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Abstract

Genomic features have been gradually regarded as part of the basics to the clinical
diagnosis, prognosis and treatment for glioblastoma multform (GBM). However,
the molecular modifications taking place during the advancement of GBM remain
unclear. Therefore, recognition of potential important genes and pathways in the
gastric cancer progression is important to clinical practices. In the present study,
gene expression dataset (GSE116520) of GBM were selected from the Gene
Expression Omnibus (GEO) database and were further used to identify
differentially expressed genes (DEGSs). Then, pathway and Gene Ontology (GO)
enrichment analyses were conducted, and a protein-protein interaction (PPI)
network was constructed to explore the potential mechanism of GBM
carcinogenesis. Significant modules were discovered using the PEWCCL1 plugin
for Cytoscape. In addition, a target gene - miRNA regulatory network and target
gene - TF regulatory network in GBM were constructed using common
deregulated miRNAs, TFs and DEGs. Finally, we carried on validation of hub
genes by UALCAN, cBioporta, human protein atlas, ROC (Receiver operating
characteristic) curve analysis, RT-PCR and immune infiltration analysis. The
results indicated that a total of 947 differential expressed genes (DEGSs) (477 up
regulated and 470 down regulated) was identified in microarray profiles. Pathway
enrichment analysis revealed that DEGs (up and down regulated ) were mainly
associated in reactive oxygen species degradation, ribosome, homocarnosine
biosynthesis and GABAergic synapse, whereas GO enrichment analyses revealed
that DEGs (up and down regulated) were mainly associated in macromolecule
catabolic process, cytosolic part, synaptic signaling and synapse part as the main
pathways associated in these processes. Finally, we filtered out hub genes,
including MYC, ARRB1, RPL7A, SNAP25, SOD2, SVOP, ABCC3 and ABCA2,


https://doi.org/10.1101/2020.12.21.20248616

medRXxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248616; this version posted December 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

from the all networks. Validation of hub genes suggested the robustness of the
above results. In conclusion, these results provided novel and reliable biomarkers
for GBM, which will be useful for further clinical applications in GBM diagnosis,
prognosis and targeted therapy.

Key words: glioblastoma multiform; differentially expressed genes; pathways;
prognostic; hub genes

I ntroduction

Glioblastoma multform (GBM) is one of the most malignant glial tumors with the
5-year survival rate 9.8% [1]. In current years, although novel advances have been
made in multimodal treatment of cancers, indigent prognosis and high mortality of
GBM has remained consistent. About 296,851 individuals in the global were
diagnosed with GBM in 2018, of which 241,037 people died, resulting in roughly
equal morbidity and mortality [2]. Present situation, radiotherapy [3],
chemotherapy [4] and surgical resection [5] are still the most effective way of
improving the survival rate of GBM patients. However, GBM is difficult to
diagnose in the early stages due to its concealed location and uncommon clinical
symptoms. In most cases, majority of the patients tend to be in the final stage
when they are clinically diagnosed and lose the chance of radiotherapy,
chemotherapy and  surgical resection. Therefore, the genes associated in the
occurrence and advancement of GBM needs to be explored, which will contribute
to the finding of diagnostics markers, prognostic markers and therapeutic targets of
GBM.

The underlying molecular pathogenesis of GBM remains inadequately
unexplored. Therefore, it is encourage the need to advance a further diagnose the
etiological factors, molecular mechanisms, and pathways of GBM to discover
novel diagnostic and treatment strategies for GBM. Fortunately, with the
development of highthroughput DNA microarray analyses, various genes and
pathways have been demonstrated to be correlated with the genesis and
progression of GBM [6]. Genes such as NDRG2 [7], PARK2 [8], WT1 [9], RB1
[10] and HDAC (histone deacetylase) [11] were linked with pathogenesis of
GBM. Pathways such as Akt pathway [12], EGFR-MEK-ERK signaling pathway
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[13], AMPK-TSC-mTOR signaling pathway [14], NFkB pathway [15] and MAP
kinase pathway [16] were involved in progression of GBM. Therefore, finding
differentially expressed genes (DEGs) and pathways, illuminate the interactions
network among them, are important for GBM.

In this study, we downloaded the original data (GSE116520) from Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). The differentially
expressed genes (DEGSs) of normal control from GBM were screened using limma
R bioconductor tool. Subsequently, the pathway and gene ontology (GO)
enrichment analysis for DEGs were analyzed. Additionally, we established protein-
protein interaction (PPI) network, target gene - miRNA regulatory network and
target gene - TF regulatory network of the DEGs. Expression levels of these
candidate genes were finally verified by survival analysis, expression analysis(
based on sample type and patients age), mutation analysis and immune
histochemical (IHC) analysis, ROC (Receiver operating characteristic) curve
analysis, RT-PCR and immune infiltration analysis. Overall, our systematic
analysis will gain insights into GBM pathogenesis at molecular level and help to
identify the potential candidate biomarkers for diagnosis, prognosis, and drug
targets for GBM.

M aterials and methods
Selection of GEO data set

Firstly, GBM-related chips GSE116520 [17] were retrieved and downloaded from
the Gene Expression Omnibus (GEO) database
(https://www.ncbhi.nlm.nih.gov/geo/) with “Glioblastoma multform” serving as the
retrieval key word. GSE116520 included eight normal control samples (brain) and
seventeen GBM samples. The microarray platform was GPL10558 Illumina
HumanHT-12 V4.0 expression beadchip Array. Flow chart of complete studies is
shown in Fig. 1.

