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Abstract 

Determining a diagnosis of major depressive disorder (MDD) is complex, involving 

consideration and rating of a variety of different components. These include number 

of symptoms over an agreed threshold, symptom duration, functional impairment, 

persistence of symptoms within an episode, and symptom recurrence. While these 

components are generally accepted amongst physicians, it is unknown whether they 

reflect partly distinct biology between phenotypes. The aim of this study was to 

investigate how the genetic aetiology varies in the presence of different MDD 

components.     

 

Thirty-two depression phenotypes which systematically incorporate the MDD 

components were created using the mental health questionnaire data within the UK 

Biobank. SNP-based heritabilities and genetic correlations with three previously 

defined major depression phenotypes were calculated (broad depression, 

Psychiatric Genomics Consortium (PGC) defined depression and 23andMe, Inc. self-

reported depression) and differences between estimates analysed.   

 

All phenotypes were heritable (h2
SNP range: 0.102 – 0.162) and showed substantial 

genetic correlations with other major depression phenotypes (Rg range: 0.651 – 

0.894 (PGC); 0.652 – 0.837 (23andMe); 0.699 – 0.900 (broad depression)). The 

requirement for 5 or more symptoms and for a long episode duration had the 

strongest effect on SNP-based heritability, in the positive and negative direction 

respectively (1.4% average increase; 2.7% average decrease). No significant 

differences were noted between genetic correlations. 
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While there is some variation, the two cardinal symptoms, depressed mood and 

anhedonia, largely reflect the genetic aetiology of phenotypes incorporating more 

MDD components. These components may appropriately index for severity, 

however, the genetic component between phenotypes incorporating none and all 

components is comparable.  
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Introduction 

Major Depressive Disorder (MDD) is a common mental health condition and a 

leading cause of disability (1). Diagnosing MDD is a complicated process as one 

relies on symptoms commonly observed in the population, the presentation of which 

should exceed a normal reaction to the patient’s current environment (2,3).  

 

Qualitative studies have investigated which factors primary care physicians consider 

when evaluating a diagnosis of MDD. Many consistent themes arise, suggesting the 

presence of biological symptoms, e.g. weight loss or gain, context of the depression, 

functional impairment, episode duration, and recurrence as key differentiators (4–7). 

Given physicians refer to guidelines to make a diagnosis, it is not surprising these 

findings largely mirror criterion in the Diagnostic and Statistical Manual 5 (DSM5) 

and International Classification of Diseases 11 (2,3). Different weightings of these 

components between physicians lead to varied opinions about both the diagnosis 

and severity of MDD. Indeed, the DSM-5 field trials show a low diagnostic inter-rater 

reliability between clinicians (kappa=0.28, 95% CI: 0.20 – 0.35) (8). 

 

If these components do facilitate a valid conceptualisation of MDD, it may imply the 

existence of biological differences between MDD and a lenient depression 

phenotype which does not consider the components. This is important to determine 

as if such differences exist, it provides biological support to the validity of the current 

diagnostic criterion.  

 

Recent advances in biobank level data and genetic research allow us to explore the 

biological basis of diverse MDD presentations. Major depression (MD) has a 
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significant heritable component, with estimates in the range of 20 and 50% (9–12). It 

is a polygenic trait, meaning the genetic variance is explained partly by multiple 

common genetic variants of individually small effect in the population (13). Due to its 

genetic architecture, large sample sizes of MD cases and controls are required to 

identify these variants (14). As such, many genome-wide association studies 

(GWAS) have used a pragmatic ‘minimal phenotyping’ approach whereby cases of 

MD are identified according to a single, self-report, questionnaire response.  

 

The MD GWAS meta-analysis by Wray et al., (15) which identified 44 significantly 

associated risk variants, included a phenotype from 23andMe which used six 

versions of a self-report question asking if the participant has ever been diagnosed 

with clinical depression (16). In addition, the Howard et al., (17) GWAS meta-

analysis included a ‘broad depression’ phenotype derived in the UK Biobank through 

self-report responses to the question ‘have you ever seen a general 

practitioner/psychiatrist for nerves, anxiety or depression?’ (18). This approach has 

been justified through the high genetic correlations shown between these minimal 

phenotypes and the current gold standard MD phenotype of European ancestries; 

namely the Psychiatric Genomics Consortium (PGC) which contain a large number 

of cases identified according to a structured diagnostic interview. The genetic 

correlations are 0.85 (SE=0.03) and 0.87 (SE=0.04) for the 23andMe and broad 

depression phenotypes respectively (17).  

