Reliability of Google Trends: Analysis of the Limits and Potential of Web

Infoveillance During COVID-19 Pandemic and for Future Research

Alessandro Rovetta^{1,2}

¹ Mensana srls, Research and Disclosure Division, Brescia, Italy

²Redeev srl, Technological and Scientific Research, Napoli, Italy

Email: rovetta.mresearch@gmail.com, ORCID: 0000-0002-4634-279X, WoS ID: AAT-9063-2020

Abstract

Background: Alongside the COVID-19 pandemic, government authorities around the world have had to face a growing infodemic capable of causing serious damages to public health and economy. In this context, the use of infoveillance tools has become a primary necessity.

Objective: The aim of this study is to test the reliability of a widely used infoveillance tool which is Google Trends. In particular, the paper focuses on the analysis of relative search volumes (RSVs) quantifying their dependence on the day they are collected.

Methods: RSVs of the query *coronavirus* + *covid* during February 1 - December 4, 2020 (period 1), and February 20 - May 18, 2020 (period 2), were collected daily by Google Trends from December 8 to 27, 2020. The survey covered Italian regions and cities, and countries and cities worldwide. The search category was set to all categories. Each dataset was analyzed to observe any dependencies of RSVs from the day they were gathered. To do this, by calling *i* the country, region, or city under investigation and j the day its RSV was collected, a Gaussian distribution $X_i = X(\sigma_i, \bar{x}_i)$ was used to represent the trend of daily variations of $x_{ij} = RSVs_{ij}$. When a missing value was revealed (anomaly), the affected country, region or city was excluded from the analysis. When the anomalies exceeded 20% of the sample size, the whole sample was excluded from the statistical analysis. Pearson and Spearman correlations between RSVs and the number of COVID-19 cases were calculated day by day thus to highlight any variations related to the day RSVs were collected. Student t-test was used to assess the statistical significance of the differences between the average RSVs of the various countries, regions, or cities of a given dataset. Two RSVs were considered statistical confident when t < 1.5. A dataset was deemed unreliable if the confident data exceeded 20% (confidence threshold). The percentage increase Δ was used to quantify the difference between two values.

Results: Google Trends has been subject to an acceptable quantity of anomalies only as regards the RSVs of Italian regions (0% in both period 1 and period 2) and countries worldwide (9.7% during period 1 and 10.9% during period 2). However, the correlations between RSVs and COVID-19 cases underwent significant variations even in these two datasets ($Max |\Delta| = +625\%$ for Italian regions, and $Max |\Delta| = +175\%$ for countries worldwide). Furthermore, only RSVs of countries worldwide did not exceed confidence threshold. Finally, the large amount of anomalies registered in Italian and international cities' RSVs made these datasets unusable for any kind of statistical inference.

Conclusions: In the considered timespans, Google Trends has proved to be reliable only for surveys concerning RSVs of countries worldwide. Since RSVs values showed a high dependence on the day they were gathered, it is essential for future research that the authors collect queries' data for several consecutive days and work with their RSVs averages instead of daily RSVs, trying to minimize the stankard thromountibats established confidence thresholder is presented in the used to guide clinical practice.

Introduction

During the COVID-19 pandemic, fake news and inaccurate information circulated widely on the web creating severe issues to public health and economy all over the world [1]. Dr. Tedros Adhanom Ghebreyesus- director of the World Health Organization (WHO)- claimed that the battle we are fighting does not only concern the epidemic but also its infodemic [2]. Moreover, the WHO itself has launched an international campaign called "Managing the COVID-19 infodemic: Promoting healthy behaviours and mitigating the harm from misinformation and disinformation" to sensitize states to contrast the spread of misinformation [3]. To date, one of the main problems consists in conspiracy news relating to alleged vaccine damage, which can seriously compromise the international strategy for the abatement of SARS-CoV-2 [4]. Therefore, the demand for new effective and efficient infodemiological methods has never been as pressing as today. In this regard, scientists are increasingly adopting infoveillance tools to monitoring the infodemic on websites, social media, and newspapers [5]. In particular, Google Trends- an open online infoveillance tool developed by GoogleTM - has been widely used by the scientific community not only as for quantifying disinformation but also to make epidemiological predictions on the spread of infectious diseases, including COVID-19 [6-9]. This type of study is based on the search for statistical cross-correlations between users' web searches related to specific diseases, such as symptoms, drugs, therapies, vaccines, number of infected people, number of deaths, etc., and the number of disease contagions and deaths officially registered after a certain timespan. However, not all that glitters is gold: indeed, Google Trends has some limitations that are often overlooked and which risk heavily biasing and distorting correlation-based analytics. Furthermore, some anomalies in the calculus of relative search volumes (RSVs) could also alter any infodemiological analysis in an unpredictable way. In this paper we will delve into the aforementioned limitations exploring their nature and searching for solutions to circumventing them, thus allowing the scientific community to continue using this precious tool through a more reliable approach.

