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Abstract 

 

Interstitial fibrosis and tubular atrophy (IFTA) on a renal biopsy are strong indicators of disease 

chronicity and prognosis. Techniques that are typically used for IFTA grading remain manual, 

leading to variability among pathologists. Accurate IFTA estimation using computational 

techniques can reduce this variability and provide quantitative assessment by capturing the 

pathologic features. Using trichrome-stained whole slide images (WSIs) processed from human 

renal biopsies, we developed a deep learning (DL) framework that captured finer pathological 

structures at high resolution and overall context at the WSI-level to predict IFTA grade. WSIs 

(n=67) were obtained from The Ohio State University Wexner Medical Center (OSUWMC). 

Five nephropathologists independently reviewed them and provided fibrosis scores that were 

converted to IFTA grades: <=10% (None or minimal), 11-25% (Mild), 26-50% (Moderate), and 

>50% (Severe). The model was developed by associating the WSIs with the IFTA grade 

determined by majority voting (reference estimate). Model performance was evaluated on WSIs 

(n=28) obtained from the Kidney Precision Medicine Project (KPMP). There was good 

agreement on the IFTA grading between the pathologists and the reference estimate 

(Kappa=0.622±0.071). The accuracy of the DL model was 71.8±5.3% on OSUWMC and 

65.0±4.2% on KPMP datasets, respectively. Identification of salient image regions by combining 

microscopic and WSI-level pathological features yielded visual representations that were 

consistent with the pathologist-based IFTA grading. Our approach to analyzing microscopic- and 

WSI-level changes in renal biopsies attempts to mimic the pathologist and provides a regional 

and contextual estimation of IFTA. Such methods can assist clinicopathologic diagnosis.  

 

Keywords: Interstitial fibrosis and tubular atrophy, Digital pathology, Renal biopsy, Image 

analysis, Deep learning  
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Translational statement 

 

Pathologists rely on interstitial fibrosis and tubular atrophy (IFTA) to indicate chronicity in 

kidney biopsies and provide a prognostic indicator of renal survival. Although guidelines for 

evaluation of IFTA exist, there is variability in IFTA estimation among pathologists. In this 

work, digitized kidney biopsies were independently reviewed by five nephropathologists and 

majority voting on their ratings was used to determine the IFTA grade. Using this information, a 

deep learning model was developed that captured microscopic and holistic features on the 

digitized biopsies and accurately predicted the IFTA grade. The study illustrates that deep 

learning can be utilized effectively to perform IFTA grading, thus enhancing conventional 

clinicopathologic diagnosis. 
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Introduction 

 

Renal biopsy is an integral part of clinical work-up for patients with several kidney diseases 

(1), as it provides diagnostic and prognostic information that guides treatment. Despite such 

integral clinical use, current assessment of renal biopsy suffers from some limitations (2). 

Evaluation of clinically relevant pathological features such as the amount of interstitial fibrosis 

and tubular atrophy (IFTA), an important prognostic indicator, is based mainly on visual 

estimation and semi-quantitative grading and hence cannot reveal relationships that are not 

immediately evident using compartmentalized approaches (3). Moreover, renal biopsies typically 

contain other elements (e.g. glomeruli, arteries and arterioles, etc.) that are interspersed 

throughout the renal parenchyma and preclude an accurate IFTA assessment by the human eye. 

Such estimates do not capture finer details or heterogeneity across an entire slide, and therefore 

may not be optimal for analyzing renal tissues with complex histopathology. These aspects 

underscore the need for leveraging advances in digital pathology and developing modern data 

analytic technologies such as deep learning (DL) for comprehensive image analysis of kidney 

pathology. 

 

DL techniques that utilize digitized images of biopsies are increasingly considered to 

facilitate the routine workflow of a pathologist. There has been a surge of publications 

showcasing DL applications in clinical medicine and biomedical research, with a few of them in 

nephrology and nephropathology (4-9). Specifically, DL techniques such as convolutional neural 

networks have been widely used for the analysis of histopathological images. In the context of 

kidney diseases, researchers have been able to produce highly accurate methods to evaluate 

disease grade, segment various kidney structures, as well as predict clinical phenotypes (10-18). 

