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Abstract:
Insufficient statistics due to small considered sample sizes can cause distinct problems in internal
quality control (IQC) approaches. This issue concerns most of the currently applied IQC concepts
either directly (if a root-mean-square-deviation metric is evaluated) or indirectly (if the IQC concept
facilitates a standard deviation that was self-evaluated based on a very limited number (n≤30) of
control  measures).  In  clinical  chemistry  a  famous  example  for  the  latter  case  is  the  common
implementation of the Westgard Sigma Rules approach. 
This study quantifies the statistical uncertainties in the determination of root mean square (total)
deviations related to the sample mean (RMSD) or to a target value (RMSTD). It is clearly shown
that RMS(T)D values based on small data sets with n<50 samples are accompanied by a significant
statistical  uncertainty  that  needs  to  be  considered  in  adequate  IQC  limit  definitions.  Two
mathematical models are derived to reliably estimate an optimal adaptation function to adjust IQC
limits to short charts of control measures.
This article provides the theoretical background for the novel IQC method “Statistical Monitoring
by Adaptive RMSTD Tests” (SMART) intended to monitor limited available numbers of recent
control measures (usually n<20). The study also addresses a general problem in specificity of an
IQC resulting from too small sample sizes during the evaluation period of the applied in-control
standard deviation.
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multidimensional confidence interval of a series; MDCI; internal quality control; clinical chemistry;
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Abbreviations: 
ANOVA: analysis of variance; CI: confidence interval; CIΔ

up: upper limit of the confidence interval
of the RMSTD metric;  Δ: the “true” RMSTD value determined using sufficient amounts of data;
GEP: Gaussian error propagation; GPD: Gaussian probability density; IQC: internal quality control;
MDCI: multidimensional confidence interval; RA: retrospective (statistical) analysis of SMC data;
RMSD: root mean square deviation (aka empirical standard deviation); RMSTD: root mean square
total (or target) deviation with respect to a known target value (aka entire analytical measuring
uncertainty);  SMART:  Statistical  Monitoring  by  Adaptive  RMSTD  Tests;  SMC:  single
measurement of a control sample 
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1  Introduction

Quality assurance, and particularly the internal quality control (IQC), are essential requirements to
monitor the reliability of processes in industry and health care. An IQC of quantitative methods
usually utilizes control sample(s), which are continuously captured. Aside from evaluations of each
Single Measurement of a Control sample (SMC values), a statistical retrospective analysis (RA) of
recent  SMC data  allows  to  early  identify  changes  in  accuracy  and precision  of  the  measuring
system. Efficient and widely used statistical metrics are the root mean square deviation RMSD (aka
standard deviation) and the root mean square total deviation RMSTD. The latter refers to a given
target value of the control sample instead of the current average. 
Based on a chart of consecutive SMC values, the current standard deviation sn and the unsigned bias
(mean inaccuracy) δn can be revealed by 

s n = √ 1
n−1

⋅∑
i=1

n

(y i−< y n>)
 2    and   δ n =|< yn>−y0| (1)

(yi:  measured  SMC,  y0:  target  value,  <yn>:  sample  mean,  n:  sample  size  of  an  SMC  chart).
Particularly in the case of low-frequent sampling, the parameters sn and δn are not strictly separable
because: 
(i) The measurement inaccuracy (bias) can vary even within a single chart due to unpreventable or
tolerated changes in environmental or operating conditions. These shifts contribute to the amount of
the standard deviation. 
(ii) The average values of arbitrary SMC charts of length n scatter themselves with a dispersion of
s/√n. Thus, the amount of the standard deviation affects the obtained average value of a particular
chart of limited size - leading to an arbitrary distortion of the real bias of this chart. 
It is therefore suitable to solely focus on the entire analytical measuring uncertainty (aka RMSTD) 

RMSTD n = √ 1
n

⋅∑
i=1

n

(y i−y0)
 2 

= √ n−1
n

⋅s n
2
+ δ n

2 . (2)

The RA has to handle a trade-off between (i) a sufficient number of SMC samples to reliably verify
a statistical in-control condition and (ii) a special focus on most recent data to detect changes in
measuring precision as fast as possible. Particularly in clinical chemistry, the RA has to deal with
generally low-frequent SMC measures (1-2 SMC per day and control sample) as well as limited
reasonable collection periods due to short reagent lifetimes or other frequent system interventions.
Thus,  the  considered  SMC  data  set  is  often  very  small  on  a  statistical  point  of  view.  Some
prescribed RA approaches in national guidelines demand only n=15 retrospective values [1].  This
small number has consequences for the applied maximum permissible limits of statistical metrics,
which  are  often  defined  for  “sufficiently  long”  charts  of  SMC  data  (i.e.,  with  little  or  no
consideration  of  remaining  statistical  uncertainties  in  determination).  The  minimum amount  of
collected  SMC data  to  reliably  apply  such  limits  is  generally  significantly  underestimated.  To
prevent false out-of-control alerts, general limits have to be adapted to account for the increased
statistical uncertainty at very limited sample sizes. We thus need to know, how an adequate RMSTD
(or RMSD) limit level L(n) must be increased when it is applied to smaller and smaller sample
sizes. The functional dependency of L(n) on n is the main topic of this article.  In particular, the
necessary  adaptation  function  a(n)  defined  by  L(n)=a(n)∙L(∞) is  investigated,  where  a(n)  is
equivalent to the relative limit Lrel(n)=L(n)/L(∞) and Lrel(n→∞)=1. The adaptation function of the
RMSTD metric  serves  as  an  integral  part  of  the  novel  and  powerful  IQC method  “Statistical
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Monitoring by Adaptive RMSTD Tests (SMART)” [2].  This method efficiently covers all  basic
aspects  of  an  IQC,  and  it  is  particularly  suitable  for  low-frequent  sampling.  Alternatively,  the
provided results  may facilitate  a  new type of  confirmed RMSD-based short-term control  rules,
applicable in other multirule IQC concepts. 
All limits defined in this article are unsigned values specifying a range around the target value of
the control sample y0±Lgiven. 
The  “Westgard  Sigma  Rules”  [3-5]  is  currently  the  most  prominent  IQC approach  in  clinical
chemistry. It is a multirule concept of consecutively applied simple tests. The entry rule is a range
test with a cut-off limit of three times the expected standard deviation around the expected mean
(Y±3S). Both parameters S and Y need to be determined during a pre-analytical evaluation period,
if there are no explicitly prescribed values. Evaluation periods are commonly done using a very
small considered sample size (n about 20). The resulting distinct statistical uncertainty implies a
high risk of significantly underestimated amounts of S and Y. This problem and the impact to the
Westgard Sigma Rules will be quantified and discussed in Chapter 3.4 of this article. 