Data pre-processing

The downloaded probe-level raw data in TXT files were preprocessed using
beadarray package [18] in R (version 3.3.2), including log-transformation,
imputation of missing values, background correction, and quantile normalization.
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While several probes mapped to one gene, equate value of this probes was
determined and used as the final expression value.

Differential expression analysis

The DEGs between GBM tissues and normal control tissues in each individual
experiment were identified using Bayes moderated t-test method based on limma
package [19], with the threshold criteria of FDR (false discovery rate) < 0.05,
|log2FC (fold change)| > 1.88 for up regulated genes and |log2FC (fold change)| <
- 2.25 for down regulated genes. The relationships between samples and DEGs
were shown by hierarchical clustering heatmaps and volcano plots.

Pathway enrichment analysisof DEGs

The pathway enrichment analyses were performed by ToppGene (ToppFun)
(https://toppgene.cchmc.org/enrichment.jsp) [20]. BIOCYC (https://biocyc.org/)
[21], Kyoto  Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/) [22], Pathway Interaction Database (PID,
http://pid.nci.nih.gov/) [23], Reactome (https://reactome.org/PathwayBrowser/)

[24], Molecular signatures database (MSigDB,
http://software.broadinstitute.org/gsea/msigdb/) [25], GenMAPP
(http://www.genmapp.org/) [26], Pathway Ontology
(https://bioportal.bioontology.org/ontologies/PW) [27], PantherDB

(http://www.pantherdb.org/) [28] and Small Molecule Pathway Database
(SMPDB) (http://smpdb.ca/) [29] pathway enrichment analysis were carried out
for the DEGs, with a P < 0.05 considered to indicate statistical significance.

Gene ontology enrichment analysis of DEGs

To explore the biological functional roles of the above DEGs, a GO
(http://www.geneontology.org/) [30] enrichment analysis was performed on
ToppGene  (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) [20].
Significant results of biological process (BP), cellular component (CC) and
molecular function (MF) with a cut-off of false discovery rate <0.05 were selected.

PPl network construction and module analysis
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To further investigate the molecular mechanism of GBM, all DEGs were used to
construct the PPl network using the biological online database tool (Integrated
Interactions Database, IID, http://iid.ophid.utoronto.ca/) [31] to determine and
predict the interaction among them. This database integrates various PPl data
bases such as Biological General Repository for Interaction Datasets (BioGRID,
https://thebiogrid.org/) [32], IntAct (https://www.ebi.ac.uk/intact/) [33], 12D
(http://ophid.utoronto.ca/ophidv2.204/) [34], Molecular INTeraction database
(MINT, https://mint.bio.uniroma?2.it/) [35], InnateDB
[https://www.innatedb.com/] [36], Database of Interacting Proteins  (DIP,
https://dip.doe-mbi.ucla.edu/dip/Main.cgi) [37], Human Protein Reference
Database (HPRD, http://www.hprd.org/) [38] and the Biomolecular Interaction
Network Database (BIND, http://bind.ca) [39]. A combined score > 0.7 (high
confidence score) was considered significant, and then the PPl network was
visualized using Cytoscape software (http://www.cytoscape.org/) (Version 3.7.2)
[40]. To evaluate the importance of nodes in the PPI network, the degree centrality,
betweenness centrality, stress centrality, closeness centrality and clustering
coefficient of nodes were calculated and utilized in the present study [41-45] using
the network analyzer plugin in Cytoscape software. The hub genes, a small number
of important nodes for the protein interactions in the PPl network, were chosen
with a degree centrality > 50, betweenness centrality > 0.02, stress centrality >
2100000, closeness centrality > 0.26 and clustering coefficient = 0. Because a
higher k-core score means a more topological central location, modules in the PPI
network were explored by k-core scoring using the PEWCC1 plugin in Cytoscape
software [46], and significant modules with a k-core > 6 were considered potential
core regulatory networks.

Construction of target gene - miRNA regulatory networ k

To identify regulatory miRNAs that influence target gene (i.e., up and down
regulated genes) at the posttranscriptional level, target gene - miRNA interactions
were obtained from DIANA-TarBase (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=tarbase/index) [47] and miRTarBase
(http://mirtarbase.mbc.nctu.edu.tw/php/download.php) [48] both of which include
experimentally supported target gene - miRNA interactions and topological
parameter (degree)  were  analyzed using  NetworkAnalyst
(https://www.networkanalyst.ca/) [49].
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Construction of target gene - TF regulatory network

To identify regulatory TFs that control the i.e., up and down regulated genes) at a
transcriptional level, TF-target gene interactions were obtained using the ChEA
database (http://amp.pharm.mssm.edu/lib/chea.jsp) [50] and were identified
topological parameter (degree centrality) using (https://www.networkanalyst.ca/)
[49].