While this body of work is highly valuable, almost all of it focuses on analyzing high-resolution 

whole slide images (WSIs) by breaking them down into smaller patches (or tiles) or resizing the 

images to a lower resolution, and associating them with various outputs of interest. These 

techniques have various advantages and limitations. While the patch-based approaches maintain 

image resolution, analyzing each patch independently cannot preserve the spatial relevance of 

that patch in the context of the entire WSI. In contrast, resizing the WSI to a lower resolution can 

be a computationally efficient approach but may not allow one to capture the finer details present 
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within a high-resolution WSI. 

 

The goal of this study was to develop a computational pipeline that can process WSIs to 

accurately capture the IFTA grade. To achieve this goal, we attempted to emulate the 

nephropathologist’s approach to grading the biopsy slides under a microscope. A typical 

workflow by the expert involves manual operations such as panning as well as zooming in and 

out of specific regions on the slide to evaluate various aspects of the pathology. In the ‘zoom out’ 

assessment, pathologists review the entire slide and perform ‘global’ or ‘WSI-level’ evaluation 

of the kidney core. In the ‘zoom in’ assessment, they perform in-depth, microscopic evaluation 

of ‘local’ pathology in the regions of interest. Both these assessments allow them to 

comprehensively assess the kidney biopsy, including estimation of IFTA grade. We 

hypothesized that a computational approach based on DL would mimic the process that 

nephopathologists use when evaluating the kidney biopsy images. Using WSIs and their 

corresponding IFTA grades from two distinct cohorts, we addressed the following objectives. 

First, the framework needs to process image sub-regions (or patches) and quantify the extent of 

IFTA within those patches. Second, the framework needs to process each image patch in the 

context of its environment and assess IFTA on the WSI. We developed a computational pipeline 

based on deep learning that can incorporate patterns and features from the local patches along 

with information from the WSI in its entirety to provide context for the patches. Through this 

combination of patch-level and global-level data, the model was designed to accurately predict 

IFTA grade. We brought together an international team of practicing nephropathologists who 

evaluated the digitized biopsies and provided the IFTA grades. The WSIs and their 

corresponding IFTA grades were used to train and validate the deep learning model. We also 

compared the deep learning model with a modeling framework based on traditional computer 

vision and machine learning that uses image descriptors and textural features. We then reported 

the performances of the deep learning model and identified image sub-regions that are highly 

associated with the IFTA grade. 
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Methods 

 

Study population, slide digitization and pre-processing 

We obtained digitized images of trichrome-stained kidney biopsies of patients submitted to 

The Ohio State University Wexner Medical Center (OSUWMC) and obtained WSIs from the 

Kidney Precision Medicine Project (KPMP) (19), which is a multi-year project funded by the 

NIDDK with the purpose of understanding and finding new ways to treat chronic kidney disease 

and acute kidney injury. Renal biopsy as well as patient data collection, staining and digitization 

followed protocols approved by the Institutional Review Board at OSUWMC (Study number: 

2018H0495) (Table 1A). The WSIs were de-identified and uploaded to a secure, web-based 

software (PixelView, deepPath, Inc.). C.A.C. served as the group administrator of the software 

account and provided separate access to the WSIs to the other nephropathologists (K.R., S.S.B., 

L.M.B. and P.B.), who were assigned as users to the group account. This process allowed each 

expert to independently evaluate the digitized biopsies. The WSIs and relevant data from KPMP 

were obtained following review and approval of the Data Usage Agreement between KPMP and 

Boston University (Tables 1B & S1). All methods were performed according to federal 

guidelines and regulations. Renal tissues consisted of needle biopsy samples from biopsies 

received at OSUWMC and KPMP participants. All OSUWMC biopsies were scanned using a 

whole slide image (WSI) scanner (Aperio, Leica Biosystems or NanoZoomer, Hamamatsu) at 

40x apparent magnification, resulting in WSIs with resolution 0.25 µm per pixel (Figure S1). All 

the WSIs from KPMP were generated by digitizing renal biopsies using Aperio AT2 high 

volume scanners (Leica Biosystems) at 40x apparent magnification with resolution 0.25 µm per 

pixel (Figure S1). More details on the pathology protocol can be obtained directly from the 

KPMP website (https://www.kpmp.org). The Aperio-based WSIs were obtained in the SVS 

format and the Hamamatsu-based WSIs were obtained in NDPI format, respectively.  

 

A manual quality check was performed on all the WSIs by a nephropathologist (C.A.C.). This 

check ensured there were no artifacts on the selected WSI regions such as air bubbles, folding, 

compressing, tearing, over- or under-staining, stain batch variations, knife chatter and thickness 

variances. Since most WSIs had multiple cores, the nephropathologist was able to select a core 

that had no quality issues on all cases (Figure S2). The selected portion of the WSI was then 
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carefully cropped and converted to numeric matrices for further analysis. 