Methods

To assess the reliability of Google Trends (GT), relative search volumes (RSVs) of a specific query in a fixed period were downloaded on different days as to reveal any dependence on the date they were collected. In this context, "anomalies" were defined as those countries, regions or cities whose RSVs appeared only on specific days.

Data collection

RSVs of the query *coronavirus* + *covid* were collected from two distinct periods: 20 February - 18 May, 2020 (period 1), and 1 February - 4 December, 2020 (period 2). Period 1, corresponding to the Italian lockdown, was chosen for GT to provide daily RSVs, while period 2 was chosen for GT to provide weekly RSVs. The survey was carried out on Italian regions and cities, and worldwide countries and cities. All RSVs of periods 1 and 2 were collected daily for a minimum of 7 days and until any anomaly was highlighted; when no anomaly was identified within 15-20 days, the investigation was considered concluded. The data-collection period ranged from 8 to 25 December, 2020. The Google Trends category search-parameter was set to *all categories*. All details are shown in Table 1.

Geographical	Investigation period		Collection period	Google Trends URL		
region	(2020)	Subregion	(2020)	[10-13]		
Italy	February 1 - December 4	Regions	December 8 – 26	URL Italy period 1		
		Cities	December 14 – 26			
	February 20 - May 18	Regions	December 8 – 26	URL Italy period 2		
		Cities	December 14 – 26			
World	February 1 - December 4	Regions	December 14 – 26	URL World period 1		
		Cities	December 16 – 26			
	February 20 - May 18	Regions	December 14 – 27	URL World period 2		
		Cities	December 16 – 27			

Statistical analysis

By calling *i* the country, region, or city under investigation and *j* the day its *RSV* was collected, a Gaussian distribution $X_i = X(\sigma_i, \bar{x}_i)$, where σ_i is the standard deviation (also called *SD*) and \bar{x}_i is the mean value of *RSVs*_{*ij*}, was used to represent the trend of $x_{ij} = RSVs_{ij}$. To evaluate data normality, the Shapiro-Wilk test was used [14]. The significance threshold was indicatively set at $\alpha = .05$ [15]. Data distributions that deviated greatly from α were marked with an asterisk (*). The impact of daily variations of $RSVs_{ij}$ in $X(\sigma_i, \bar{x}_i)$ on Pearson (R) and Spearman (r) correlations with COVID-19 total cases was estimated [16]; to do this, it was enough to compute the correlations on different days and calculate their percentage increases $\Delta = (u_f - u_0)/u_0 * 100$. For the adoption of these correlations, standard criteria were exploited [17]. The t-test $t = (\bar{x}_l - \bar{x}_m)/\tilde{\sigma}$ [18] was performed in order to understand if the differences between the averages of *RSVs* of the same sample (i.e. same

geographical area and period) were significant. A difference between two *RSVs* was considered statistically significant when t < 1.5. A dataset was deemed unreliable if the confident data exceeded 20% (confidence threshold) for at least one country, region, or city. When anomalies were identified in more than 20% of cases, no investigation on the distributions was conducted.

Results

Italian regions' web interest during period 1 (February – 4 December, 2020)

As shown in Figure 1, there have been strong relationships between RSVs and the dates they were collected: in fact, the regional ranking of web interest underwent several unpredictable variations even as regards the peak values RSV = 100.

Figure 1. Dependence of Google Trends relative search volumes (RSVs) on collection date: Italian regions' web interest in the query *coronavirus+covid* during period 1 (1 February – 4 December, 2020). X-axis: dates on which the RSVs were collected. Y-axis: Google Trends RSV. * = Regions that showed a non-normal trend over time.