Validation of hub genes and clinical sgnificance

The UALCAN (https://ualcan.path.uab.edu/index.html) [51] online database was
used for survival analysis, expression analysis and age related expression analysis
of the hub genes, which analyzed RNA sequencing expression data from TCGA
projects. The mutation frequency of hub genes was inquired in cBioportal online
database (http://www.cbioportal.org/) [52]. The hub gene expressions in GBM
tissues were determined from the human protein atlas (www.proteinatlas.org) [53].
To explore diagnostic biomarkers of GBM, we used the above hub genes as
candidates to find their diagnostic value based on generalized linear models
(GLM). The pROC package [54] in R was used for GLM analysis. In brief, half of
the samples (GBM = 17, controls = 8) were randomly distributed as the training
set, which was used to build a model. An ROC (Receiver operating characteristic)
curve analysis was practiced to calculate the specificity and sensitivity of the GLM
prediction model. The AUC was computed to evaluate the diagnostic efficiency of
the classifier. All cell culture samples of normal (HCN-1A) and GBM (U-118
MG) were lysed using TRIzol® (Invitrogen; Thermo Fisher Scientific, Inc.), and
total RNAs were extracted and reverse transcribed into cDNA templates using
PrimeScript® RT Reagent kit (Takara Biotechnology Co., Ltd.) according to the
manufacturer's instructions. PCR was performed using an 7900HT real-time PCR
instrument with an initial denaturation at 95 °C for 30 s, followed by 40 cycles at
95 °C for 15 s and 60 °C for34 s, and a fnal dissociation curve analysis of one
cycle at 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s. Each cDNA sample
was assayed three times and relative expression was resolved using the 27447
method [55]. The specific PCR primers for the hub genes and p-actin as the
internal control gene were designed with Primer Express version 2.0. TIMER
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(https://cistrome.shinyapps.io/timer/) [56] is a user friendly, interactive web
resource for immune infiltration analysis from RNA-Seq expression profiling
database (The Cancer Genome Atlas (TCGA)). Immune infiltration analysis was
evaluated using immune infiltrates (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells) across GBM.

Results
Data preprocessing and screening of DEGs

The gene expression profile GSE116520 was downloaded from the GEO.  The
data before and after normalization are shown in Fig. 2A and Fig. 2B. The limma
method was used to identify DEGs in GBM tissue compared with normal control
tissues (brain). P value <0.05, log FC > 1.88 for up regulated genes, and log FC <
- 2.25 for down regulated genes were used as the cut-off criteria. After analyzing,
total of 947 DEGs were selected between the GBM tissues and normal control
tissues, including 477 up genes and 470 down regulated genes (Table 1). The
result is displayed in the volcano plot (Fig. 3). The heatmap of the DEGs (up and
down regulated genes) are shown in Fig. 4 and Fig. 5.

Pathway enrichment analysisof DEGs

In order to investigate the biological functions of these DEGs (up and down
regulated genes) in GBM. Pathway enrichment analysis was performed using
ToppGene. Pathway enrichment analysis results indicated that DEGs (up and down
regulated genes) were significantly enriched in reactive oxygen species
degradation, glutamate removal from folates, ribosome, cell cycle, FOXM1
transcription factor network, PLK1 signaling events. translation, extracellular
matrix organization, starch and sucrose_metabolism, nitrogen_metabolism,
ensemble of genes encoding core extracellular matrix including ECM
glycoproteins, collagens and proteoglycans, ensemble of genes encoding
extracellular matrix and extracellular matrix-associated proteins, integrin signalling
pathway, p53 pathway, hypertension, G2/M DNA replication checkpoint, and
nicotinate and nicotinamide metabolism, homocarnosine biosynthesis, fatty acid
alpha-oxidation 1ll, GABAergic synapse, insulin secretion, effects of
botulinumtoxin, internalization of ErbBl1, neuronal system, transmission across
chemical synapses, alanine and aspartate metabolism, glycans biosynthesis,
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Wnt/Ca2+/cyclic GMP signaling., fl-arrestins in GPCR desensitization, synaptic
vesicle trafficking, muscarinic acetylcholine receptor 1 and 3 signaling pathway,
insulin secretion pathway, glutamate metabolic, pirenzepine pathway and
homocarnosinosis are listed in Table 2 and Table 3.

Gene ontology enrichment analysis of DEGs

GO enrichment analysis was conducted using the ToppGene, and the results are
Illustrated in Table 4 and Table 5. For up regulated genes, the terms enriched in the
BP category included macromolecule catabolic process and mitotic cell cycle. The
GO CC category revealed enrichment in the cytosolic part and collagen-containing
extracellular matrix. In addition, the MF category showed enrichment for factors
involved in structural molecule activity and RNA binding. Down regulated genes
showed enrichment in the BP category in processes such as synaptic signaling and
cell-cell signaling. The enriched terms in the CC category mainly included synapse
part and neuron projection. Additionally, the enriched MF was focused on ion
gated channel activity and channel activity.