 

Fibrosis grading 

A nephropathologist (C.A.C.) identified and annotated the cortical regions within each WSI 

(Figure 1) where both cortex and medulla were present. All the nephropathologists accessed and 

independently reviewed the WSIs for IFTA using a web browser on their respective computers. 

The score was provided as percentage of cortical regions with IFTA (0-100%), which was then 

converted to a semi-quantitative grade: <=10% (None or minimal), 11-25% (Mild), 26-50% 

(Moderate), and >50% (Severe) (20). The final IFTA grades were computed by performing 

majority voting on the grades obtained from each nephropathologist. The fibrosis scores for the 

KPMP dataset were obtained directly from the study investigators and converted to IFTA grades 

using the same criterion. The derived IFTA grades from both datasets were used for further 

analysis. 

 

Deep learning framework 

Our DL architecture is based on combining the features learned at the global level of the WSI 

along with the ones learned from local high-resolution image patches from the WSI (Figure 2A). 

Similar DL architectures have been recently applied on a few computer vision-related tasks (21-

25). In what follows, we refer to this architecture as glpathnet. Briefly, glpathnet comprises three 

arms: (a) local branch (Figure 2A top), (b) global branch (Figure 2A bottom) and (c) ensemble 

branch (Figure 2A right). The local branch receives cropped filtered patches from the original 

images as the input to a Feature Pyramid Network (FPN) model (26). The FPN uses an efficient 

architecture to leverage multiple feature maps at low and high resolutions to detect objects at 

different scales.  

 

Cropped image patches (Np x Np pixels) were automatically extracted from the original WSIs 

and labelled as “tissue” or “background” using the following criterion. Image patches containing 

tissue within at least 50% or more pixels were labeled as “tissue” and labeled as “background” 

otherwise. The local branch containing the image patches labeled as “tissue” are fed into the FPN 

model. The global branch contains down-sampled low-resolution versions (Ng x Ng pixels) of the 

original WSIs, which serve as inputs to another FPN model. To enable local and global feature 
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interaction, the feature maps from all layers of either branches are shared with the others (Figure 

2B). The global branch crops its feature maps at the same spatial location of the current local 

patch. To interact with the local branch, glpathnet upsamples the cropped feature maps to the 

same size of the feature maps from the local branch in the layer with the same depth. 

Subsequently, glpathnet concatenates the local feature maps and cropped global feature maps, 

which are fed into the next layer in the local branch. In a symmetrical fashion, the local branch 

down-samples its feature maps to the same relative spatial ratio as the patches cropped from the 

original input image. Based on the location of the cropped patches, the down-sampled local 

feature maps are merged together into feature maps of the same size of the global branch feature 

in the same layer. For the patches labeled as “background”, we used feature maps with all zeros. 

The global feature maps and merged local feature maps are concatenated and fed into the next 

layer in the global branch. 

 

The ensemble branch in glpathnet contains a convolutional layer followed by a fully-connected 

layer. It takes the concatenated feature maps from the last layer of the local branch and the same 

ones from the global branch. The output of the ensemble branch is a patch-level IFTA grade and 

the final IFTA grade was determined as the most common patch-level IFTA grade. 

 

We used cross-entropy loss to train glpathnet on the OSUWMC data using a pre-trained DL 

architecture (ResNet50) (27), as part of the convolutional network of the FPN model. In order to 

maximize efficiency, both Np and Ng were set to 508 pixels. We used ADAM optimizer (�1=0.9, 

�2=0.999) to optimize model training with a batch size of 6. We assigned the initial learning rate 

to 2×10−5 for the local branch, and 1×10−4 for the global branch, respectively. We implemented 

glpathnet using PyTorch and model training was performed on a GPU workstation containing 

NVIDIA’s GeForce RTX 2080 Ti graphics cards with a 11-Gb GDDR6 memory. Model training 

took less than 16 hours to reach convergence. Prediction of IFTA grade on a new WSI that was 

not used for model training took approximately 30 seconds. 