2  Methods

2.1  The determination of the “true” RMSTD

The abbreviation  Δ will be used for simplicity to denote the (almost) exactly determined “true”
RMSTD value, which can be revealed by a sufficiently large SMC data set  (n>>100).  The word
“true”  emphasizes  that  there  is  no remaining statistical  uncertainty  in  the  determination  of  the
RMSTD, standard deviation, or mean bias. 
The evaluated Δ value of a control sample also defines the smallest permissible limit of the RMSTD
(based on and intended for large SMC data). Thus, the Δ value should nevertheless include all kinds
of measuring uncertainties that are unpreventable or tolerable during the in-control operation state
of the measuring system. Ideally, the determination of Δ is required for each particular combination
of a control material and reagent lot. However, it is a common practice to accept a certain level of
generalization. In special cases one prescribed general limit value might be sufficient for every use
of  a  measuring  system.  The  determination  of  Δ utilizes  Eq.  (2)  and ideally  requires  extensive
statistics over several long SMC charts of the same control sample 

• with different devices, 
• under different permissible operating and environmental conditions, 
• including several recalibrations, and 
• using different lots (if the target value is not lot-specific). 

(The entire  procedure  may  include  separate  statistics  of  different  control  samples  with  analyte
concentrations predominantly near the medical decision limit.) 
The SMC survey is best realized by sharing of peer-group data. The in-control state is defined by all
considered data sets. Thus, a mechanism should be applied to identify and entirely reject suspect
data sets that distinctly diverge from the group averages (e.g., an ANOVA test). 
The collected overall data set of SMC values still includes outliers. To ensure a robust statistics,
distinct  outliers  should  be  identified  and  rejected.  This  can  approximately  be  done  under  the
assumption that acceptable measures (defining the in-control state) are normal-distributed around
the mean, whereas outliers are independently distributed. Thus, the elimination of outliers utilizes a
recurrently updated fit  of the histogram over all  currently accepted SMC values by a Gaussian
function.  Most diverging SMC values (with respect to the mean)  are sorted out as long as the
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quality of the Gaussian fit of the remaining data set increases. 
The deviation and bias of the final Gaussian fit function directly provide the essential parameters S
(overall  standard  deviation),  Ymean (overall  mean value),  and  δmean (mean bias). Hence,  the  true
RMSTD is revealed from S and δmean based on the general relation 

Δ = √ 1
n ∑

i=1

n

(y i−y0)
 2 

= √ 1
n ∑

i=1

n

(yi − < yn>)
 2

+ (< y n> − y0)
 2 (3)

(yi: sample value; y0: target value; <yn>: sample mean; n: entire/large sample size), which can be
transformed to 

Δ = √f S 2
+ (Ymean−y0)

2
= √f S 2

+ δmean
2     , where    f=

n−1
n

. (4)

Some equations in Chapter 2.2 will utilize the following conversion rule to separate S:

Δ = √f S 2 + δmean
2 = S √ f + ν 2     , where    ν =

δmean

S
. (5)

In this way, the standalone parameter S can finally be eliminated in relative RMSTD metrics. A
discussion concerning the range of realistic values of ν is given in Chapter 3.1. For sufficiently large
n, the factor f can be substituted by f=1; thus, Δ becomes Δ∞=S∙√1+ν2.. 

2.2  The maximum error propagation of statistical uncertainties

An applied  IQC limit  L(n) for  single-chart  RMSTD values  must  be  equal  or  higher  than  the
RMSTD of any possible in-control data set of n considered SMC values. The maximally expected
RMSTD value of a limited data set can be approximated by the upper limit of the n-dependent
confidence  interval  (CIΔ

up)  of  the  RMSTD metric  (at  an  adequate  confidence  level  of  0.95  or
higher).  Here,  the  upper  CI  limit  is  the  sum of  the  true  value  Δ and  the  expected  statistical
uncertainty u(Δ) at a given sample size n 

L(n) ≥ CI Δ

up
= Δ+u (Δ) . (6)

To apply reasonable limits, it is beneficial to estimate the curvature of CIΔ
up at small sample sizes.

This curvature will finally provide inference to the necessary adaptation of general IQC limits for
the RMSTD metric with regard to an arbitrary (limited) sample size.  In cases of very large n, the
statistical  uncertainty  u(Δ)  can  be  neglected,  leading  to  L(n→∞)≥Δ∞.  The  basic  Eq.  (4)  of  Δ
contains two empiric variables S2 and Ymean, having an error due to their statistical uncertainties. The
variance S2 is preferred instead of the standard deviation, because an entirely unbiased estimator
with regard to different sample sizes only exists for S2. 
To estimate u(Δ) by u(S2) and u(Ymean) the maximum error propagation (first-order Taylor series
expansion)  is  applied,  utilizing  the  absolute  amounts  of  the  partial  derivations  ∂(Δ)/∂(S2)  and
∂(Δ)/∂(Ymean) 

u(Δ)=|∂(Δ)

∂(S2
)|⋅u(S2

) +| ∂(Δ)

∂(Ymean)|⋅u(Ymean) . (7)
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According to Eqs. (4) and (5), the required partial derivations lead to 

∂(Δ)

∂(S2
)
=

f

2S √f+ν
2
  and  

∂(Δ)

∂(Ymean)
= ν

√f+ν
2

. (8)

Both derivations are always positive. 
The sample mean of a normal-distributed variable is itself normal-distributed with a dispersion,
equal to the overall standard deviation S divided by the square root of n. Hence, the mean values
<yn> of SMC charts of length n can be standardized according to 

< yn>−Ymean

S
√n ∼ N (0,1) . (9)

In literature, CI limits are generally given for the common case that the true parameter value of the
total population (e.g., Ymean) is unknown. Thus, a CI is defined around the usually known value <yn>
of a small data set, where the true value Ymean is expected to be covered by the CI (at a certain
confidence level). Alternatively, an equivalent (i.e., inverted) CI can also be applied to the known
global variable Ymean, where the unknown sample mean <yn> is expected to lie within the inverted
interval around Ymean accordingly.  In case of the mean, the CI definition is  symmetric,  and the
normal and inverted definitions are identical. Though, the asymmetric CI around the global variance
S2 (see below) differs from the inverted one around the variance sn

2. of  a sample subset. Thus,
following CI definitions may differ from those typically mentioned in textbooks. 
In brief, the CI and uncertainty of Ymean are 

CI< yn >=CIYmean
={−z 0.95

S

√n
 ,  z 0.95

S

√n }  (10)

(z 0.95 : quantile of the normal distribution with a significance level of 5%) and 

u (Ymean)=z 0.95
S

√n
. (11)

The choice of an optimal value of z0.95 is discussed in Chapter 3.1. The applied overall standard
deviation S (revealed as described in Chapter 2.1) is a maximum estimator delimiting the general
in-control state. Consequently, the expected real standard deviation of an individual SMC chart is
most probably smaller because the device and measuring conditions are almost unchanged. One
might argue that the student distribution tn-1 (instead of z) is favorable in this case, which would
result in much higher amplitudes at very small n. Though, the uncertainty of S is already explicitly
considered  in  a  separate  term  (see  Eq.  (7)).  The  substitution  of  z  by  tn-1 would  thus  clearly
overestimate u(Ymean). It would further lead to extremely artificial results of Eq. (29) for n<3. 