PPl network construction and module analysis

There were 4162 nodes and 8776 relation pairs in PPI network for up regulated
genes (Fig. 6). Hub genes in the network were analyzed, and the top nodes with
the highest degree, betweenness centrality, stress centrality, closeness centrality
score and lowest clustering coefficient score were MYC, VCAM1, CDKz2,
HNRNPA1, PCNA, CDK1, EEF1A1, HSPD1, HNRNPK, CEP55, A2M, CDCAJ5,
ETS1 and PTGES3 are listed Table 6. The statistical results and scatter plot for
node degree distribution, betweenness centrality, stress centrality, closeness
centrality and clustring coefficient are shown in Fig. 7. These hub genes were
enriched in cell cycle, TNF signaling pathway, FOXM1 transcription factor
network, processing of capped intron-containing pre-mRNA, macromolecule
catabolic process, mitotic cell cycle, regulation of cell death, validated targets of C-
MY C transcriptional activation, metabolism of proteins, microtubule cytoskeleton,
complement and coagulation cascades, protein-containing complex binding,
pathways in cancer and C20 prostanoid biosynthesis. Similarly, there were 2392
nodes and 3196 relation pairs in PPl network for down regulated genes (Fig. 8).
Hub genes in the network were analyzed, and the top nodes with the highest degree
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score were ARRB1, SNCA, ERBB3, PRKCZ, DLG4, SLC30A3, DNM1,
FAM153B, RAPGEF5, EFHD1, PDYN, ZNF536 and TSPOAP1 are listed Table
6. . The statistical results and scatter plot for node degree distribution, betweenness
centrality, stress centrality, closeness centrality and clustring coefficient are shown
in Fig. 9. These hub genes were enriched in endocytosis, Parkinson's disease,
calcium signaling pathway, synaptic signaling, glutamatergic synapse,
transmembrane transport of small molecules, synaptic vesicle cycle, neurogenesis,
signaling by GPCR, neuron differentiation and neuronal system.

Subsequently, we performed module analysis of the whole network by the
PEWCCL1 plug-in. Total 849 modules were identified in PPl network for up
regulated genes. Those hub genes were located at module 6, module 15, module 24
and module 51, are the most informative modules in PPI analysis (Fig. 10). These
significant modules were proven to be associated with different pathways and GO
categories such as ribosome, cell cycle, TNF signaling pathway, pathways in
cancer, macromolecule catabolic process, mitotic cell cycle, RNA binding and
cytosolic part. Similarly, total 201 modules were identified in PPl network for
down regulated genes. Those hub genes were located at module 2, module 7,
module 18 and module 22, are the most informative modules in PPI analysis (Fig.
11). These significant modules were proven to be associated with different
pathways and GO categories such as insulin secretion, synaptic vesicle cycle,
glutamatergic synapse, endocytosis, synaptic signaling, neurogenesis, cell-cell
signaling and neuron differentiation.

Construction of target gene - miRNA regulatory networ k

For further research of the target genes (up and down regulated genes), target gene-
related miIRNAs were predicted by DIANA-TarBase and miRTarBase. Main
miRNASs with interactions of target genes are listed in Table 7. Target genes were
found to play a key role in regulating miRNAs. The target genes - miRNA
regulatory network (up regulated genes) included 2440 nodes and 8546 edges
(Fig.12). SOD2 was predicted to regulate 257 miRNAs (eg, hsa-mir-6077), WEE1
was predicted to regulate 167 miRNAs (eg, hsa-mir-4457), G3BP1 was predicted
to regulate 158 miRNAs (eg, hsa-mir-4457), CNBP was predicted to regulate 153
mIiRNAs (eg, hsa-mir-4260) and HMGB1 was predicted to regulate 143 miRNAs
(eg, hsa-mir-5193). These target genes were enriched in reactive oxygen species
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degradation, cell cycle, adherens junction, RNA binding and Neutrophil
degranulation. The target genes - miRNA regulatory network (down regulated
genes) included 2046 nodes and 4596 edges ((Fig.13). SVOP was predicted to
regulate 107 miRNAs (eg, hsa-mir-3972), KCNJ6 was predicted to regulate 90
mIiRNAs (eg, hsa-mir-4287), SYT7 was predicted to regulate 75 miRNAs (eg, hsa-
mir-4441), RAB11FIP4 was predicted to regulate 73 miRNAs (eg, hsa-mir-3176)
and NPTX1 was predicted to regulate 73 miRNAs (eg, hsa-mir-3119). These target
genes were enriched in transmembrane transport, synapse part, neuronal system,
endocytosis and synaptic signaling.

Construction of target gene - TF regulatory networ k

For further research of the target genes (up and down regulated genes), target gene-
related TFs were predicted by ChEA database. Main TFs with interactions of target
genes are listed in Table 8. Target genes were found to play a key role in regulating
TFs. The target genes - TF regulatory network (up regulated genes) included 555
nodes and 9100 edges (Fig.14). ABCC3 was predicted to regulate 225 TFs (eg,
SOX2), VKORCL1 was predicted to regulate 180 TFs (eg, NANOG), MCTS1 was
predicted to regulate 171 TFs (eg, SPI1), TNFRSF12A was predicted to regulate
167 TFs (eg, E2F1) and C150rf48 was predicted to regulate 155 TFs (eg,
POUSF1). These target genes were enriched in whole membrane, cell cycle and
cytokine signaling in immune system. The target genes - TF regulatory network
(down regulated genes) included 576 nodes and 8171 edges (Fig.15). ABCA2 was
predicted to regulate 234 TFs (eg, SUZ12), MOBP was predicted to regulate 201
TFs (eg, REST), PLEKHG3 was predicted to regulate 198 TFs (eg, EGR1),
TTLL7 was predicted to regulate 188 TFs (eg, SOX2) and CAPN3 was predicted
to regulate 178 TFs (eg, AR). These target genes were enriched in transmembrane
transport of small molecules, cytoskeletal protein binding, neuron projection and
Huntington disease.