The daily standard deviation of the sample ranged in the interval [6.6, 7.6], making all values in the central band mutually confident. Because of that, any correlations between RSVs and COVID-19 cases (or related statistics) could not be meaningful if merely based on a single-day dataset. Furthermore, even supposing no variance in daily samples, the correlation between the number of COVID-19 cases and RSVs went from r = .29 on December 8 to r = .36 on the following day ($|\Delta| =$

+24.1%). Considering the whole dataset, the same correlations ranged in the interval [-.23, -.42] ($|\Delta| = +82.6\%$). The mean value and standard error of the X_i distributions were $\bar{x} = 88.4$ and $\overline{SEM} = 0.4$ respectively, with SEM_i ranging in the interval [0.1, 0.7]. Therefore, the confidence threshold was exceeded (e.g. Abruzzo, 37%). However, no anomalies have been found.

Italian regions' web interest during the period 2 (20 February – 18 May, 2020)

As shown in Figure 2 (next page), the variance of RSVs as a function of the day they were gathered was lower than that of the previous dataset ($\bar{x} = 91.9$, $\overline{SEM} = 0.4$, $\overline{SEM}_i \in [0.3, 0.5]$). This is probably due not only to the investigated period but also to the different sampling frequency. However, there was greater variability on RSV peaks and a larger number of non-normal trends.

Figure 2. Dependence of Google Trends relative search volumes (RSVs) on collection date: Italian regions' web interest in the query *coronavirus+covid* during period 2 (20 February – 18 May, 2020). X-axis: dates on which the RSVs were collected. Y-axis: Google Trends RSV. * = Regions that showed a non-normal trend over time.

The confidence threshold was exceeded (e.g. Abruzzo, 47%). Spearman and Pearson correlations between COVID-19 cases and daily RSVs ranged in the intervals [.04,.29] ($|\Delta| = +625\%$) and [.09,.26] ($|\Delta| = +189\%$) respectively. No anomalies has been found.

Italian cities' web interest during period 1 and period 2

As shown in Tables 2 and 3 (next two pages), significant anomalies occurred in 33.3% of Italian cities during period 1 and 45.8% during period 2. In particular, Perugia and Prato- absent respectively 7- and 10-times during period 1- recorded RSVs = 100 on 6 occasions. During period 2, Messina, Perugia, Pescara, Prato, and Salerno, recorded only 1 RSV out of 14 samples, while Parma recorded 2 RSVs. Therefore, any type of correlation or other statistical calculus, evaluation, or consideration on this dataset would be highly dependent on the day the data was gathered.

_ _ _ _

City		Week	iy RSV	s colle	cted da	ay by d	ay fron	n 14 to	26 De	cembe	r, 2020			
	Bari	94	98	94	94	97	95	94	96	94	95	91	91	94
B	ologna	94	92	96	94	96	95	95	96	95	94	90	91	94
E	Brescia	89	91	87	88	87	89	90	86	88	88	85	86	87
C	Cagliari	97	98	100	96	97	95	94	98	96	96	97	91	98
C	Catania	88	89	86	82	86	86	89	85	85	88	84	83	87
F	Firenze	96	100	98	100	100	97	100	99	97	98	100	95	97
G	Genova	88	92	89	91	89	91	89	92	90	90	89	86	87
I	Milano	89	94	90	90	91	91	91	91	86	93	90	88	90
Μ	lodena		95		92		95							94
	Napoli	89	93	89	88	91	90	91	87	90	94	88	84	89
F	Padova	88	90	88	87	91	88	87	84	87	89	87	84	87
Pa	alermo	79	84	79	80	81	80	78	78	80	78	79	79	81
	Parma	87	88			89	87		86	85	86	87		
P	Perugia	100						98	100	100			100	100
	Prato						100	100					95	
Reggio C	alabria								95		100	96		
Reggio	Emilia			88		90								
	Roma	90	94	92	93	94	93	92	93	92	94	92	88	92
S	alerno			87	86	87	84			85	88	85		85
т	aranto						100							
	Torino	92	92	95	91	96	88	96	90	87	97	88	88	87
	Trieste	90	88	91	92	90	91	93	92	85	90	90	88	86
v	'enezia	82	85	83	81	80	83	81	82	79	84	80	79	80
١	/erona	83	85	86	81	86	86	86	84	82	84	82	79	82

Table 2. Dependence of Google Trends relative search volumes (RSVs) on collection date: Italian cities' web interest in the query *coronavirus+covid* during period 1 (1 February – 4 December, 2020).