The uncertainty of the overall variance S2 utilize the chi-squared distribution χ2 

df⋅sn
2

S2
∼χ df

2 (12)

(df: degrees of freedom; sn
2: variance of a sample subset of size n;  χ2: chi-squared distribution).

Thus, (at a probability of 1-α) the expected variance of an arbitrary n-sized sample series lies within
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the CI around the “true” variance S2 defined by 

CI S 2 = { S 2

n−1
χ n−1;α/ 2

2   ,  
S2

n−1
χ n−1 ;1−α/2

2 } . (13)

The uncertainty of the overall variance is consequently 

u(S2
) = CI S 2

up
− S2

= S2( χ n−1; 0.95
2

n−1
− 1) . (14)

Only  the  upper  limit  of  S2 is  relevant  for  our  purpose;  thus,  a  one-sided confidence  level  (1-
α/2=0.95) is used. 
A particular difficulty of the u(S2) term of the CIΔ

up approach is the question, if the expected sample
mean can be considered as known (i.e., equal to the overall Ymean). The actual true mean value (or
true  bias)  of  a  realistic  SMC  chart  depends  on  the  specific  device,  lot,  and  other  measuring
conditions. The variation of the true means of SMC charts at different measuring conditions could
be significant. It is assumed that Ymean (based on a peer-group survey) can not be taken as an ideal
estimate for the expected mean of a particular chart. Further, u(S2) should specify the error of the
pure dispersion of a single chart, where the uncertainty of the contribution |<yn>-y0|2 is considered
separately (see Eqs. (3) and (7)). Thus, Eq. (13) is intended for an unknown expectation value. This
means  that  the  unknown  sample  mean  <yn>  is  taken  as  the  most  suitable  reference  for the
expectation  value  so sn

2=1/(n-1)*Σi→n(yi-<yn>)2.  Consequently,  the  number  of  the  degrees  of
freedom is n reduced by one (df=n-1 in Eq. (12)). This decision might be controversial. One may
argue that Ymean relates to S; thus, it is always a proper estimate for the expectation value of any
subset mean. This would lead to df=n instead. The latter case requires that the ratio χ2(n-1,0.95)/(n-
1) would have to be replaced by χ2(n,0.95)/n in Eq. (13) and in all subsequent equations. The topic
is more complex, which is also reflected by the fact that the uncertainty u(S2) is always higher in the
case  of  df=n-1  than  in  the  alternative  case  with  df=n.  Here,  this  issue  leads  to  an  intrinsic
“inexactness” of the given mathematical model, which has been visualized by function corridors in
several figures. The preferred variant given in Eq. (13) indicates the upper limit of the corridor,
where the lower limit is defined by the alternative case with χ2(n,0.95)/n. However, it should again
be mentioned that the overall S is a maximum estimate of the expected standard deviation of a
single chart (due to the multi-chart origin of S). Nevertheless, at a CI of 95% and no considered bias
(ν=0), the preferred variant shows best agreement with the MDCI function (see Chapter 3.2).

Combining Eqs. (7), (8), (11), and (14), the entire uncertainty of Δ can now be expressed as 

u(Δ) =
S

√ f+ν
2
⋅[ f

2 ( χ n−1; 0.95
2

n−1
− 1) +

ν⋅z 0.95

√n ] . (15)

According to Eq. (6), the requested upper confidence limit of the total measuring uncertainty under
poor statistical conditions is finally given by 

CIΔ

up
=

S

√f+ν
2
⋅[ν2

+
f
2 (1 +

χ n−1 ;0.95
2

n−1 ) +
ν⋅z  0.95

√n ] . (16)

(n: number of considered SMC values, ν: ratio between δmean and S, f=(n-1)/n, χ2 and z: quantiles of
the chi-squared and normal distributions). 
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The given mathematical approach is intended to estimate the statistical uncertainty of an RMSTD of
small series. However, the presented mathematical model becomes unreliable for any n below about
6, due to (i) the approximative concept of the degrees of freedom (esp. the correction factor f) and
(ii) the fact that the underlying Taylor-series development is limited to the first degree, which is not
intended for large uncertainties.  Thus, a more fundamental (but also more specific) approach is
presented in the next chapter to further investigate the amount of the statistical uncertainty at very
small sample sizes.

2.3  The Multidimensional Confidence Interval 

The following derivation neglects the mean bias to the target value of the control material. Thus, it
focuses on the statistical uncertainty of the RMSD (aka empirical standard deviation) in cases of
small  sample sizes n. As given in Eq. (12), the squared relation between a particular empirical
standard  deviation  sn of  a  sample  and  the  true  standard  deviation  S0 follows  a  chi-squared
distribution. Here, a straight-forward derivation of the statistical uncertainty of RMSD values will
be presented, which is comparable but not identical to the derivation of the chi-square function
(which is outlined in relevant textbooks). 
This  fundamental  theory extends the CI of single measures  to  a  collective CI of a  series  of n
measures, while keeping the overall confidence level constant (at, e.g., 95%). It will be denoted as
the Multi-Dimensional Confidence Interval (MDCI). Hereafter, it is assumed that all (in-control)
measures of the control sample are realizations of a normal-distributed totality, and each value had
been  standardized  in  advance.  The  MDCI  theory  is  therefore  dedicated  to  realizations  of  the
standard Gaussian distribution with RMSD(n→∞)=1. Further, all SMC measures are treated to be
uncorrelated to simplify the theory. 
A standardization requires the knowledge of the true mean value and the true standard deviation of
the particular SMC chart, which are unknown. Applying the approach described in Chapter 2.1, the
overall  parameters  Ymean and S can be revealed instead.  By taking Ymean as  the mean value for
standardization, the MDCI theory neglects the mean amount of the bias. Under the assumption that
the actual bias of a limited SMC chart is variable and normal-distributed around Ymean, this variable
fraction would be almost indistinguishable from pure statistical imprecision on a global view (see
Chapter  2.1).  The  estimator  S  also  considers  this  fraction;  thus,  S0 is  overestimated  by  S.
Fortunately, we are interested in maximum estimators to define upper limits, consequently S can be
treated as an acceptable substitution for S0. However, it  has to be mentioned that the additional
contribution of the variation of the bias to S0, which is low-frequent, may lead to a noticeable short-
term correlation between consecutive SMC measures. 