Validation of hub genesand clinical significance

UALCAN, the online tool with data sourced from TCGA , was used to validate the
expression of these hub genes in GBM. Survival analysis (P<0.05) (Fig. 16);
highly expressing TUBALC, CAV1, S100A4, DNAJA4, PAK6, NELL1 and
ITPKA tends to have poor survival outcomes in GBM. However, low expressing


https://doi.org/10.1101/2020.12.21.20248616

medRXxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248616; this version posted December 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

RPL23, YY1 and ARHGEF7 tends to have poor survival outcomes in GBM. As
shown in Fig 17, the expression of the up regulated hub genes TUBA1C, CAV1,
RPL23, YY1 and S100A4 in GBM tissue were significantly elevated compared
with normal brain tissues. Furthermore, the expressions of down regulated hub
genes ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA in GBM tissue were
significantly decreased compared with normal brain tissues. The expression of
each hub gene in GBM patients was analyzed according to the patient’s age. As
shown in Fig 18, the expression of TUBA1C, CAV1, RPL23, YY1 and S100A4
were higher in patients with age (21-40 years, 21-60 years, 61-80 years, 81-100
years), which revealed that these up regulated hub genes might be associated with
GBM advancement positively. Similarly, the expression of ARHGEF7, DNAJA4
, PAK6, NELL1 and ITPKA were lower in patients age (21-40 years, 21-60 years,
61-80 years, 81-100 years), which revealed that these down regulated hub genes
might be linked with GBM advancement positively. Fig. 19 presented the
mutation information of the ten hub genes. TUBALC, CAV1, RPL23, YY1,
S100A4, ARHGEF7, DNAJA4 , PAK6, NELL1 and ITPKA were changed most
often (0.7%, 0.4%, 0.4%, 0.7%, 0.4%, 0.7%, 0.4%, 0.7%, 1.5% and 0.4%), these
include amplification, deep deletion, missense mutation and truncating mutation.
The Human Protein Atlas (THPA) demonstrated that the expression of TUBALC,
CAV1, RPL23, YY1 and S100A4 were highly expressed in GBM tissues, whereas
ARHGEF, DNAJA4, PAK6, NELL1 and ITPKA were low expressed in GBM
tissue (Fig. 20). To verify the diagnostic value of the hub genes, expression levels
in GBM were evaluated using ROC curves. As presented in Fig. 21, the area under
the curve (AUC) for TUBALC, CAV], RPL23, YY1, S100A4, ARHGEF7,
DNAJA4, PAK6, NELL1 and ITPKA in GBM and normal control tissue
determined for the GSE116520 dataset were 0.963, 0.971, 0.993, 0.963, 0.971,
0.963, 0.985, 0.971, 0.978 and 0.985, respectively. RT-PCR demonstrated that
the relative expression levels of TUBALC, CAV1, RPL23, YY1 and S100A4 in
GBM tissues were significantly higher compared with those in normal tissue (Fig.
22A - E), whereas expression levels of ARHGEF7, DNAJA4 , PAK6, NELL1
and ITPKA in GBM tissue were significantly lower compared with those in
normal tissue (Fig. 22 F- J). The PCR primers are listed in Table 9. To investigate
the immune infiltration analysis of the ten potential hub genes, the TIMER
bioinformatics analysis platform was used. We found that the high expression of
hub genes (TUBALC, CAV1, RPL23, YY1 and S100A4) were negatively
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associated with tumor purity (Fig. 23A - E), where as low expression of hub genes
(ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA) were positively associated
with tumor purity (Fig. 23A - E).

Discussion

The majorities of patients with GBM are diagnosed at advanced stages and have
poor overall survival [57]. However, the molecular mechanisms associated in the
advancement of GBM remain unclear. In the present study, to better understanding
the molecular mechanisms involved in GBM progression, we characterized the
expression profiles in GBM and normal brain tissues by transcriptome analysis.
Using bioinformatics analysis, we obtained 947 DEGs from GSE116520 data
expression profiles, including 477 up regulated genes and 470 down regulated
genes. Genes such as SERPINA3 [58], VIP (vasoactive intestinal peptide) [59],
ANXA2 [60] and SST (somatostatin) [61] were associated with progression of
GBM. RPL39 [62] was responsible for invasion of breast cancer cells, but this
gene was identified first time in GBM and may be linked with invasion of GBM
cells. Genes such as TUBAL [63], RPN2 [64], RASAL1 [65] and CCKBR
(cholecystokinin B receptor) [66] were involved in proliferation of different cancer
cells, but expression of these genes are not reported in GBM and may be
associated with proliferation of GBM cells. High expression of KLK7 was
important for pathogenesis of ovarian cancer [67], but elevated expression of this
gene was identified first time in GBM and may be liable for progression of GBM.