City		Daily RSVs collected day by day from 14 to 26 December, 2020												
	Bari	93	90	89	90	90	91	90	87	92	88	87	90	87
Во	ologna	96	95	96	95	95	96	95	92	95	92	92	98	95
В	rescia	93	93	92	93	94	92	94	92	88	90	94	91	90
Ca	agliari	100	100	98		100	100	100	100	100	100	100	100	100
Ca	atania	89	87	89	89	89	87	88	91	94	86	88	89	86
Fi	irenze	93	93	95	96	95	96	96	97	97	94	93	96	93
Ge	enova	88	87	86	88	89	89	89	86	89	83	85	89	86
Me	essina					77								
N	lilano	97	98	100	100	95	95	98	97	96	94	96	98	96
Мо	odena					89			94	93	92	93		
Ν	Napoli	90	89	90	90	88	88	87	86	87	87	88	87	84
Pa	adova	93	92	93		92	93	90	94	95	90	91	90	91
Pal	lermo	78	77	79	77	77	79	81	79	79	75	78	78	74
F	Parma										83	86		
Pe	erugia										97			
Pe	escara									95				
	Prato												91	
Reggio I	Emilia	87				86							84	
	Roma	90	91	92	93	89	90	91	90	89	90	89	90	89
Sa	alerno			86										
т	Torino	93	92	94	95	91	92	94	94	94	92	94	91	92
т	rieste	90	92	90	91	86	89	91	89	89	89	86	89	89
Ve	enezia	91	89	93	91	89	91	89	94	87	88	88	87	87
V	erona				89		87	90		88		89		

Table 3. Dependence of Google Trends relative search volumes (RSVs) on collection date: Italian cities' web interest in the query coronavirus+covid during period 2 (20 February - 18 May, 2020).

Global web interest during period 1 (February – 4 December, 2020)

Google Trends reported a maximum of 62 countries' RSVs (Supplementary Table 1). Significant anomalies occurred in 6 cases (9.7%) and the peak RSV = 100 was reached and maintained unchanged by Italy ($SD_i = 0$). In 64.5% of cases, data was not normally distributed. No nation exceeded the confidence threshold even if the dataset showed a high variability range if compared to that of Italy ($\bar{x} = 43.0$, $\overline{SEM} = 0.5$, $\overline{SEM}_i \in [0, 1.4]$). Spearman correlations with COVID-19 total cases ranged in the interval [. 04, .11] ($|\Delta| = +175\%$); however, it must be pointed out that the value r = .04 was an outlier (recorded on December 16, 2020) and a more representative interval is [. 10, .11] ($|\Delta| = +10\%$).

Global web interest during the period 2 (20 February – 18 May, 2020)

Google Trends reported a maximum of 64 countries' RSVs (Supplementary Table 2). Significant anomalies occurred in 7 cases (10.9%) and the peak RSV = 100 was reached and maintained unchanged by Italy ($SD_i = 0$). In 56.2% of cases, data was not normally distributed. No nation exceeded the confidence threshold even if the dataset showed a high variability range if compared to that of Italy ($\bar{x} = 44.5$, $\overline{SEM} = 0.5$, $\overline{SEM}_i \in [0, 1.1]$). Spearman correlations with COVID-19 total cases ranged in the interval [. 04, .11] ($|\Delta| = +175\%$); however, it must be pointed out that the value r = .11 was an outlier (recorded on December 16, 2020) and a more representative interval is [. 04, .06] ($|\Delta| = +50\%$).

International cities' web interest during period 1 and period 2

As shown in Tables 4 and 5 (next two pages), significant anomalies occurred in 30.4% of international cities during period 1 and 38.1% during period 2. In particular, Bogotà, Chicago, Dubai, Houston, Hyderabad, Los Angeles, Sao Paulo, Santiago of Chile were affected by anomalies during period 1 and period 2, which also included Milan ($\overline{RSV}_i = 100$) and Rome (RSV = 100 on December 25, 2020). Therefore, any type of correlation or other statistical calculus, evaluation, or consideration on this dataset would be highly dependent on the day the data was gathered.