The two-sided confidence interval z95 for a single SMC measure y is given by the integration limit
that covers 95% of the area under the normalized Gaussian probability density (GPD) function 

G(y) =
1

√2 π
⋅∫

−z95

z95

exp(−
y2

2
) dy = 0.95 . (17)

To define a confidence interval  for a complete  series of n measures,  G must be extended to n
dimensions.  This  is  easily  understandable  by  the  general  fact  that  the  entire  probability  of  a
sequence of measures equals to the product of the unique probabilities of each measure. Here, scalar
probabilities are just extended to probability distribution functions. Due to 
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G(y1 ,y2 , ... ,y n)= ∏
i=1

n

G(y i) (18)

it does not matter if the measures occur in concert (multivariate) or sequentially (sample chart).
Thus,  the  multidimensional  representation  of  G  equals  to  the  known  multivariate  Gaussian
distribution 

G(y ,n)= ( 1
√2π )

n

⋅ ∫
−yCI(1)

yCI(1)

⋯ ∫
−yCI(n)

yCI(n)

exp [−0.5(y1
2
+...+yn

2
)] dV (19)

(yCI(n):  one-dimensional  confidence  limits;  dV:  finite  Cartesian  volume  element),  where  each
dimension represents one measure of the SMC sample series. G(y,n) is fully rotationally symmetric
around zero, thus best represented in polar co-ordinates by the radius and n-1 orientation angles.
Here, we are only interested in delimiting equipotential spherical hypersurfaces of G(y,n) without
further angular dependency. Hence, after pre-integration over the entire angular ranges, G(y,n) can
be expressed as a normalized radial function 

G(r ,n) = (
1

√2 π )
n

⋅∫
0

r CI

exp(−0.5⋅r2
) d Ω     , where    r2

=∑
i=1

n

y i
2 (20)

(r CI : radial n-dimensional confidence limit; dΩ: finite spherical volume element in n dimensions).
If G(r,n) is integrated over the radius r (origin at zero) of the Gaussian distribution in n dimensions,
the  size  of  the  finite  spherical  volume  element  dΩ increases  according  to  the  area  of  the
hypersurface  of  an  n-dimensional  sphere  [6-8].  Thus,  dΩ is  the  entire  surface  area  of  an  n-
dimensional sphere of radius r multiplied by a finite thickness dr 

d Ω=
2

Γ(n /2)
⋅√π

n
⋅r(n−1)

⋅dr (21)

(Γ(n/2): value of the gamma function for n over two). 
The values of the gamma function are usually tabulated for small n (see also Table S1 on last page).
However,  this  approach  may  require  values  beyond  the  size  of  common  gamma  tables.  The
following set of equations can be used to reveal any requested value of gamma 

Γ(0) = ∞     and    Γ(1)= 1 ;

for even n:  Γ( n
2 )= Γ(i+1) =(i)! ;

for odd n:  Γ( n
2 ) = Γ( i+

1
2

) =
(2i)!

( i)!⋅4 i ⋅√ π (22)

(i: integer number; “(i)!”: denotes the factorial of i). 
The combination of Eqs. (20) and (21) leads to the final expression of the volume integral over the
radial Gaussian probability density function in n dimensions 

G(r ,n) = 2
(1−

n
2 )

⋅
1

Γ ( n /2)
⋅∫

0

rCI

[r (n−1) exp(−0.5⋅r2
)] dr . (23)
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G(r,n)  is  normalized,  which  has  been  approved  by both  numeric  and algebraic  integration.  To
algebraically validate that G equals 1 over the entire range, the integral must be made consistent
with a known indefinite integral. The best candidate is the general definition of the gamma function 

Γ(x) =∫
0

∞

t (x−1) exp(−t) dt . (24)

A suitable conformity to the integral term of Eq. (23) can be achieved by substitution with t=0.5∙r2

in Eq. (23). Under consideration of following relations 

r (n−1)
= (2 t)

n−1
2     and    

dt
dr

= r =(2 t)
1
2 , (25)

the normalization factor C of the integral term of Eq. (23) can be revealed by 

C⋅∫
0

∞

[2
n−1

2 ⋅t
n−1

2 ⋅exp(−t)⋅2
−

1
2⋅t

−
1
2 ] dt = C⋅2

(n
2

−1)
⋅Γ ( n

2 )= 1 , (26)

where Eq. (24) has been applied with x=n/2. After rearrangement, C in Eq. (26) is in full agreement
with the normalization factor of Eq. (23). 

To obtain  the  common (two-sided)  95% confidence  limit  z95(n)  of  a  series  of  n  measures,  the
normalized radial density function (Eq. (23)) has to be integrated from 0 to z95(n) 

2
(1−

n
2 )

Γ(
n
2 )

⋅ ∫
0

 z 95(n)

r (n−1)
⋅exp(− 1

2
r2)⋅dr  = 0.95 (27)

(n:  sample  size  or  dimension;  r:  radius  of  the  spherical  partitioning  hypersurface;  Γ:  Gamma
function). Thus, the radial integration limit rCI=z95(n) covers 95% of the hypervolume spanned by
the multidimensional GPD distribution. 
Obviously, z95 is 1.96 at n=1. For higher n, the limit z95(n) increases according to Eq. (27) and
slowly converges towards the square root function of n. According to Eq. (20), the limit  z95(n)
represents the Euclidean distance rCI of a series of single confidence limits  ensuring a constant
overall  significance  level  of  5%.  The  limit  can  therefore  be  utilized  to  obtain  the  maximum
acceptable RMSD (with 95% confidence) of a sequence of n SMC measures. To obtain such a
function of adequate upper RMSD limits  L°(n) of n standardized values,  z95(n) can directly be
implemented into Eq. (2) (considering y0=0) leading to 

LRMSD
ο

(n) = √ 1
n ∑

i=1

n

(y i
ο
)

 2 
=

z 95(n)

√ n
(28)

(° denotes the RMSD limit of an N(0,1)-distributed sample; yi°: standardized SMC values). L°(n)
goes from 1.96 (n=1) to 1 (for  n→∞) as drawn in Fig. 1. To apply L°(n) to non-standardized yi

values, L°(n) has to be back-transformed using the overall standard deviation S and Ymean,  thus
LRMSD(n)=S·L°(n)+Ymean. 
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Figure 1: The shape of L° (Eq. (28)) of the MDCI theory is  provided graphically  (n≤30) and
tabularly (n≥30).