 

Traditional machine learning model 

For comparison, we constructed an IFTA classification model based on traditional machine 

learning that used derived features from OSUWMC WSI data. We used Weighted Neighbor 
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Distance using Compound Hierarchy of Algorithms Representing Morphology (WND-CHARM) 

(28-30), which is a multi-purpose image classifier that can extract ~3,000 generic image 

descriptors including polynomial decompositions, high contrast features, pixel statistics, and 

textures (Table S2). These features were directly derived from the raw WSI, transforms of the 

WSI, and compound transforms of the WSI (transforms of transforms). Using these features as 

inputs, we constructed a 4-label classifier to predict the final IFTA grade. Model was trained on 

the OSUWMC dataset and the KPMP dataset was used for testing. 

 

Performance metrics 

The final IFTA grade (reference estimate) was determined by taking the majority vote on the 

IFTA grading among all the five nephropathologists. The agreement between the 

nephropathologists was computed using Kappa (�) scores between each pathologist grade and 

the reference estimate. The percentage agreement between the pathologists and between 

pathologists and the reference estimate was also computed. For the DL model trained on the 

OSUWMC dataset, a 5-fold cross validation was performed and the average model accuracy, 

sensitivity/recall, specificity, precision and kappa scores were reported. Sensitivity/recall 

measures the proportion of true positives that are correctly identified, specificity measures the 

proportion of true negatives that are correctly identified, and precision is a fraction of true 

positives over the total number of positive calls.  

 

Data sharing 

Data from the OSUWMC can be obtained upon request and subject to institutional approval. 

Data from KPMP can be freely downloaded from https://www.kpmp.org. 
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Results 

There was good agreement on the IFTA grading between the nephropathologists, where 

pairwise agreements ranged from 0.48 to 0.63 (Figure 3A). Inter-pathologist ratings assessed 

using pairwise Kappa (�) showed moderate agreement, ranging from 0.31 to 0.50 (Figure 3B). 

There was good agreement when each pathologist grading was compared with the reference 

IFTA grade (�=0.622±0.071). 

 

The DL model (glpathnet) accurately predicted the IFTA grade on the OSUWMC data 

(Accuracy=71.8±5.3%), based on 5-fold cross validation (Figure 4). The patch-level model 

predictions also consistently predicted IFTA grade, as indicated by the class-level receiver 

operating characteristic (ROC) curves (Figures 4A-4D). For the “minimal” IFTA label, the 

patch-level cross-validated model resulted in area under ROC curve (AUC) of 0.65±0.04. For the 

“mild” IFTA label, the AUC was 0.67±0.04, for the “moderate” IFTA label, the AUC was 

0.68±0.09 and for the “severe” IFTA label, the AUC was 0.76±0.06. Also, for each class label, 

the cross-validated model performance on the WSIs was evaluated by computing mean 

precision, mean sensitivity and mean specificity along with their respective standard deviations. 

For the “minimal” IFTA label, the precision was 0.82±0.17, the sensitivity was 0.77±0.08, and 

the specificity was 0.93±0.07. For the “mild” IFTA label, the precision was 0.71±0.15, the 

sensitivity was 0.68±0.10, and specificity was 0.91±0.05. For the “moderate” IFTA label, the 

precision was 0.82±0.10, the sensitivity was 0.73±0.20, and specificity was 0.93±0.05. Finally, 

for the “severe” IFTA label, the precision was 0.65±0.06, the sensitivity was 0.72±0.16, and 

specificity was 0.88±0.04. It must be noted that due to the nature by which specificity was 

computed on the model (i.e. “minimal” vs “not-minimal”, “mild” vs “not-mild”, “moderate” vs 

“not-moderate” and “severe” vs “not-severe”), the values were generally higher than precision 

and sensitivity for all cases.  

 

Based on 5-fold cross validation, we found that there was good agreement between the true and 

predicted IFTA grades on the OSUWMC data, (�=0.62±0.07) (Figure S3). Class activation 

mapping (CAM) was performed on the WSIs to explore the regions that are highly associated 

with the output class label (Figures 5 & S4). Two different strategies were used to generate 

CAMs. The first method generated CAMs at the WSI (or global) level without utilizing the local 
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features, while the other method generated CAMs that synthesized features at the local and 

global level. We observed that although both these strategies generated CAMs that highlighted 

image sub-regions, CAMs based on the model that combined local and global representations 

showed higher association with the output label of interest. We also generated patch-level 

probabilities that had high degree association with the IFTA grade (Figure 6). Each image patch 

and its set of probability values were reviewed by the nephropathologist (C.A.C.), who 

confirmed that patch-level patterns were consistent with model predictions of the corresponding 

IFTA grades. Note that C.A.C. reviewed the patch-based results after she performed IFTA 

grading on all the WSIs, so she did not get biased by the model results during IFTA grading. We 

must note that the IFTA grade was based on WSI-level estimation and the probabilities were 

predicted at patch-level.  