In pathway enrichment analysis for up regulated genes was performed.
Enriched genes such as SOD2 [68], RPS11 [69], RPL9 [70], MYC (MYC proto-
oncogene, bHLH transcription factor) [71], SEC61G [72], BIRC5 [73], NEK2
[74], CDK2 [75], AURKB (aurora kinase B) [76], RPS3 [77], MGP (matrix Gla
protein) [78], AEBP1 [79], CTHRC1 [80], COL1Al [81], COL3A1 [82], TNC
(tenascin C) [83], POSTN (periostin) [84], IGFBP2 [85], IGFBP3 [86], IGFBP4
[87], SRPX2 [88], LAMBL1 [89], ESM1 [90], TGFBI (transforming growth factor
beta induced) [91], ITGA5 [92], RAP1B [93], CAV1 [94], HMOX1 [95] and LOX
(lysyl oxidase) [96] were linked with progression of GBM. GPX7 was important
for advancement of gastric cancer [97], but this gene was identified first time in
GBM and may be liable for progression of GBM. High expression of enriched
genes such as RPL29 [98], RPLP1 [99], RPS2 [100], RPS3A [101], RPS13 [102],
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RPS15A [103], RPL7A [104], CENPA (centromere protein A) [105], CENPF
(centromere protein F) [106], EIF4E [107], MXRAS [108] and LUM (lumican)
[109] were responsible for development of different cancer types, but over
expression of these genes were identified first time in GBM and may be associated
with development of GBM. Enriched genes such as RPS12 [110], RPL6 [111],
LAMA4 [112], CCNB1 [113], CCNB2 [114], CDK1 [115] and EIF3M [116] were
responsible for proliferation of different cancer cell types, but these genes were
identified first time in GBM and may be associated with proliferation of GBM
cells. Enriched polymorphic genes such as RPL14 [117] and LAMC1 [118] were
liable for advancement of different cancer types, but these polymorphic genes
were identified first time in GBM and may be important for development of
GBM. Enriched genes associated such as RPL15 [119], EEF1ALl [120], SRPX
(sushi repeat containing protein X-linked) [121], COL1A2 [122], COL4A1 [123],
COL5AL [124], COL5A2 [125], COL6A3 [122] and COL8A1l [126] were
involved in invasion of different cancer cell types, but these genes were identified
first time in GBM and may be culpable for invasion of GBM cells. EMILIN2 was
associated with angiogenesis in gastric cancer [127], but this gene was identified
first time in GBM and may be important for angiogenesis in GBM. Our study
found that GPX8, RPL23A, RPL31, RPS4X, RPS4Y1, RPS7, RPS8, RPS10,
RPS18, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPL23, RPL7,
RPL18A, EEF1B2, AMY1A, GBE1l, PYGL (glycogen phosphorylase L),
PCOLCE2, TNFAIP6 and SLC7AG6 are up regulated in GBM and has potential as a
novel diagnostic and prognostic biomarker, and therapeutic target. Similarly,
pathway enrichment analysis for down regulated genes was performed. Enriched
genes such as SLC12A5 [128], SHANK2 [129], KCNJ4 [130] and CACNALE
[131] were linked with development of different cancer types, but these genes were
identified first time in GBM and may be important for progression of GBM.
Enriched genes such as SLC6A1 [132], GABBR1 [133] and GAD1 [134] were
associated with invasion of different cancer cells, but these genes were identified
first time in GBM and may be involved in invasion of GBM cells. Enriched genes
such as GLS (glutamines) [135], NEFL (neurofilament light) [136], SYN1 [137],
SLC17A7 [138], SYT7 [139], EPB41L1 [140] and TF (transferrin) [141] were
responsible for advancement of GBM. Methylation inactivation of enriched tumor
suppressor genes such as such as GNAOL1 [142], KCNMAL [143] and CAMK2B
[144] were liable for progression of different cancer types, but these genes were


https://doi.org/10.1101/2020.12.21.20248616

medRXxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248616; this version posted December 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

identified first time in GBM and loss of these genes may be linked with
development of GBM. Low expression of UNC13C was associated with
development of oral cancer [145], but this gene was identified first time in GBM
and decrease expression of this gene may be linked with progression of GBM.
Polymorphic gene CHRM3 was identified with progression of bladder cancer
[146], but this polymorphic gene was identified first time in GBM and may be
liable for advancement of GBM. Our study found that CARNS1, ADCY1],
ADCY2, GABBR2, SLC32A1, PRKCB (protein kinase C beta), GABRAZ2,
GABRA5, GABRB1, GABRB3, GABRG2, GAD2, KCNJ6, GNG3, SNAP25,
STX1A, STXBP1, SYT1, DLGAP2, TSPOAP1, CACNG3, PPFIA2, SLC1A2,
SHANKS, CPLX1, KCNK4, PTPRD (protein tyrosine phosphatase receptor type
D), ABCC8, SYN2, KCNAB1, KCNQ2, KCNQ3, KCNS1, DLG2, DLG4,
CAMKZ2A, GRIN1, GRIN2C, KCNH3, ASPA (aspartoacylase), ITPKA (inositol-
trisphosphate 3-kinase A), STX1B, RIMS2 and SYP (synaptophysin) are down
regulated in GBM and has potential as a novel diagnostic and prognostic
biomarker, and therapeutic target.