3  Results and conclusions

3.1  The uncertainty of the RMSTD at small sample sizes

To provide a general curvature of the increase of the statistical uncertainty at smaller sample sizes,
the  CIΔ

up(n)  (given  in  Eq.  (16))  is  normalized  by  the  true  RMSTD value  for  n→∞,  which  is
Δ∞=S∙√1+ν2. as defined at the very end of Chapter 2.1. It leads to the relative adaptation function for
RMSTD limits 

L rel
RMSTD

(n)=
CIΔ

up
(n)

CIΔ

up
(∞)

=
CIΔ

up
(n)

Δ∞

=

ν
2
+

f
2 (1+

χ n−1; 0.95
2

n−1 )+ ν⋅z 0.95

√n

√(f + ν
2
)(1 + ν

2
)

(29)

(n:  sample  size;  f=(n-1)/n;  ν=δmean/S;  χ2 and  z:  95%-quantiles  of  the  chi-squared  and  normal
distributions). The relative CIΔ

up function Lrel
RMSTD depends on the ratio ν between bias and standard

deviation but not on the absolute amount of S.
Although an important goal of measuring techniques should be the minimization of a bias (e.g., by
advanced non-linear calibration), the actual biases of current analytic systems in clinical chemistry
are often relevant. It is important to mention that the ratio ν of the overall parameters δmean and S is
not directly comparable to the ratio of the maximum permissible values δmax and smax intended for
single SMC charts. The IQC limits  δmax and smax issue from a (deprecated) separate evaluation of
inaccuracy and imprecision,  where  δmax restricts  the permissible  variability  of the bias  of  SMC
charts. The individual biases (quantified by the particular average value) of single SMC charts vary
according to device-specific, operational, and environmental conditions with a scatter parameter Sδ.
The procedure to obtain  δmean and S, presented in Chapter 2.1, includes SMC data from a large
amount of SMC charts. In this overall statistics, the variation of the biases of individual charts is
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thus part of the overall standard deviation term S. The implicitly included variation of biases can be
treated  as  normal-distributed.  Pure  short-term  dispersion  (true  statistical  imprecision)  and  the
variation of biases are further sufficiently independent; thus, the overall variance is the sum of both
variances S2=S2

imp+S2
δ. The remaining overall bias  δmean is just the difference between the overall

mean value and the target value. If the target value is a nominal value, δmean is expected to be small
in relation to S. However, the amount of  δmean might be still  significant, if the target value was
revealed by a more precise reference method. In general, the ratio ν=δmean/S is expected to be clearly
non-zero but distinctly smaller than the ratio φ=δmax/smax  

0 < ν < φ     or    0 <
δmean

S
<

δmax

smax

. (30)

The ratios φ of almost all analytes in clinical chemistry have been revealed and compared in [2,9].
The range (0.6,2.1) covers almost all φ values, where most of the φ values are near 1.0. It is further
assumed that all modern and well-established analytic techniques show ratios below 1.5. According
to Eq. (30) an adequate value for ν is approx. 0.6 with an assumed maximum uncertainty of about
±0.5. Nevertheless, ν-values of up to 1.5 are considered in this article. Further, the decision to apply
a one- or two-sided 95% CI for the parameter z0.95 also depends on ν. If the amount of δmean is almost
as high as S (or even higher), a one-sided CI is more suitable than a two-sided CI. Here, a smooth
approximate transition between two-sided (ν=0, z=1.96) and one-sided (ν=1, z=1.645) statistics is
applied by the sigmoidal function 

z 0.95(ν)= 1.645 +
0.315

1+exp [10⋅(ν−0.5)]
   or   z 0.99(ν) = 2.33 +

0.245
1+exp[10⋅(ν−0.5)]

. (31)

Because Eq. (29) has only two remaining variables, a 3D-plot is provided in Fig. 2 covering the
range ν=0-1.5 and n=2-30. Keeping in mind that Lrel

RMSTD goes to 1.0 at very high n, the dependency
on  ν in the most relevant range  0.1<ν<1.1 to the entire shape of  Lrel(n)  is relatively small.  The
combination of ν=0.6 and z=1.7 will  be used as a feasible  representative choice for almost all
analytes in clinical chemistry.

Figure 2: A 3D-plot of the relative upper CI-95% limit of the CIΔ
up approach is drawn according to

Eq. (29). The function is not defined at n=1; thus, the given range of n is 2-30. The considered
range of the bias-dispersion-ratio ν is 0-1.5, where the z-value has been adapted with regard to
ν (see Eq. (31)). The frontal view at the right-hand side additionally marks key quantities of
the Lrel

RMSTD function. The minimum value of 1.204 of the given section is reached at n=30;
ν=1.5. The initial amplitudes (at fixed n=2) show a roughly parabolic shape from 1.71 (ν=0)
via the maximum value 2.175 at ν=0.435 back to 1.741 (ν=1.5). 
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At a broad CI of 99%, which would result in a very tolerant IQC limit definition, it is strongly
recommended to migrate the derivation of CIΔ

up from maximum error propagation to the Gaussian
error propagation (GEP). In this case, Eq. (29) changes to 

L rel ,GEP
RMSTD

(n)=
CIΔ

up ,GEP
(n)

Δ∞

=

f + ν
2
+ √ f 2

4 ( χ n−1; 0.99
2

n−1
−1)

2

+
ν2⋅z  0.99

2

n

√(f + ν
2
)(1 + ν

2
)

. (32)

3.2  Comparison of both mathematical theories

The more fundamental MDCI theory is comparable to the special case of the CIΔ
up approach without

consideration of an overall bias (ν=0). Thus, both theories are compared in Figs. 3, 4 and 5 utilizing
the relative functions given in Eq. (28) and Eq. (29), respectively. Both functions converge towards
one at infinity. The intrinsic uncertainty of the CIΔ

up approach with regard to the concept of the
degrees of freedom is indicated by a black/gray corridor. The upper black boundary utilizes the
given Eq. (29), whereas the lower black boundary represents the substitution of the term χ(n-1)

2/(n-1)
by  χn

2/n  in  Eq.  (29),  which  has  been  discussed  in  Chapter  2.2.  Moreover,  the  CIΔ
up approach

becomes additionally uncertain at  very small  sample sizes n<6, mainly due to the approximate
correction of the degrees of freedom by the prefactor f. Attempts have been made to introduce a
more complex correction of the degrees of freedom [10]. However, the theory behind a fine-tuned
adaptation of the prefactor f is beyond the scope of this article. 

