terms and allow use of the quadratic formula. Specifically we will make the assumption
that v2 >> Dδ and will substituteX = (Dδ−v2)→ −v2. Under this substitution, the non-zero
positive root of the discriminant is approximated by quadratic formula and found be consistent
with numerical simulation (relative error ≈ 2− 5%). The closed form is very complicated and
is not included here.

5.7 Cellular Automata Model
An infected cell produces virus prod virions per time step. These are the ”successful” viri-
ons, which are the virions that successfully contact another cell before they can be degraded or
otherwise cleared. In this sense, the production number virus prod is considerably smaller
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than the actual quantity of virions that would be produced by the cell in a single time step. The
nominal values of the CA parameter values may be found in Table S3

Rather than allowing the virions produced to diffuse along the lattice explicitly, for each
virion produced we select a recipient cell according to the following stochastic process. We de-
termine a time-to-contact, ∆t, where ∆t is drawn from an exponential distribution with param-
eter λ, chosen such that 1/λ is the average time for a virion to reach a recipient cell. Then a dis-
tance r is drawn from a normal distribution with mean 0 and standard deviation σ =

√
2Dv∆t,

where Dv = virus diff is the virion diffusion coefficient. An angle θ is then drawn from
a uniform distribution U(0, 2π), and the cell found at a distance r in the θ direction from the
producing cell is chosen to receive the virion. That is, for a producing cell located at position
(x0, y0), a recipient cell location (x, y) is chosen as follows:

∆t ∼ Exp(λ), r ∼ N (0, 2Dv∆t), θ ∼ U(0, 2π),

(x, y) =(x,y)∈Z2

(√
(x0 + r cos θ − x)2 + (y0 + r sin θ − y)2

)
This procedure is equivalent to sampling the distribution given by the solution of the Diffu-

sion Equation Vt = Dv∆V with Dirac-delta initial condition evaluated at time t = ∆t. After
being selected as the recipient of a virion, a cell enters the exposed state if it is not already
exposed, productively infected, or protected. After virus prod delay time steps, the ex-
posed cell becomes productively infected and begins to produce virions and will continue to do
so for the remainder of the simulation. Similarly, after ifn prod delay time steps from
exposure, the exposed cell begins to produce IFN particles, and continues to for the remainder
of the simulation. We assume the delay in IFN production to be smaller than the delay in virion
production. IFN particles are produced and transfected instantaneously into recipient cells in
the same way as virions, with separate production and diffusion parameters, ifn prod and
ifn diff, respectively.

Parameter Description Units Default Value
virus prod virus production rate virus step−1 1
ifn prod IFN production rate IFN step−1 NA
virus diff virus diffusion coeff. cell-width2 step−1 0.2
ifn diff IFN diffusion coeff. cell-width2 step−1 1
virus prod delay post-exposure wait time steps 14
ifn prod delay post-exposure wait time steps 8

Table S3: Parameters of the CA model.

The parameters of the CA model were selected to reflect experimentally verified values,
though it must be noted that experimental conditions may not adequately represent the in-host
environment. virus prod is taken to have unit value, implying that time unit step is defined
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to be the average time for an infected cell to produce a single viral progeny. Taking the virion
production parameter from the DE models p = 2400, then we can interpret step = 1/2400day.
Since the spatial unit in the CA model is one cell width, by taking the diffusivity of an influenza
virion in human periciliary fluid to be 10−12 [48] and the average diameter of an epithelial cell
to be 12.7µm [49], we can approximate the virion diffusivity in our units to be approximately
0.2. The IFN diffusivity ifn diff has not been experimentally studied, so is taken here to be
up to an order of magnitude higher than that of the virion due to the difference in particle size.
This is likely an influential parameter that could be a key object of future study.
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Supplementary Figures

Figure S1: Even supraphysiologial levels of IFN production π do not affect initial exponential
growth rate. Very high levels of free IFN can shorten the time to peak viremia, but do not demonstrate
the ability to halt establishment of systemic infection.
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Figure S2: Given sufficient time, infection will reemerge despite strong IFN signaling. Shown is a
representation of log10 I(x, t) over sufficient time scale for infection to reemerge far from initial location.
This phenomenon is an artifact of the continuum approximation inherent in the PDE fomulation of the
model. Due to the parabolic nature of the PDE, compact data becomes immediately non-zero in the
entire domain, leading to inevitable reemergence of infection in locations where only fractional amount
of virus is present.
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