 

These results may support the use of the two minimal phenotypes (23andMe and 

broad depression) as they show a significant proportion of the genetic variants 

associated with a stricter MD phenotype are shared. Alternatively, as the correlations 
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with the gold standard PGC phenotypes are significantly different from unity, these 

minimal phenotypes may reveal different genetic loci, indicating partly distinct 

phenotypes from a biological perspective. Cai et al., (19) provide a comprehensive 

analysis of the minimal phenotyping approach in genetics. Using the UK Biobank, 

multiple minimal phenotypes are compared to a strict definition of MD, derived from 

responses to the Composite International Diagnostic Interview – Short Form (CIDI-

SF) (20). Relative to the minimal phenotypes, the strict MD phenotypes show higher 

SNP-based heritability and genetic correlations between minimally- and strictly-

defined MD phenotypes differ significantly from 1.  

 

These results may be interpreted in two ways. Firstly, the minimal phenotypes may 

include additional information not relevant or specific to a diagnosis of depression, 

such as treatment seeking or anxiety. However, it may also be that minimal 

phenotypes captures milder cases that would not meet full diagnostic criteria, or 

have not been systematically assessed for components of MD. For example, 

episode recurrence may reflect a higher burden of, and potentially involve some 

different biological pathways to single episode presentation. In this scenario, 

focusing on recurrent depression would result in an increased SNP-based heritability 

and genetic correlations with gold standard MD phenotypes relative to single episode 

depression, as shown by Cai et al., (19). Interestingly, if this interpretation is true, the 

genetic aetiology of the MD phenotype may vary with recurrence, leading to the 

possibility of specific biological pathways influencing this component.   

 

To our knowledge, no study has systematically investigated this interpretation. We 

used genetic analyses to determine whether different constellations of MD 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.15.20247015doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.15.20247015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

components reveal variation in the genetic aetiology. According to the diagnostic 

criteria for MD and the considerations from primary care providers shown in the 

literature, we break down MD into 5 key components: (1) the presence of five or 

more of the nine depressive symptoms listed in DSM-5, (2) functional impairment, (3) 

episode duration (4) the persistence of depression during the episode, and (5) 

recurrence. Note that for symptom number, the count was inclusive of the two 

cardinal symptoms, depressed mood and anhedonia, with at least one cardinal 

symptom having to be endorsed in all cases.  

 

This study used mental health data from the UK Biobank to define thirty-two 

depression phenotypes which systematically incorporate the five components. 

Through assessing patterns in SNP-based heritability and genetic correlations 

between the thirty-two depression phenotypes and the current European ancestries 

gold standard PGC MDD cohort, we aim to explore how the genetic aetiology of a 

MD phenotype varies in the presence of the five components. As a secondary aim, 

we repeated the genetic correlation analysis with two minimal phenotypes (23andMe 

self-reported and broad depression) to determine if these definitions show differential 

patterns to the PGC cohort, consistent with minimal phenotypes accounting for the 

MD components to differing degrees.  
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Methods 

Data 

The UK Biobank, a health study of 502,655 individuals, was used for this study (21). 

We used responses to the CIDI-SF which formed part of the Mental Health 

Questionnaire (MHQ) to define our phenotypes (20,22). This voluntary web-based 

questionnaire was completed by 157,366 UK Biobank participants aged between 45 

and 82 when completing the questionnaire.   

 

Characterisation of the Phenotypes 

The CIDI-SF contains questions relating to an individual’s worst episode of 

depression during their lifetime (20). Five components for MD were defined from 

CIDI-SF questions, corresponding to: episode recurrence (2 or more depressive 

episodes in lifetime), the presence of five or more depressive symptoms, a long 

episode duration (episode > 6 months), the presence of functional impairment 

(affected life/activities either ‘somewhat’ or ‘a lot’) and the persistence of the 

depressive symptoms during the episode (felt depressed ‘almost every day’ or ‘every 

day’). For brevity, these components will be referred to as recurrence, symptoms, 

duration, impairment, and persistence respectively. For each component, we derived 

a binary variable indicating if the individual endorsed this particular aspect of 

depression. For more detail as to how these binary variables were defined please 

see Supplementary Table 1.   

 

A base phenotype was first created, identifying individuals who endorsed at least 

one of the cardinal symptoms of depression (depressed mood, anhedonia). In these 

individuals, presence or absence of each of the 5 binary components were then 
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determined. Each individual could endorse between 0 and 5 of the components, 

resulting in a total of 32 different phenotypes shown by calculating ∑ ��
��

���  (Figure 1). 