Figure 3: The graph shows the relative increase of the statistical uncertainty of RMSD values with
regard to the sample size n at a CI of 95%. The gray corridor and the flanking black graphs
are  obtained  from the  CIΔ

up approach  using  Eq.  (29)  with  ν=0 (no  bias).  The  red  graph
represents  the  MDCI  function  (Eq.  (28)).  The  narrower  green  corridor  is  taken  for
comparison. It shows the  Lrel,GEP

RMSTD corridor obtained by Eq. (32) with  ν=0.6 and z=1.7,
applying a Gaussian error propagation at a CI of 95%. (For  ν=0, as depicted by the gray
corridor,  the type of  error  propagation is  irrelevant  and Eq.  (29)  = Eq.  (32).)  All  graphs
converge to 1 at n→∞. A value for n=1 is not defined by the CIΔ

up approach. 

12 / 19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.10.20247148doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.10.20247148
http://creativecommons.org/licenses/by-nc-nd/4.0/


At a CI of 95%, the MDCI function is entirely covered by the shape corridor of Lrel
RMSTD with ν=0 as

shown in Fig. 3. It can be further concluded that the upper black curve (representing the unmodified
Eq. (29))  is in best agreement with the MDCI function under special consideration of the range
1<n<15. Any in-principle thinkable modification of Eq. (29) (e.g., a more complex prefactor f, a
derivation with regard to the standard deviation instead of the variance, a substitution of z by the
analog quantile tn-1 of the Student distribution) result in significantly higher differences of the entire
Lrel

RMSTD corridor  to  the  MDCI function.  The remaining discrepancy  at  very  small  n  can  most
probably be dedicated to the approximate adaptation of the degrees of freedom. Thus, the CIΔ

up

curvature tends to be slightly less steep at n<6. It is assumed that this conclusion can be generalized
to all CIΔ

up functions (with  ν>0).  The question, why the relative CIΔ
up function at ν=0 is not fully

identical to the MDCI function, is addressed in a short appendix of this article. 
The green corridor has been added to Fig. 3 for comparison. It marks the shape corridor of the CIΔ

up

approach  (Lrel,GEP
RMSTD)  utilizing  the  parameter  set  ν=0.6  and  z0.95=1.7  (which  is  considered  as

representative  for  analytes  in  clinical  chemistry)  in  combination  with  the  Gaussian  error
propagation according to Eq. (32) at a CI of 95%. Surprisingly, the agreement between the upper
green boundary of Lrel,GEP

RMSTD and the red MDCI-95% function is nearly perfect. This agreement is
also visualized in Fig. 4B as black and gray lines. Further, the green corridor in Fig. 3 is equivalent
to the black corridor in Fig. 4D except the different CI. Applying the maximum error propagation,
the MDCI-95% function is still within the corridor of Lrel

RMSTD with ν=0.6, z0.95=1.7 as shown in [2]. 

The situation at a CI of 99% is less clear, because the CIΔ
up functions increase more rapidly than the

MDCI function, going from CI-95% to CI-99%. A comparison is shown in Fig. 4 and discussed
below. Further information are provided in the appendix and Fig. 5.  Nevertheless, the  Lrel,GEP

RMSTD

corridor according to Eq. (32) with ν=0.6 and z0.99=2.4 comes again in agreement with the shape of
the corresponding MDCI-99% function. The comparison is illustrated in Fig. 4D and [2]. 

Figure 4 (next page): The graphs show the MDCI function (L°, Eq. (28)) and selected curves of
the CIΔ

up approach (Lrel
RMSTD, Eq. (29) or Lrel,GEP

RMSTD, Eq. (32)) with different values of ν (and
dedicated  z)  within  the  most  relevant  range  0≤ν≤1.5.  The  given  functions  of  the  CIΔ

up

approach are usually only the upper boundaries of the shape corridors (as directly obtained by
the Eq. (29) / (32)). In (D) the complete Lrel,GEP

RMSTD corridor is exceptionally given for ν=0.6
(black lines). Graphs (A) and (B) are revealed considering a CI of 95%, where (C) and (D)
base  on  a  CI  of  99%.  In  vertical  direction  the  graphs  differ  by  the  type  of  the  error
propagation,  which  is  the  maximum  error  propagation  Lrel

RMSTD in  (A)  and  (C)  and  the
Gaussian error propagation Lrel,GEP

RMSTD in (B) and (D), respectively. The color-codes indicate
the same values of ν in all four graphs except the green lines, which mark the individual local
maximum (if  one exists)  for  ν>0. Frontal  views of the entire  3D plots  of Lrel,GEP

RMSTD are
included as picture-in-picture, where the hidden scale is n=2-30 (see Fig. 2). The frontal view
assigned to (A) is given in Fig. 2.
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3.3  Conclusions with regard to small sample sizes

The study quantitatively revealed that a significant statistical uncertainty in the determination of
RMSTD or RMSD metrics must  be considered if  the sample size (n) is  below about  50.  This
uncertainty (or error) can reach additional 100% (or even more) of the true RMS(T)D value. Two
mathematical approaches were derived to quantify this uncertainty. The CIΔ

up approach refers to the
entire RMSTD (inclusive bias); however, it lacks precision below about n<6. The second approach
(MDCI) represents a more fundamental theory, but it neglects a mean bias with respect to a target
value (just RMSD). Both final functions - the relative CIΔ

up function Lrel
RMSTD (Eq. (29)) and the

MDCI function L° (Eq.  (28)) -  define n-dependent  prefactors to  the true values of RMSTD or
RMSD. Despite differences in the final equations, the Lrel

RMSTD function without bias (ν=0) is very
similar to the MDCI function if a CI of 95% is considered, as shown in Figs. 3 and 4. 
At very broad CI ranges (CI=99%) the comparison of both approaches is less clear as discussed in
Chapter 3.2. and the appendix. As shown in Fig. 4, the MDCI functions generally stay in good
agreement with the Lrel,GEP

RMSTD (ν=0.6) corridors at both CI-99% and CI-95%, if the CIΔ
up approach

is switched from maximum to Gaussian error propagation. Nevertheless,  a CI significantly above
95% is not recommended. For IQC a combination of a rather narrow CI of about 95% in addition to
a small constant offset to all evaluated maximum permissible limits is favorable. This small general
bonus allows a slightly extended basic tolerance for limited baseline variation. The offset might be
in the order of the difference in maximum amplitudes (at n=2) between the CI-99% and CI-95%
functions. 
The quantification of the statistical uncertainty allows to optimally adapt general IQC limits for
RMSTD results  with  regard  to  the  sample  size  of  a  particular  SMC chart  or  to  the  size  of  a
retrospective monitoring window of SMC data.  More precisely,  both revealed functions L° and
Lrel

RMSTD represent an adaptation function a(n) to consider limited sample sizes - leading to the n-
dependent  IQC limit L(n)=a(n)∙L(∞).  In [2] a  simple fit  function for a(n) in  the range n<30 is
suggested. The presented findings led to the development of a novel powerful IQC method [2] that
efficiently monitors a very limited available number of recent SMC values. 
Established  quantitative  diagnostic  methods  in  clinical  chemistry  provide  mean-bias-to-overall-
deviation ratios in the range 0<ν<1.1. This conclusion is extensively discussed in [2]. The most
populated region is expected to be ν≈0.6±0.3. Thus, the black curves (ν=0.6) in Fig. 4 indicate the
representative functions for all analytes in clinical chemistry. The red (ν=0) and cyan (ν=1.1) curves
mark the approximate boundaries of realistic ratios in clinical chemistry. 