 

While the 5-fold cross-validated model on the OSUWMC dataset generated convincing results, 

we also wanted to understand how glpathnet performed on an external dataset. The cross-

validated model was used to predict IFTA grade on the KPMP data. The entire process including 

random data split followed by model training using OSUWMC data and prediction on KPMP 

data was repeated 5 times, and average model performance was reported (Accuracy=65.0±4.2%) 

(Figure 7A). Also, for each class label, the cross-validated model performance on the WSIs was 

evaluated by computing mean precision, mean sensitivity and mean specificity along with their 

respective standard deviations. For the “minimal” IFTA label, the precision was 0.82±0.06, the 

sensitivity was 0.73±0.08, and the specificity was 0.78±0.08. For the “mild” IFTA label, the 

precision was 0.55±0.08, the sensitivity was 0.57±0.17, and specificity was 0.87±0.04. For the 

“moderate” IFTA label, the precision was 0.64±0.05, the sensitivity was 0.53±0.19, and 

specificity was 0.92±0.03. We did not compute the performance scores for the “severe” IFTA 

label because none of the cases from the KPMP dataset were graded as “severe” IFTA. Even for 

those cases, we observed that CAMs based on the model that combined local and global 

representations had a better association with the output label of interest (Figures 7B-7D). Model 

performance between these cohorts featuring broad variance in slide staining protocols, slide 

digitization, geographic location and recruitment criteria suggests a good degree of 

generalizability. Of note, the DL model outperformed the traditional machine learning model 

(WND-CHARM), which was constructed using generic image descriptors from the WSIs (Table 
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2). Specifically, WND-CHARM achieved an accuracy of 21.4±7.5% on the OSUWMC dataset 

and an accuracy of 35.0±14.7% on the KPMP dataset. These results underscore the advantage of 

utilizing DL for predicting IFTA grade on digitized kidney biopsies.  
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Discussion  

As kidney disease remains to be the 9th leading cause of death in the US (31), current options 

for clinical management are too expensive and fail to provide a high quality of life. The recent 

initiative by the White House known as Advancing American Kidney Health is a clear indication 

that preventing kidney failure through better diagnosis, treatment and preventative care is among 

the nation’s top healthcare priorities (32). The complexity of clinical management is 

compounded by the fact that methods to grade disease are manual and driven by visual 

estimation, leading to variability among the expert pathologists. In presence of these challenges, 

the NIH along with other stakeholders have recently launched nationwide initiatives (KPMP 

(https://www.kpmp.org) & KidneyX (https://www.kidneyx.org)) to tackle global kidney disease 

burden. These projects are expected to provide tremendous opportunities to accelerate 

innovation, re-define kidney disease in molecular terms and identify novel targeted therapies, as 

well as transform kidney care and management. Such goals can be achieved when rich patient 

data can be analyzed using state-of-the-art technologies, visualized with the help of next-

generation software tools and shared openly in the public domain. Motivated by such 

developments and in anticipation of the enormous amount of data that is planned to be generated, 

we developed a data analytics framework that can analyze digitized kidney biopsies at the level 

of an expert pathologist. Specifically, we selected automated IFTA grading as our task because 

fibrosis on kidney biopsy is a known structural correlate of progressive and chronic kidney 

disease (20, 33).  

 

Despite knowing the putative link between IFTA grade and disease prognosis, there remains 

uncertainty about how to best measure fibrosis within the kidney. Farris & Alpers provided an 

interesting perspective on this aspect in their recent article (2), where they argue that current 

analytic approaches generally avoid rigorous assessment of various aspects related to 

characterizing fibrosis of the tubulointerstitium. They note that human reproducibility is not 

generally high because there is no agreeable definition on how to measure IFTA. For example, 

some consider percent interstitial fibrosis to be percent of overall tissue occupied by fibrous 

tissue, whereas others note that the percent of fibrosis to be the percentage of tissue that is 

abnormal. In clinical practice however, people often refer to scoring systems defined by 

established national and international working groups (Renal Pathology Society Working Group, 
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Banff classification, etc.) for grading fibrosis. Morphometric analysis can also be performed to 

evaluate renal fibrosis as this approach can bring efficiency, reproducibility and functional 

correlation (3). These developments lend themselves to using more advanced computer methods 

such as machine learning on digitized images for IFTA grading. 