The naming convention for each phenotype throughout the rest of the paper relates 

to which components are endorsed to be designated case status (Supplementary 

Table 2). For example, the phenotype ‘Cardinal+Recurrence+Impairment’ reflects all 

individuals who endorsed at least one cardinal symptom, reports more than one 

major depressive episode and was at least somewhat functionally impaired as a 

result of their worst episode. We use the term ‘enrichment’ to refer to the number of 

phenotypic factors endorsed, in addition to the cardinal symptoms (between 0 and 

5).   

 

Participants were designated as a control if they did not endorse a single item 

required for the phenotype. For example, in the instance cardinal symptoms, 

recurrence and impairment are required for case status, as long as any of the three 

components are not endorsed, the participant would be designated as a control. 

Therefore, as a depression phenotype includes more components, the number of 

controls also increases due to more participants not endorsing a particular 

component (Supplementary Table 3). For an evaluation of this approach to defining 

controls and its influence on the results, refer to the Supplementary Information. 

Controls were not ‘double-screened’ for the presence of any other psychiatric 

disorders, including MD, as to avoid upwardly biasing the SNP-based heritability and 

genetic correlation estimates (23–25). However, participants were excluded 

independently of case/control status if they were identified as a possible case for 

schizophrenia, bipolar disorder or substance abuse (Nexcluded = 3,032). This was 
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determined through an individual self-reporting either the disorder or a relevant 

medication (Supplementary Table 4).  

 

Genetic Data – Quality control, SNP-based heritability and genetic correlations 

Quality Control 

Participants in the final sample were unrelated and of European ancestries which 

were identified using a previously described analytical pipeline (Supplementary 

Methods) (21,26,27).  

 

A total of 560,173 genotyped and 9,940,918 imputed SNPs remained after QC. 

Genotyped SNPs were used to estimate heritabilities and imputed SNPs were used 

to compute genetic correlations.  

 

SNP-based Heritability 

Phenotype Correlation-Genetic Correlation (PCGC; https://github.com/omerwe/S-

PCGC) was used to estimate the SNP-based heritability of the 32 depression 

phenotypes. It is robust to sample ascertainment and non-normal effects of 

covariates in case-control studies (28,29). PCGC estimates SNP-based heritability 

by regressing phenotypic correlations on the genetic correlations between each pair 

of individuals while accounting for the effects of specified covariates. To convert to 

the liability scale, population prevalence was assumed to equal the sample 

prevalence prior to the application of any exclusion criteria for each of the 32 

phenotypes (Supplementary Table 3). As recommended, the Major 

Histocompatibility Complex (MHC) region was removed (chromosome 6; 28,866,528 

bp – 33,775,446 bp) reducing the total number of SNPs used to estimate the SNP-
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based heritability to 554,059 (30). The first 6 genetic principal components, 

genotyping batch and assessment centre were included as covariates for all 

phenotypes.    

 

Genetic Correlation 

Genetic correlations were computed using linkage disequilibrium score regression 

(LDSC) (31). LDSC was chosen for this analysis as the summary statistics 

necessary for PCGC estimation were not available for the three external MD 

phenotypes and we did not have access to the individual level data to compute 

these. Correlations were estimated for each of the 32 phenotypes with three 

depression phenotypes (UK Biobank broad depression (18), 23andMe self-reported 

depression (16) and PGC defined depression (15)). Summary statistics from Howard 

et al., (2018) (Ncases=113,769, Ncontrols=208,811), Hyde et al., (2016) (Ncases=75,607 , 

Ncontrols=231,747) and Wray et al., (2018) with 23andMe and UK Biobank samples 

removed (Ncases=45,396 , Ncontrols=97,250) were used to calculate the genetic 

correlations with the depression phenotypes. The 32 depression phenotypes were 

residualised by the first 6 genetic principal components, genotyping batch and 

assessment centre, then a GWAS performed using PLINK 2.0 (cog-

genomics.org/plink/2.0,32,33) to obtain summary statistics for each phenotype. Pre-

computed linkage disequilibrium (LD) scores, HapMap3 SNPs and the default 

settings of LDSC were used to calculate the genetic correlations for all phenotypes. 
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Statistical Analysis 

How does Enriching the Major Depression Phenotype Impact SNP-based Heritability 

and Genetic Correlation? 

We investigated the trend in SNP-based heritability and genetic correlations with 

enrichment of the MD phenotype, by requiring endorsement of additional MD 

components into the phenotype. Using the phenotype requiring only cardinal 

symptoms as a reference, we tested for significant differences in SNP-based 

heritability and genetic correlation estimates for the remaining 31 MD phenotypes. 