City	/	Daily R	SVs col	lected d	ay by d	ay from	n 16 to 2	6 Dece	mber, 2	020		
	Bangalore	60	63	63	59	63	60	62	63	61	62	61
	Bogotá	48	49				49	50	49			
	Chicago	62			63	62	62	62	63			64
	Mexico City	50	49	50	49	51	51	49	49	51	49	50
	Dubai										71	
	Houston			52	54			51		53		
	Hyderabad	43										
	London	66	67	67	67	67	67	65	66	64	66	67
	Los Angeles	58	60	59	60	60	60	58	57		58	61
	Madrid	80	82	82	85	81	84	80	78	80	80	84
	Melbourne	87	88	86	88	84	87	85	83	85	85	88
	Milan	97	100	98	97	100	100	94	100	100	97	100
	Mumbai	73	74	70	71	69	72	72	71	72	71	72
	New York	52	51	51	50	52	50	50	50	52	51	50
	New Delhi	59	60	56	58	59	59	58	59	56	57	59
	Paris	70	71	71	73	70	71	69	72	70	73	72
	Rome	100	98	100	100	98	100	100	100	97	100	100
	Sao Paulo			32		33	33	34		34	33	
	Santiago of Chile	43			44				44			44
	Singapore	56	56	56	56	58	57	55	57	56	55	58
	Sydney	61	60	61	60	59	60	60	58	60	61	61
	Toronto	81	80	78	79	79	82	77	81	78	79	79

Tabel 4. Dependence of Google Trends relative search volumes (RSVs) on collection date: international cities' web interest in the query coronavirus+covid during period 1 (1 February - 4 December, 2020).

Cit	Ŷ	Daily I	RSVs co	ollected	day by	/ day fr	om 16	to 27 D	ecemb	er, 202	0		
	Bangalore	67	67	65	67	65	66	66	66	70	68	65	65
	Bogotá	50	52	49	51		50		51	52	53	50	48
	Chicago	61	62	60			60		59	63	62		
	Mexico City	46	46	45				48	46	47		46	
	Houston	53	53	50		51	52						52
	Hyderabad		49	48	49	48					50		
	London	64	64	64	63	64	65	66	64	67	65	63	62
	Los Angeles	58	58	55	57	56	58	56	56	60	57	56	57
	Madrid	83	85	85	83	82	85	86	84	84	86	83	87
	Melbourne	60	61	60	58	58	60	59	58	62	64	58	60
	Milan	100	100	100	100	100	100	100	100	100		100	100
	Mumbai	78	77	75	76	76	76	76	78	78	80	77	77
	New York	53	56	56	51	52	56	54	54	55	55	53	54
	New Delhi	61	62	60	62	59	60	60	61	61	63	61	61
	Paris	69	71	70	70	69	70	71	70	71	71	68	69
	Rome	91	94	91		92		93	94	96	100	91	98
	Sao Paulo	34	34	32		33	35	35	32	36			33
	Santiago of Chile	45		47		46		48				46	
	Singapore	55	57	58	57	56	58	57	59	58	60	58	57
	Sydney	55	56	56	56	54	55	55	56	57	59	55	57
	Toronto	72	72	70	71	71	72	72	70	75	71	70	70

Tabel 5. Dependence of Google Trends relative search volumes (RSVs) on collection date: international cities' web interest in the query coronavirus+covid during period 2 (20 February - 18 May, 2020).