3.4  Risks of a short evaluation period in combination with Westgard Sigma Rules

The “Westgard Sigma Rules” is currently a very prominent IQC approach in clinical chemistry. It is
a serial multirule concept starting with the 3S entry rule. This rule defines a first in-control range of
μe±3∙Se also known as the Shewhart rule. Both parameters (mean value μe and standard deviation Se)
must be determined during a pre-analytical evaluation period, if the control sample is unlabeled. 
First, we assume normal-distributed SMC values during the analytic process and a negligible bias
(the means of dedicated SMC charts are almost similar to μe). The 3S range thus covers 99.9% of
the expected data, and the rule causes only about 0.2% false alerts. This sounds comfortable. 
However, a problem arises if the parameter Se was insufficiently determined due to small amounts
of evaluation data. Several laboratories only use 20 data points during evaluation. Let us define σ as
the unknown real in-control standard deviation. The limits ±3∙σ would provide the above mentioned
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false-alert rate of only 0.2%.  Considering 20 data points,  the risk is high that the real standard
deviation has been significantly underestimated. In an unfavorable but still realistic scenario, the
obtained Se is near or below the lower limit of the two-sided 95% CI around σ. This happens on
average in 1 of 40 evaluation processes. According to Eqs. (12) and (13), the CIlow is given by 

Se
2
≤ CI

σ 2

low
=

χ n−1; 0.025
2

n−1
⋅σ

2    ⇒    Se ≤ 0.685⋅σ . (32)

Applying this  unwittingly  underestimated  standard  deviation,  Westgard’s  3S  entry  rule  actually
becomes a 2S rule 

3⋅Se  = 2.055⋅σ , (33)

and the rate of false alerts increases to 4%. Thus, on average, one false alert every 25 IQC tests
must be expected in this situation. Further, the expectation value μe has also been self-determined
with a distinct uncertainty:  μe±tn-1,0.975∙Se/√n (tn-1,0.975: 95%-quantile of the Student distribution). At
n=20 the uncertainty of the revealed mean would be μe±0.47∙Se. The resulting distortion of the real
mean  further  increases  the  problem of  false  alerts.  It  is  important  to  note  that  all  mentioned
uncertainties are purely statistical effects. They can not be circumvented by consideration of very
different operation conditions during the evaluation period. In fact, the evaluated standard deviation
Se would be even more underestimated (compared to the true σ), if the considered evaluation data
not entirely reflect the full spectrum of potential operation conditions. 
A pragmatic solution to ensure a sufficient evaluation of μe and Se would be a share of peer-group
data combined with an ANOVA analysis or the approach described in Chapter 2.1. A solely self-
made parameter evaluation should ideally base on at least 40 values, which would reduce the final
rate of false alerts of the 3S rule to below 1.9%. A more tolerant entry rule (e.g.,  ±3.5S or  ±4S
limits) of the Westgard Sigma Rules might also be part of a practicable solution, which would be
particularly suitable for techniques with a high Sigma Metric. 

Appendix

How does the CIΔ
up approach at ν=0 (no bias) must be modified to become identically equal to the

MDCI function? First, all modifications with regard to a correction of the degrees of freedom are
rejected (esp. the prefactor f is neglected). Finally, the  error propagation leading to CIΔ

up has to
utilize the standard deviation S instead of the variation S2. Please note that a derivation considering
the variation has been preferred because (in contrast to the square root of S2) the estimator S2=1/(n-
1)∙∑(yi-<y>)2 is unbiased. 
Utilizing S, the derivative and uncertainty (according to Eq. (8) and (14)) change to

∂(Δ)

∂(S)
=

f

√f+ν
2

   and   u(S)= S(√ χ n ; 0.95
2

n
− 1) . (A.1)

Thus, Eq. (16) becomes to
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CIΔ

up
=

S

√f+ν
2
⋅(ν

2
+ f⋅√ χ n ; 0.95

2

n
+

ν⋅z 0.95

√n ) . (A.2)

The resulting relative function Lrel
RMSTD finally ends up in the MDCI function if f=1 and ν=0. 

Based on a CI of 95%, the MDCI function lies within the shape corridor of Lrel
RMSTD (always at ν=0)

obtained by the preferred derivation via the error of the variance (see Eq. (29) and Fig. 3).  The
flanking functions of any  Lrel

RMSTD corridor  differ  by the term χ(n-1)
2/(n-1)  (upper  curve)  or  χn

2/n
instead (lower curve),  as discussed in Chapter  2.2.  The corresponding corridor  of  the alternate
derivation  of  CIΔ

up via  the  error  of  the  standard  deviation  (as  given  in  Eq.  (A.2)  above)  lies
significantly below (not shown for CI-95%). 
Based on a  CI of  99%, the increases of  both  Lrel

RMSTD corridors  towards  higher  amplitudes  are
stronger  than  that  of  the  MDCI function;  thus,  the  MDCI function  now appears  between both
corridors. This constellation is drawn in Fig. 5 for the sake of completeness. Please note that the
CIΔ

up approach is based on just a first-order Taylor series expansion. It is assumed that the approach
becomes less accurate at  higher amplitudes (i.e.,  at  higher CI levels).  The corridors in Fig.  5B
further demonstrate that almost all kinds of CIΔ

up derivations clearly fail at n≤4, most probably due
to the simplified handling of the degrees of freedom.

Figure 5: Comparison of the curves of the upper limits of the CI-99%. (A) The amplitudes of the
MDCI-99% function (red), the shape corridor of Lrel

RMSTD (ν=0, CI-99%) with variance-based
error  expansion  (black/gray),  and  the  corridor  of  Lrel

RMSTD (ν=0,  CI-99%) with  standard-
deviation-based error expansion (blue) are compared. (B) The approximate first derivatives of
all drawn curves in (A) are compared in addition. The slopes Lrel

RMSTD(n+1)-Lrel
RMSTD(n) or

L°(n+1)-L°(n) have been taken as a simple approximation of the first derivative. 
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Table S1: Relevant metrics  Γ(n/2), z(n), and L°(n) for all n≤40 and at  the two-sided CI levels
95%, 97,5%, and 99%. 