This was performed using a previously described block jackknife methodology with 

200 blocks (Supplementary Methods) (34,35). Differences from phenotypes with the 

same level of enrichment (i.e. endorsing the same number of components) were 

averaged by taking the inverse-variance weighted mean of the SNP-based 

heritability (or genetic correlations) (Supplementary Methods). For example, all 

phenotypes requiring cardinal symptoms and one other component (recurrence, 

symptoms etc.) would have the differences in SNP-based heritability and genetic 

correlation averaged to estimate the mean difference produced at that level of 

enrichment.    

 

Component Importance  

To investigate the relative effect of each component in driving any pattern in the 

SNP-based heritability and genetic correlation estimates, an analysis of differences 

by component was performed. For this test, differences in estimates are calculated 

using the same block jackknife approach, however, the phenotype requiring the 

endorsement of cardinal symptoms is no longer the reference. Instead, differences 

are calculated between all combinations of phenotypes which differ by only one 
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component. For example, the two phenotypes; ‘cardinal symptoms + recurrence’ and 

‘cardinal symptoms + recurrence + symptoms’ would be compared as the 

phenotypes are identical other than for the symptoms component. Of the two 

phenotypes being compared, the phenotype which includes the fewest components 

is set as the reference and any difference in estimates is attributed to the component 

that differs between the two phenotypes (symptoms, in the example above). All 

estimates were grouped according to the level of enrichment in the non-reference 

phenotype. Following this, each estimate is further grouped according to the 

component responsible for driving the difference and the inverse-variance weighted 

mean and standard error is computed.  

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.15.20247015doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.15.20247015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

Results 

Phenotypes 

From the 123,548 unrelated UKB participants of European ancestries who provided 

at least one non-missing response to the cardinal symptom items within the MHQ, 

65,586 endorsed at least one cardinal symptom, and 9,670 of these endorsed all five 

components.  Final sample sizes for all phenotypes are shown in Supplementary 

Table 3.   

 

SNP-based Heritability 

 
SNP-based heritability estimates for the 32 phenotypes ranged from 0.102 

(SE=0.015, Phenotype = Cardinal+Impairment+Persistence+Duration to 0.162 

(SE=0.014, Phenotype=Cardinal +Symptoms) (Figure 2a). All estimates were 

significantly different from 0 following Bonferroni correction for multiple testing 

(�Bonferroni < 0.0016 (0.05/32 phenotypes)) (Supplementary Table 5).  

 

Trend with Phenotypic Enrichment 

To understand the effect of enriching the MD phenotype, differences between the 

SNP-based heritability estimates relative to the phenotype of only cardinal symptoms 

were computed and averaged by the phenotypic enrichment, i.e. the number of 

components. As the phenotypes become more enriched, the average SNP-based 

heritability of the phenotype decreases (Figure 2b). However, taking each level of 

enrichment in turn, none of the SNP-based heritabilities were significantly different 

from the SNP-based heritability of the phenotype with only cardinal symptoms (p > 

0.05) (Supplementary Table 6).   
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Importance of each component  

Analysis by enrichment averages all phenotypes by number of components, 

however, phenotypes within each enrichment group will vary in which MD 

components are required to be endorsed. As such, the averaging removes any 

differential effect within the enrichment level, akin to treating all components as 

equivalent. To understand the differential impact of each component on SNP-based 

heritability, we first calculated the change in SNP-based heritability after adding the 

component and averaged the differences within each level of enrichment.  

 

The requirement of five or more symptoms during the episode induced a significant 

increase in SNP-based heritability when the component was added to the cardinal 

symptoms only phenotype after correcting for multiple testing (αBonferroni < 0.002 (25 

tests = 5 components over 5 levels of enrichment)) (Difference in SNP-based 

heritability = 0.027; SE=0.008; p-value=9.67x10-4). Inclusion or exclusion of all other 

components made no significant differences when grouped by enrichment (Figure 

2c; Supplementary Table 7). The lack of significance limits comparisons across 

components, however, episode duration decreased SNP-based heritability to the 

greatest degree with an average decrease in SNP-based heritability across all levels 

of enrichment of 2.7%. It is, therefore, likely this component is contributing greatest 

to the decrease in SNP-based heritability with increasing phenotype enrichment. 