In GO enrichment analysis for up regulated genes was performed. Enriched
genes such as PTTG1 [147], HMGB1 [148], HMGB2 [149], HMMR (hyaluronan
mediated motility receptor) [150], CHI3L2 [151], VEGFA (vascular endothelial
growth factor A) [152], VIM (vimentin) [153], IGF2BP3 [154], UHRF1 [155],
SUMO2 [156], PBK (PDZ binding kinase) [157], AURKA (aurora kinase A)
[158], ADAMTS9 [159], UBE2C [160], CAST (calpastatin) [161], USP8 [162],
TIMP1 [163], TIMP4 [164], CD44 [165], PCNA (proliferating cell nuclear
antigen) [166], CCT8 [167], CHI3L1 [168] and ANXA1 [169] were involved in
progression of GBM. HNRNPC (heterogeneous nuclear ribonucleoprotein C) was
associated with drug resistance in gastric cancer [170], but this gene was identified
first time in GBM and may be associated with chemo resistance in GBM. Enriched
genes such as HSPALA [171] and TUBA1C [172] were linked with proliferation
of liver cancer cells, but these genes were identified first time in GBM and may be
involved in proliferation of GBM cells. High expression of enriched genes such as
MAD2L1 [173] and CSRP2 [174] were linked with pathogenesis of different
cancer types, but high expression of these genes were identified first time in GBM
and may be involved in progression of GBM. CASP4 [175] was involved in
advancement of esophageal cancer, but this gene was identified first time in GBM
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and may be associated in development of GBM. Our study found that LSMD5,
CPVL (carboxypeptidasevitellogenic like), PPP2CB, CYP51A1, BNIP3L, FBXO5,
ZFP36L1, RNASE2, MCTS1, LARP4, PRPH (peripherin), POTEKP (POTE
ankyrin domain family member K, pseudogene), TUBB6, ACTR3 and RNA28SN5
are up regulated in GBM and has potential as a novel diagnostic and prognostic
biomarker, and therapeutic target. Similarly, GO enrichment analysis for down
regulated genes was performed. Enriched genes such as MAG (myelin associated
glycoprotein) [176], ASIC2 [177], MBP (myelin basic protein) [178], CNP (2',3'-
cyclic nucleotide 3' phosphodiesterase) [179], CPEB3 [180], SLC8A2 [181],
PRKCZ (protein kinase C zeta) [182], RELN (reelin) [183], CYP46Al [184],
SNAP91 [185], CNTN2 [186], NPY (neuropeptide Y) [187], RGS4 [188],
ILIRAPL1 [189], ERBB3 [190], SH3GL2 [191], SH3GL3 [192], ARRB1 [193],
DNM3 [194], SPOCK1 [195], CCK (cholecystokinin) [196] and INA (internexin
neuronal intermediate filament protein alpha) [197] were identified with
progression of GBM. Decrease expression of enriched genes such as such as
SCNS8A [198], BRSK1 [199], ANKS1B [200], CALB2 [201], GRM3 [202],
BCASL1 [203] and CLCA4 [204] were responsible for advancement of different
cancer types, but low expression of these genes were identified first time in GBM
and may be involved in progression of GBM. Enriched genes such as CUX2 [205],
NPTX1 [206], NCS1 [207], SEPTIN4 [208] and FAIM2 [209] were associated
with advancement of different cancer, but these genes were identified first time in
GBM and may be linked with development of GBM. MAP4 was involved in
invasion of bladder cancer cells [210], but this gene was identified first time in
GBM and may be responsible for invasion of GBM cells. Enriched genes such as
RABG6B [211] and MAL2 [212] were linked with proliferation of different cancer
cells types, but these genes were identified first time in GBM and may be liable for
proliferation of GBM cells. Methylation inactivation of tumor suppressor DMTN
(dematin actin binding protein) was associated with progression of colorectal
cancer [213], but loss of this gene was identified first time in GBM and may be
involved in advancement of GBM. Our study found that MAP1A, PDYN
(prodynorphin), TMOD2, CPNE6, SCN2A, SCN2B, FGF12, PLPl1l, AMPH
(amphiphysin), HTR2A, NSG2, NAPB (NSF attachment protein beta), CNTNAP2,
CNTNAP4, CALY (calcyon neuron specific vesicular protein), ERC2, SNCA
(synuclein alpha), ATP2B2, JPH4, RIMS3, CDK5R1, SV2B, SYT4, CACNAL1I,
BSN (bassoon presynaptic cytomatrix protein), DNM1, NRGN (neurogranin),
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PHF24, PCLO (piccolo presynaptic cytomatrix protein), RAPGEF4, NETOL,
SYNGR1, RIMBP2, LY6H, JPH3, PDE2A, KCNIP3, SYNPR (synaptoporin),
SLITRK1, HPCA (hippocalcin), CAMKYV (CaM kinase like vesicle associated),
KCTD16, PPP1R1B, OLFM1, SVOP (SV2 related protein), PACSIN1, PKP4,
MAGEE1, SH2D5, LGI3, ATP6V1G2, KIF1A, SLC6A17, DDN (dendrin),
LAMPS, SLC30A3, NEFM (neurofilament medium), SEPTIN3, ARHGAP44,
KIAA1107, RGS7BP, RGS7, KCNT1, KCNK12, PEX5L, ANO3, SCN3B and
ANO4 are down regulated in GBM and has potential as a novel diagnostic and
prognostic biomarker, and therapeutic target.