Discussion

As far as the author knows, this is the first study to assess Google Trends reliability through an iterated queries analysis. In particular, this paper clearly demonstrates a strong dependence of Google Trends relative search volumes (RSVs) values on the date they are gathered. The dataset of Italian regions above all, although if not affected by anomalies, showed how the collection of the same queries' RSVs (i.e. same category, area and period) on different days is able to substantially modify a statistical correlation between RSVs themself and an external quantity (in this case, the number of COVID-19 infections). Moreover, in all the other datasets, an even greater problem was highlighted such as the presence or absence of specific RSVs depending on the day the sample was gathered. This phenomenon has also affected cities that have reached peak values on several occasions, such as Milan and Rome in the global dataset and Perugia and Prato in the Italian dataset. Furthermore, the fact that Prato and Perugia have reached a peak of web interest in the Italian dataset but not in the international dataset shows how Google Trends RSV measurement includes only specific geographical areas according to the search item chosen by the user. Finally, RSVs of Italian regions and cities as well as RSVs of international cities showed such a daily variance that these areas were often statistically confident with each other, compromising any search for correlations or any other rank-based grouping. The most reliable dataset- i.e. a sample that showed an acceptable number of anomalies and whose data did not exceed the confidence threshold - was that of countries worldwide both during period 1 and period 2. However, even in this case there were outliers capable of destroying the correlation between RSVs and COVID-19 cases. Alongside the limitations highlighted in this paper, Cervellin et al. pointed out that web queries can be influenced by main media, further reducing the credibility of this research tool [19]. Nuti et al. have previously found that a large multitude of papers lack the information needed to make them fully reproducible [20]. Nevertheless, Google Trends has served and still serves as an excellent tool for infoveillance and infodemiology: in fact, even admitting that newspapers and newscasts can influence the trends of web queries, it provides a way to quantify the web interest in a specific topic more efficiently than any other methods historically used (e.g. population surveys) [21-24]. Moreover, it can be used as a complement to a traditional analysis [25]. In conclusion, Google Trends represents a great source of information for the entire scientific community. Nonetheless, more details should be provided by Google on how RSVs are presented to users. Finally, to ensure full reliability of a Google Trends dataset, it is essential for future research that authors collect queries' data for several consecutive days and work with their RSVs averages instead of daily RSVs, trying to minimize the standard errors until an established confidence threshold is respected.

References

[1] Rovetta A, Bhagavathula AS (2020). Global Infodemiology of COVID-19: Analysis of Google Web Searches and Instagram Hashtags. J Med Internet Res 2020;22(8):e20673. DOI: 10.2196/20673, PMID: 32748790.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458585/

[2] United Nations Website (2020). UN tackles 'infodemic' of misinformation and cybercrime in COVID-19 crisis. Accessed: December 28, 2020.

URL:<u>https://www.un.org/en/un-coronavirus-communications-team/un-tackling-</u>%E2%80%98infodemic%E2%80%99-misinformation-and-cybercrime-covid-19

[3] World Health Organization Website (2020). Managing the COVID-19 infodemic: Promoting healthy behaviours and mitigating the harm from misinformation and disinformation. Accessed: December 28, 2020.

URL: <u>https://www.who.int/news/item/23-09-2020-managing-the-covid-19-infodemic-promoting-healthy-behaviours-and-mitigating-the-harm-from-misinformation-and-disinformation</u>

[4] Scerri M, Grech V (2020). COVID-19, its novel vaccination and fake news - What a brew. Early Hum Dev. 2020 Nov 12;105256. DOI: 10.1016/j.earlhumdev.2020.105256, PMID: 33221032

URL: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659985/</u>

[5] Zeraatkar K, Ahmadi M (2020). Trends of infodemiology studies: a scoping review. Health Info Libr J. 2018 Jun;35(2):91-120. DOI: 10.1111/hir.12216, PMID: 29729073

URL: https://pubmed.ncbi.nlm.nih.gov/29729073/

[6] Mavragani A, Ochoa G (2019). Google Trends in Infodemiology and Infoveillance: Methodology Framework JMIR Public Health Surveill 2019;5(2):e13439. DOI: 10.2196/13439, PMID: 31144671

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660120/

[7] Jimenez AJ, Estevez-Reboredo RM, Santed MA, Ramos V (2020). COVID-19 Symptom-Related Google Searches and Local COVID-19 Incidence in Spain: Correlational Study J Med Internet Res 2020;22(12):e23518. DOI: 10.2196/23518, PMID: 33156803

URL: <u>https://pubmed.ncbi.nlm.nih.gov/33156803/</u>

[8] Mavragani A, Gkillas K (2020). COVID-19 predictability in the United States using Google Trends time series. Sci Rep 10, 20693 (2020). DOI: 10.1038/s41598-020-77275-9

URL: https://www.nature.com/articles/s41598-020-77275-9

[9] Venkatesh U, Gandhi PA (2020). Prediction of COVID-19 Outbreaks Using Google Trends in India: A Retrospective Analysis. Healthc Inform Res. 2020 Jul; 26(3): 175–184. DOI: 10.4258/hir.2020.26.3.175, PMID: 32819035

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438693/

[10] Trends, *coronavirus* + *covid* query in Italian regions and cities during period 1.