Conversely the presence of five symptoms increased SNP-based heritability to the 

greatest degree, with an average increase of 1.4% (Supplementary Table 7).  
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Genetic Correlation 

All genetic correlations were significantly different from 0 following Bonferroni 

correction for multiple testing (�Bonferroni < 0.0016 (0.05/32 phenotypes)) 

(Supplementary Table 8). Genetic correlations ranged between 0.651-0.895 for PGC 

defined depression, 0.652-0.837 for 23andMe self-reported depression and 0.699-

0.900 for broad depression (Figure 3a).  

 

Trend with Phenotypic Enrichment  

Similar to the SNP-based heritability analyses, we analysed the effect of enriching 

the depression phenotype on the trend in genetic correlations with three external MD 

phenotypes. We compared all differences relative to the phenotype which required 

only cardinal symptoms to be endorsed. Differences in genetic correlation were not 

significant at any level of enrichment (p > 0.05) for broad depression, PGC or 

23andMe defined depression. Both the broad depression and PGC defined 

depression showed an increase in genetic correlations estimates with enrichment of 

the depression phenotype, however, this is speculative and would require a study 

with greater power to show conclusively (Figure 3b; Supplementary Table 9). 

23andMe self-reported depression did not show such an increase by phenotypic 

enrichment (Figure 3b; Supplementary Table 9) 

 

Importance of each component  

We analysed the change in genetic correlation induced by the addition of MD 

components for the three MD phenotypes. The addition of duration to the phenotype 

requiring only cardinal symptoms decreased the genetic correlation with all three of 

the MD phenotypes at a level of nominal significance (PGC: Δrg = -0.135; 23andMe: 
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Δrg = -0.114; Broad depression: Δrg = -0.113; p < 0.05). Similarly, the addition of 

persistence to phenotypes that consisted of cardinal symptoms and one other 

component on average increased the genetic correlation with the 23andMe 

phenotype (23andMe: Δrg = 0.034, p < 0.05. However, none of these associations 

survive correction for multiple testing (�Bonferroni < 0.002 (0.05/25)) (Figure 4; 

Supplementary Table 10).  

 

Given this lack of association it is difficult to discern any real trend by component, 

however, incorporating recurrence into the depression phenotype resulted in the 

greatest average increase over all three of the depression phenotypes (average 

change: PGC = 8.8%; 23andMe = 4%; Broad depression = 6.4%). Conversely, 

incorporating episode duration into the depression phenotype consistently decreased 

the genetic correlation for all three depression phenotypes (average change: PGC = 

-5.1%; 23andMe = -8.5%; Broad depression = -4.4%).  

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.15.20247015doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.15.20247015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

Discussion  

In this study, we aimed to determine how the genetic aetiology varies between 

different conceptualisations of MD phenotypes. By defining five depression 

components in addition to the cardinal symptoms, we compared how the SNP-based 

heritability of the trait, and the genetic correlations with three previous depression 

studies varied with presence and absence of each component. Differences in SNP-

based heritability would support a different risk factor profile, i.e. reduced effects of 

the environment in MD phenotypes with increased SNP-based heritability, whereas 

differences in genetic correlations would provide evidence for specific genetic 

variants contributing to the MD phenotype. Each piece of evidence could be used to 

support a partial biological distinction between phenotypes. We compared results 

across the 32 depression phenotypes defined, contrasting the effect of each 

component and the depth of enrichment, i.e. by how many components were 

endorsed.  

 

Variability in SNP-based heritability across the phenotypes was low with a range of 

5.9%. Relative to the cardinal symptom phenotype, the greatest increase in SNP-

based heritability was 2.7%. Conversely, the greatest decrease was 3.9%. We 

caveat the latter with the fact that this difference is not statistically significant. This 

lack of variability suggests the genetic aetiology of the cardinal symptoms phenotype 

largely reflects that of other phenotypes which include more components of MD.  

 

Interestingly, the phenotype with the highest SNP-based heritability was also 

parsimonious, requiring a cardinal symptom, and 5 or more symptoms during the 

episode. The increase in SNP-based heritability, from 12.9% for cardinal symptoms 
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to 16.2% for cardinal symptoms and 5 or more symptoms was significant, which 

suggests the addition of 5 or more symptoms as a component leads to a more 

heritable phenotype, less influenced by environmental risk factors. The parsimonious 

nature of this phenotype, and the fact that richer phenotypes had lower SNP-based 

heritability, closer to that of the cardinal symptoms, is an important finding as it 

indicates much of the differentiable heritable signal for MD over and above the 

cardinal symptoms may be captured from a careful assessment of symptoms of 

depression. Thorp et al., (36) show SNP-based heritability varies between 6% and 

9% for individual symptoms of MD. It is therefore plausible that further heterogeneity 