The up regulated hub genes obtained from PPI network. Hub genes such as
VCAML [214], HNRNPAL [215], CEP55 [216], A2M [217] and ETS1 [218] were
responsible for advancement of GBM. HSPD1 was associated with proliferation of
breast cancer cells [219], but this gene was identified first time in GBM and may
be linked with proliferation of GBM cells. HNRNPK (heterogeneous nuclear
ribonucleoprotein K) was liable for invasion of nasopharyngeal cancer cells [220],
but this gene was identified first time in GBM and may be involved in invasion of
GBM cells. High expression of CDCAS5 was identified with development of
esophageal cancer [221], but elevated expression of this gene was identified first
time in GBM and may be linked with advancement of GBM. Our study found that
PTGES3 is up regulated in GBM and has potential as a novel diagnostic and
prognostic biomarker, and therapeutic target. The down regulated hub genes
obtained from PPI network. Methylation inactivation of EFHD1 was liable for
development of colorectal cancer [222], but loss of this gene was identified first
time in GBM and may be responsible for progression of GBM. Our study found
that FAM153B, RAPGEF5 and ZNF536 are down regulated in GBM and has
potential as a novel diagnostic and prognostic biomarker, and therapeutic target.

Significant modules were extracted from PPI network to obtain up regulated
hub genes. Hub genes such as CDKN3 [223], CCNAZ2 [224] and CKS2 [225] were
responsible for proliferation of different cancer cells types, but these genes were
identified first time in GBM and may be associated with proliferation of GBM
cells. Over expression of GMNN (geminin DNA replication inhibitor) was linked
with progression of liver cancer [226], but high expression of this gene was
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identified first time in GBM and may be liable for advancement of GBM. KPNA2
was involved in progression of GBM [227]. Our study found that CNBP (CCHC-
type zinc finger nucleic acid binding protein) and NSMAF (neutral
sphingomyelinase activation associated factorA) are up regulated in GBM and has
potential as a novel diagnostic and prognostic biomarker, and therapeutic target..
Similarly, significant modules were extracted from PPI network to obtain down
regulated hub genes. ARHGEF7 was linked with invasion of colorectal cancer
cells [228], but this gene was identified first time in GBM and may be liable for
invasion of GBM cells.

Target gene - miRNA regulatory network was constructed for up and down
regulated genes. Target genes such as WEEL [229] and G3BP1 [230] were
responsible for development of GBM. RAB11FIP4 was linked with invasion of
colon cancer cells [231], but this gene was identified first time in GBM and may
be liable for invasion of GBM cells.

Target gene - TF regulatory network was constructed for up and down
regulated genes. Target genes such as ABCC3 [232] and ABCA2 [233] were
involved in progression of GBM. High expression of TNFRSF12A was liable for
advancement of breast cancer [234], but elevated expression of this gene was
identified first time in GBM and may be involved in development of GBM.
C150rf48 (NMESL1) was associated with development of esophageal cancer [235],
but this gene was identified first time in GBM and may be identified with growth
of GBM. Up and down regulated genes such as VKORC1, MOBP (myelin
associated oligodendrocyte basic protein), PLEKHG3, TTLL7 and CAPN3 were
associated in target gene - TF regulatory network and were identified as novel
biomarker for pathogenesis of GBM.

High expression of hub genes (TUBA1C, CAV1, S100A4, DNAJA4,
PAKG6, NELL1 and ITPKA) were significantly associated with poor overall
survival (OS) in GBM, while low expression of hub genes (RPL23, YY1 and
ARHGEF7) were significantly associated with poor over OS in GBM and were
visualized using UALCAN. Genes such as S100A4 [236] and YY1 [237] were
responsible for progression of GBM. PAKG6 was linked with proliferation of lung
cancer cells [238], but this gene was identified first time in GBM and may be
involved in proliferation of GBM cells. Polymorphic gene NELL1 was liable for
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progression of oral cancer [239], but this polymorphic gene was identified first
time in GBM and may be linked with advancement of GBM. Next, the expression
analysis of these hub genes in GBM compared with the normal and was verified on
the UALCAN website. It was found that TUBAL1C, CAV1, RPL23, YY1 and
S100A4 were highly expressed in patients with GBM compared with normal
people, while ARHGEF7, DNAJA4 , PAK6, NELL1 and ITPKA were low
expressed in patients with GBM compared with normal people. Next, the
expression analysis of these hub genes in different age groups of GBM patients and
was verified on the UALCAN website. All hub genes were showed altered
expressed in all age groups of GBM patients and was verified on the UALCAN
website. The mutation analysis found that mutations or alterations in all hub genes
and was verified on the cBioportal website. All hub genes were validated by ICH
analysis and was verified on the human protein atlas. Finally, all hub genes were
validated by ROC analysis using pROC package in R software, RT-PCR and
immune infiltration analysis.

In conclusion, we successfully diagnosed hub genes (TUBA1C, CAV1,
RPL23, YY1, S100A4, ARHGEF7, DNAJA4, PAK6, NELL1 and ITPKA) based
on bioinformatic analysis and experimental validation. This study shows that
TUBAI1C, CAV], RPL23, YY1, S100A4, ARHGEF7, DNAJA4, PAK6, NELL1
and ITPKA plays a major role in the progression of GBM and has broad
application potential.
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