(n:  dimension or  sample  size.  Values  z(n)  are  equivalent  to  the  square  root  of  the  appropriate
chi-square value.) 

n ; Gamma(n/2) ; z(95%) ; RMSD°(95%) ; z(97.5%) ; RMSD°(97.5%) ; z(99%) ; RMSD°(99%)
  1 ; 0.177245E+01 ; 1.959939 ; 1.959939 ; 2.241378 ; 2.241378 ; 2.575804 ; 2.575804
  2 ; 0.100000E+01 ; 2.447722 ; 1.730801 ; 2.716178 ; 1.920628 ; 3.034829 ; 2.145948
  3 ; 0.886227E+00 ; 2.795458 ; 1.613959 ; 3.057491 ; 1.765243 ; 3.368189 ; 1.944625
  4 ; 0.100000E+01 ; 3.080191 ; 1.540095 ; 3.338131 ; 1.669066 ; 3.643696 ; 1.821848
  5 ; 0.132934E+01 ; 3.327211 ; 1.487974 ; 3.582223 ; 1.602019 ; 3.884080 ; 1.737013
  6 ; 0.200000E+01 ; 3.548438 ; 1.448644 ; 3.801208 ; 1.551837 ; 4.100206 ; 1.673902
  7 ; 0.332335E+01 ; 3.750594 ; 1.417591 ; 4.001570 ; 1.512451 ; 4.298266 ; 1.624592
  8 ; 0.600000E+01 ; 3.937908 ; 1.392261 ; 4.187402 ; 1.480470 ; 4.482188 ; 1.584693
  9 ; 0.116317E+02 ; 4.113243 ; 1.371081 ; 4.361485 ; 1.453828 ; 4.654649 ; 1.551550
 10 ; 0.240000E+02 ; 4.278647 ; 1.353027 ; 4.525809 ; 1.431187 ; 4.817573 ; 1.523450
 11 ; 0.523428E+02 ; 4.435642 ; 1.337396 ; 4.681860 ; 1.411634 ; 4.972396 ; 1.499234
 12 ; 0.120000E+03 ; 4.585394 ; 1.323689 ; 4.830779 ; 1.394526 ; 5.120226 ; 1.478082
 13 ; 0.287885E+03 ; 4.728826 ; 1.311540 ; 4.973465 ; 1.379391 ; 5.261938 ; 1.459399
 14 ; 0.720000E+03 ; 4.866677 ; 1.300674 ; 5.110645 ; 1.365877 ; 5.398237 ; 1.442740
 15 ; 0.187125E+04 ; 4.999554 ; 1.290879 ; 5.242912 ; 1.353714 ; 5.529705 ; 1.427764
 16 ; 0.504000E+04 ; 5.127960 ; 1.281990 ; 5.370762 ; 1.342690 ; 5.656823 ; 1.414206
 17 ; 0.140344E+05 ; 5.252319 ; 1.273874 ; 5.494610 ; 1.332639 ; 5.780000 ; 1.401856
 18 ; 0.403200E+05 ; 5.372991 ; 1.266426 ; 5.614811 ; 1.323424 ; 5.899577 ; 1.390544
 19 ; 0.119292E+06 ; 5.490287 ; 1.259558 ; 5.731670 ; 1.314935 ; 6.015859 ; 1.380133
 20 ; 0.362880E+06 ; 5.604476 ; 1.253199 ; 5.845452 ; 1.307083 ; 6.129105 ; 1.370510
 21 ; 0.113328E+07 ; 5.715768 ; 1.247283 ; 5.956365 ; 1.299785 ; 6.239516 ; 1.361574
 22 ; 0.362880E+07 ; 5.824419 ; 1.241770 ; 6.064660 ; 1.292990 ; 6.347340 ; 1.353257
 23 ; 0.118994E+08 ; 5.930587 ; 1.236613 ; 6.170495 ; 1.286637 ; 6.452732 ; 1.345488
 24 ; 0.399168E+08 ; 6.034437 ; 1.231774 ; 6.274030 ; 1.280681 ; 6.555850 ; 1.338207
 25 ; 0.136843E+09 ; 6.136112 ; 1.227222 ; 6.375408 ; 1.275082 ; 6.656834 ; 1.331367
 26 ; 0.479002E+09 ; 6.235745 ; 1.222930 ; 6.474760 ; 1.269805 ; 6.755813 ; 1.324924
 27 ; 0.171054E+10 ; 6.333454 ; 1.218874 ; 6.572203 ; 1.264821 ; 6.852901 ; 1.318841
 28 ; 0.622702E+10 ; 6.429346 ; 1.215032 ; 6.667843 ; 1.260104 ; 6.948204 ; 1.313087
 29 ; 0.230923E+11 ; 6.523520 ; 1.211387 ; 6.761776 ; 1.255630 ; 7.041816 ; 1.307632
 30 ; 0.871783E+11 ; 6.616064 ; 1.207923 ; 6.854090 ; 1.251380 ; 7.133825 ; 1.302452
 31 ; 0.334839E+12 ; 6.707061 ; 1.204624 ; 6.944868 ; 1.247335 ; 7.224311 ; 1.297524
 32 ; 0.130767E+13 ; 6.796586 ; 1.201478 ; 7.034184 ; 1.243480 ; 7.313348 ; 1.292829
 33 ; 0.519000E+13 ; 6.884707 ; 1.198474 ; 7.122104 ; 1.239799 ; 7.400999 ; 1.288349
 34 ; 0.209228E+14 ; 6.971490 ; 1.195601 ; 7.208695 ; 1.236281 ; 7.487334 ; 1.284067
 35 ; 0.856350E+14 ; 7.056992 ; 1.192849 ; 7.294012 ; 1.232913 ; 7.572404 ; 1.279970
 36 ; 0.355687E+15 ; 7.141270 ; 1.190212 ; 7.378113 ; 1.229685 ; 7.656268 ; 1.276045
 37 ; 0.149861E+16 ; 7.224375 ; 1.187680 ; 7.461047 ; 1.226589 ; 7.738974 ; 1.272279
 38 ; 0.640237E+16 ; 7.306354 ; 1.185247 ; 7.542862 ; 1.223614 ; 7.820569 ; 1.268664
 39 ; 0.277243E+17 ; 7.387252 ; 1.182907 ; 7.623601 ; 1.220753 ; 7.901096 ; 1.265188
 40 ; 0.121645E+18 ; 7.467110 ; 1.180654 ; 7.703307 ; 1.218000 ; 7.980599 ; 1.261843
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