for SNP-based heritability within this component exists and that certain symptom 

profiles will be more heritable than others. Through simulating a phenotype 

according to the liability threshold model, Cai et al. (19) show that SNP-based 

heritability does not vary between milder and more extreme forms of the same 

phenotype, equivalent to lowering or increasing the threshold. In practice, accurately 

estimating SNP-based heritability depends on selecting an accurate population 

prevalence, akin to the threshold in the simulation. If this is mis-estimated, 

differences in estimates will arise artificially. The significance of our finding would be 

reduced if we have either under-estimated the cardinal symptom or over-estimated 

‘Cardinal+Symptom’ population prevalence’s while holding the other phenotypes 

population prevalence constant.  

 

While episode duration of greater than 6 months did not survive correction for 

multiple testing, the point estimates showed an effect of decreasing SNP-based 

heritability when incorporated into the phenotype. Indeed, a phenotype requiring the 

cardinal symptoms and a long episode duration is consistent with the depressive 
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condition of dysthymia, which is considered a distinct diagnosis relative to more 

episodic depressive episodes in the DSM-5 (2). This finding is corroborated by a twin 

study which showed a negative relationship between monozygotic-dizygotic 

concordance and episode duration (37). A possible explanation for this is that 

episode duration is driven by environmental risk factors which increase the 

contribution from the environmental variance component. Indeed, socioeconomic 

status (SES) and marital status have been found to predict a longer duration (38), 

although other studies find no such association (39). Alternatively, duration of each 

episode may depend on response to treatment, which could be under different 

genetic and environmental influences.  

 

Much of the literature exploring heritability by component has focused on recurrence, 

which has consistently been shown to increase the heritability of MD (9,11,12,19,40). 

Our results are therefore somewhat surprising in that we observe no increase in 

SNP-based heritability when incorporating recurrence, particularly given some of the 

previous literature used the same sample from the UK Biobank. The difference might 

be attributed to the definition of our control group which simply required a negative 

endorsement of a single component. This reduces the risk of a discontinuity when 

transforming to the liability scale which inflates SNP-based heritability estimates 

(23,25). However, the control cohort will also include participants considered ‘sub-

threshold’ for each phenotype in which cardinal symptoms and possibly other MD 

components are endorsed. This increases the risk of bias due to misclassification 

(41) however we believe our definition finds a good balance between the two 

potential biases (see Supplementary Information for a more detailed discussion). 

The method used to assess lifetime MD (i.e. retrospective self-report vs prospective, 
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structured, face to face interviews) may help to explain our results as differences in 

measurement error impact the results. While sample size is likely going to restrict an 

analysis using clinical interviews, future work attempting to replicate our findings 

using this method of assessment would shed light on the degree to which our results 

are driven by the retrospective, self-report nature of the assessment. Indeed, efforts 

to genotype the most severely depressed cases at scale will dramatically enhance 

our ability to unpick the heritability of MD (42).     

 

To put our findings into further context, our results should not be used to draw 

conclusions on the relative power of each phenotype to detect genetic variants 

associated with MD. GWAS often use extreme cases and controls as a cost-effective 

way of improving power. In this scenario, if one is to assume MD along a continuum 

of severity and that these components are a proxy for severity, phenotypes which 

incorporate a greater number of components will likely enhance power for variant 

discovery (43). However, our study finds that the upper bound of prediction on 

extreme phenotypes in terms of the variance explained in the population is unlikely 

to be substantially greater than that for milder forms of depression. We also note the 

large number of tests we have performed in this exploratory analysis which will limit 

conclusions regarding significance. Future confirmatory studies with greater power, 

possibly targeting specific components to reduce multiple testing burden, may 

indeed reveal significant differences behind these phenotypes.   

 

We have shown that the cardinal symptoms phenotype has comparable SNP-based 

heritability to the more enriched phenotypes of MD. A natural follow-up question is 

how specific each phenotype is relative to MD with respect to the genetic variants 
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implicated. To test this, we calculated genetic correlations between each phenotype 

and three definitions of MD; PGC defined MD, 23andMe self-reported MD and broad 

depression.   

 

The genetic correlations between the cardinal symptom only phenotype and the 

three depression phenotypes were high (PGC: rg=0.807, SE=0.054; 23andMe: 

rg=0.762, SE=0.041; Broad depression: rg=0.815, SE=0.032). Recurrence and 

duration were the two components to increase and decrease the genetic correlation 

point estimates, showing a consistent pattern across the three MD definitions. 