URL:https://trends.google.it/trends/explore?date=2020-02-01%202020-12-04&geo=IT&q=coronavirus%20%2B%20covid

[11] Google Trends, *coronavirus* + *covid* query in Italian regions and cities during period 2.

URL:https://trends.google.it/trends/explore?date=2020-02-20%202020-05-18&geo=IT&q=coronavirus%20%2B%20covid

[12] Google Trends, *coronavirus* + *covid* query in World countries and cities during period 1.

URL:https://trends.google.it/trends/explore?date=2020-02-01%202020-12-04&q=coronavirus%20%2B%20covid

[13] Google Trends, *coronavirus* + *covid* query in World countries and cities during period 2.

URL:<u>https://trends.google.it/trends/explore?date=2020-02-20%202020-05-18&q=coronavirus%20%2B%20covid</u>

[14] Ghasemi A, Zahediasl S (2012). Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int J Endocrinol Metab. 2012 Spring; 10(2): 486–489. DOI: 10.5812/ijem.3505. PMID: 23843808.

URL: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693611/</u>

[15] Amrhein V, Korner-Nievergelt F, Roth T (2017). The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research. PeerJ. 2017; 5: e3544. DOI: 10.7717/peerj.3544. PMID: 28698825.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502092/

[16] Worldometer (2020). COVID-19 Coronavirus Pandemic. Accessed: December 28, 2020.

URL: <u>https://www.worldometers.info/coronavirus/</u>

[17] Mukaka MM (2012). A guide to appropriate use of Correlation coefficient in medical research. Malawi Med J. 2012 Sep; 24(3): 69–71. PMID: 23638278.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576830/

[18] Kim TK (2015). T test as a parametric statistic. Korean J Anesthesiol. 2015 Dec; 68(6): 540–546. DOI: 10.4097/kjae.2015.68.6.540. PMID: 26634076.

URL: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667138/</u>

[19] Cervellin G, Comelli I, Lippi G (2017). Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. J Epidemiol Glob Health. 2017 Sep;7(3):185-189. DOI: 10.1016/j.jegh.2017.06.001, PMID: 28756828

URL: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320449/</u>

[20] Nuti VS, Wayda B, Ranasinghe I, Wang S, et al. (2014). The Use of Google Trends in Health Care Research: A Systematic Review. PLoS One. 2014; 9(10): e109583. DOI: 10.1371/journal.pone.0109583, PMID: 25337815

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215636/

[21] Dreher PC, Tong C, Ghiraldi E, Friedlander JI (2018). Use of Google Trends to Track Online Behavior and Interest in Kidney Stone Surgery. Urology. 2018 Nov; 121:74-78. DOI: 10.1016/j.urology.2018.05.040, PMID: 30076945

URL: <u>https://pubmed.ncbi.nlm.nih.gov/30076945/</u>

[22] Havelka EM, Mallen CD, Shepherd TA (2020). Using Google Trends to assess the impact of global public health days on online health information seeking behaviour in Central and South America. J Glob Health. 2020 Jun; 10(1): 010403. DOI: 10.7189/jogh.10.010403, PMID: 32373327

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182390/

[23] Mohamad M, Kok HS (2019). Using Google Trends Data to Study Public Interest in Breast Cancer Screening in Malaysia. Asian Pac J Cancer Prev. 2019; 20(5): 1427–1432. DOI: 10.31557/APJCP.2019.20.5.1427, PMID: 31127903

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857874/

[24] Amber KT, Bloom R, Hu S (2016). Association of Google Search Volume Index Peaks for Skin Cancer With Skin Cancer Awareness Month—Reply. JAMA Dermatol. 2016 Jan;152(1):113-4. DOI: 10.1001/jamadermatol.2015.3815, PMID: 26762258

URL: https://pubmed.ncbi.nlm.nih.gov/26762258/

[25] Schootman M, Toor A, Cavazos-Rehg P, et al (20149: The utility of Google Trends data to examine interest in cancer screening. BMJ Open 2015;5:e006678. DOI: 10.1136/bmjopen-2014-006678

URL: https://bmjopen.bmj.com/content/5/6/e006678