However, while there was variation around the correlation estimate given by the 

cardinal symptom phenotype (PGC: Range = -14.6% - 9.8%; 23andMe: Range= -

11.4% - 8.5%; Broad depression: Range = -12.1% - 7.8%), we found no evidence for 

a statistically significant increase or decrease either by phenotype enrichment or by 

component. As such, we cannot conclude that MD components change the specific 

set of associated genetic variants, which would support a partial distinction in biology 

between phenotypes. The relative increase that can be induced from the 

components is limited due to the high correlation between MD and the cardinal 

symptom only phenotype. As such, a ceiling effect is imposed which would require 

large sample sizes to detect significant differences for such correlations.   

 

We had hypothesised that the two minimal phenotypes (the help-seeking broad 

depression in UK Biobank, and self-reported depression in 23andMe) are composed 

of a case sample with greater heterogeneity whereby the additional components 

have not been incorporated to the extent that they have with the gold standard PGC 

defined depression. Given the inclusion of potentially milder cases, we expected the 
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minimal phenotypes to correlate with milder depression phenotypes to a greater 

extent relative to more enriched depression phenotypes. In contrast, we 

hypothesised PGC defined depression, being our gold standard, would show a 

positive trend between phenotypic enrichment and genetic correlation. However, no 

conclusive trend could be found by phenotype enrichment in any case. Interestingly, 

of the three depression genetic studies, broad depression showed the strongest 

trend with phenotype enrichment. As before, we caveat these trends with the note 

that no differences in genetic correlation were significant.  

 

A key challenge in the study of the genetics of MD is to attain valid, comparable 

cohorts with genetic correlations that are not significantly different from unity. We 

hypothesised selection of cases according to a set of components may be important 

to produce homogenous cohorts. While the enrichment of the phenotypes with the 

components do seem to increase genetic correlations with previous MD definitions, 

there are additional avenues in which heterogeneity can manifest. We speculate that 

a consideration of the context behind an individual’s depression may be another 

component that would enhance the genetic correlations between cohorts (44). For 

example, grouping participants who present with a depressive episode following 

diagnosis of a chronic medical condition or following a stressful childbirth could 

reduce heterogeneity. This ‘splitting’ approach would be ideal in a world with an 

infinite population where access to all information regarding the depressive episode 

was available. However, a pragmatic approach must be employed as large samples 

are required to unpick the genetic aetiology of MD which may not be possible if we 

are to group cases by too many variables. Finding the sweet spot of this pragmatism 

is something that must be agreed between researchers and clinicians.  
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Limitations 

The results from this study should be evaluated in the context of the following 

limitations. To accurately estimate and compare heritabilities, the prevalence of the 

phenotype within the population must be estimated accurately. No previous literature 

exists for most of our phenotypes, so an assumption was made that UK Biobank 

represents a random subset of the population. This assumption is strong given 

participants of the UK Biobank have been shown to have a higher socio-economic 

status and lower mortality rates than the rest of the UK (45). The subset of 

participants who responded to the MHQ also have a lower rate of mental health 

related hospital diagnoses (46). Future consideration towards developing a 

representative dataset free from selection bias would help improve the validity of the 

prevalence’s used in this study.  

 

All components used to define the phenotypes were dependent on the cardinal 

symptoms being endorsed as the questions relating to components such as 

recurrence were only asked in this instance. Understanding impairment distinct from 

the cardinal symptoms would be of interest however the nature of these questions 

would likely need to change as currently the impairment is attached to the 

depressive episode.  

 

We assume the difference in SNP-based heritability and genetic correlation 

estimates is attributable to the component that has been changed between the two 

phenotypes. It is likely in practice that this component covaries with risk factors for 

depression and even other components such as depression. For example, should 

you endorse the five symptoms of depression you are also more likely to endorse 
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recurrence. This limitation may be unpicked through investigating the set of 

participants who endorse one component but not the other, i.e. those that endorse 

recurrence but not the five symptoms, however, much greater sample sizes are 

required for such an analysis and the translational interpretation is less clear.   

 

With respect to the genetic correlation analysis, we considered the PGC defined 

phenotype to be the gold standard for comparison against minimal phenotypes. It is 

indeed the case that this phenotype is the most stringently assessed for individuals 

of European ancestries, however, given MD’s inherent heterogeneity, it is unlikely all 

cases within this phenotype are recurrent or have had episodes of long duration. An 

equivalent external phenotype in which all components were known to be endorsed 

for all cases would be able to show more conclusively if the incorporation of the 

component provides more genetically comparable phenotypes. However, this is not 

how MD is currently defined in the diagnostic criterion so while more severe MD 

phenotypes (42,47) may behave as a better positive control for this study, it would 

only reflect a small subset of the total MD cases in the population.  

 

Conclusion  

In this study we show that the key component in a MD phenotype from a genetic 

perspective are the two cardinal symptoms. We find evidence that out of the 

additional criteria typically used to establish diagnosis or severity of depression, 

incorporating five or more symptoms into the phenotype produces a significant 

increase in SNP-based heritability. While these components may be used to reduce 

misclassification between controls and cases and enhance power in GWAS, they do 

not appear key to identifying any distinct genetic aetiology of MD. 
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Data Availability 

The full GWAS summary statistics for the 23andMe discovery data set will be made 

available through 23andMe to qualified researchers under an agreement with 

23andMe that protects the privacy of the 23andMe participants. Please visit 

https://research.23andme.com/collaborate/#dataset-access for more information and 

to for more information and to apply to access the data. All other GWAS summary 

statistics are publicly available from the following websites 

https://www.med.unc.edu/pgc/download-results/ (PGC summary statistics) and 

https://datashare.is.ed.ac.uk/handle/10283/3083 (broad depression summary 

statistics).   
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Figure 1: Workflow of the study design. A.) Flow chart of key methodological 
steps. Abbreviations: UKB – UK Biobank, PCGC – Phenotype Correlation Genotype 
Correlation, LDSC – Linkage Disequilibrium Score Regression, PGC – Psychiatric 
Genomics Consortium, MDD – Major Depressive Disorder B.) Characterisation of 
the 32 phenotypes. Figure 1B provides a graphical image of each phenotypes 
composition. Each time a component is added an additional phenotype is defined. 
Taking all possible combinations from each addition creates a possible 32 distinct 
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phenotypes. The ellipses have been included in the graph to represent the additional 
phenotypes not included within the figure. 
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Figure 2: Analyses of SNP-based heritability of major depression phenotypes. A.) 
SNP-based heritability estimates on the liability scale for each phenotype 
grouped by phenotype enrichment. Phenotype enrichment is defined as the 
number of components considered to define case status. B.) Trend in SNP-based 
heritability estimates by phenotype enrichment. Each point estimate represents 
the average difference in SNP-based heritability relative to the phenotype which 
requires either of the cardinal symptoms to be endorsed. The cardinal symptom 
phenotype is the reference under the phenotype enrichment level 1. Error bars 
represent standard errors of the difference in SNP-based heritability estimates and 
averages were taken as the inverse-variance weighted mean of the enrichment 
group. C.) Trend in SNP-based heritability estimates by component. Each point 
estimate represents the average difference in SNP-based heritability induced from 
the addition of the component. Estimates are further grouped by level of phenotype 
enrichment. The point estimate with a phenotype enrichment of 1 is the cardinal 
symptoms phenotype and as such does not show any change due to the presence of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.15.20247015doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.15.20247015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

no additional components. It is included for completeness. Errors bars represent 
standard errors of the difference in SNP-based heritability estimates and averages 
were taken as the inverse-variance weighted mean from all component comparisons 
within the enrichment group.  
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Figure 3: Analyses in genetic correlations with three previously defined major 
depression phenotypes . A.) A heatmap of genetic correlation estimates for each 
phenotype. Phenotypes we have defined are displayed on the x-axis. The three 
previously defined major depression phenotypes are displayed on the y-axis. Note: 
the legend shows the scale for correlation estimate comparisons is between 0.65 
and 0.85. B.) Trend in genetic correlation estimates with PGC defined major 
depression by phenotype enrichment. Point estimates show the average 
difference in genetic correlation relative to the cardinal symptom only phenotype. 
This is shown as the reference point under the first level of phenotype enrichment. 
Error bars represent the standard errors of the difference.  
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Figure 4.) Trend in genetic correlation estimates by component. A.) Trend using PGC defined major depression ph
as the comparison for genetic correlation computation. B.) Trend using 23andMe defined major depression pheno
the comparison for genetic correlation computation. C.) Trend using broad depression phenotype as the compari
genetic correlation computation. Each point estimate represents the average difference in genetic correlation induced fr
addition of the component. Estimates are further grouped by level of phenotype enrichment. The point estimate with a phe
enrichment of 1 is the cardinal symptoms only phenotype and as such does not show any change due to the presence of n
additional components. It is included for completeness. Errors bars represent standard errors of the difference in genetic c
estimates and averages were taken as the inverse-variance weighted mean from all component comparisons within the en
group. 
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