 

The novelty of glpathnet is underscored by the fact that it combines local representations to 

quantify features at the image patch level as well as at the WSI-level to accurately predict the 

IFTA grade. A combination of both these assessments provides a comprehensive evaluation of 

IFTA. This methodology appears to capture the typical workflow of pathologists as they examine 

the WSIs by performing manual operations such as panning across the WSI to perceive the 

overall context, zooming in and out of specific WSI regions to evaluate the local pathology, and 

finally combining the information learned from both these steps to determine the IFTA grade. 

We must however acknowledge that the nephropathologist’s clinical impression and diagnosis is 

based on contextual factors above and beyond visual inspection of a lesion in isolation. 

Nevertheless, by identifying WSI regions using CAMs that are highly indicative of a class label, 

our approach provides a quantitative basis by which to interpret the model-based predictions 

rather than viewing DL methods as black-box approaches. As such, our approach stands in 

contrast to other methods that rely on expert-driven annotations and segmentation algorithms that 

attempt to quantify histological regions and derive information for pathologic assessment (12, 

15-18). 

 

Saliency mapping based on CAMs is increasingly being considered as a framework to generate 

visual interpretations of model predictions by highlighting image sub-regions that are 

presumably correlated with the outputs of interest (34-43). These ‘heat maps’ can be generated 

for any input image that is associated with an output class label (i.e., IFTA grade). The 

underlying assumption is that the heat map representation highlights pixels of the image that 

triggers the model to associate the image with a particular class label. Our DL strategy that 

combined local and global representations consistently predicted the correct IFTA grade and 

generated interpretable CAMs. This strategy turned out to be superior than using only the global 

representations, where several image sub-regions where the CAMs were highlighted appear to 

have high correlation with the output class label.   
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This study has a few limitations. We relied only on WSIs derived using the trichrome stain, as 

this is commonly used by nephropathologists. Past studies have found that trichrome-stained 

slides can produce cost-effective, efficient, reproducible and functional correlations with 

outcomes such as eGFR (2, 3); some pathologists, however, rely on other protocols such as 

Hematoxylin & Eosin, Periodic acid–Schiff, Jones Methenamine Silver or Sirius Red staining to 

grade fibrosis (2, 44-46). Our DL framework has the potential to be applied effectively to WSIs 

generated with other staining protocols. We partially demonstrated a solution to this issue 

because the OSUWMC cases that we obtained included both in-house cases and consults from 

external institutions, indicating that our model performed well on cases that may have employed 

different staining techniques. Furthermore, we recognize that our DL framework provides an 

automated approach to IFTA grading to assist the pathologist rather than replacing the human 

factor. Nevertheless, the ability to classify WSIs using a computer with the accuracy of an 

experienced nephropathologist has the potential to inform pathology practices, especially in 

resource-limited settings. 

 

In conclusion, we demonstrated the effectiveness of capturing localized morphological along 

with WSI-level contextual features using an advanced DL architecture (glpathnet) to mimic the 

pathologist’s approach to IFTA grading. It is possible to use glpathnet to study other organ-

specific pathologies focused on evaluating fibrosis, as well as WSIs generated using other 

histological staining protocols. Our proposed framework to local and contextual IFTA grading 

can serve as an ‘analysis template’ for researchers and practitioners when new data from cohort 

studies such as KPMP become available. Further validation of the glpathnet across different 

pathology practices and patient populations is necessary to study if it can be effective across the 

full distribution and spectrum of fibrotic lesions. 
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Figure and table legends 

 

Table 1. Study population. (A) The cases obtained from Ohio State University Wexner Medical 

Center are shown. A single trichrome stained biopsy slide was digitized for each patient. *Age 

was unavailable on 4 patients. **Creatinine values were unavailable on 11 patients. 

***Proteinuria values were unavailable on 13 patients. Baseline eGFR data was unavailable on 

all the patients. (B) All the cases obtained from the Kidney Precision Medicine Project (KPMP) 

are shown. For each participant, two trichrome images were available. Creatinine values were 

unavailable on all the participants. ****Proteinuria values were unavailable on 4 participants.  

 

Figure 1. Trichrome stained whole slide images of human renal biopsies. Sample trichrome 

images are shown on cases graded as (A) Minimal IFTA, (B) Mild IFTA, (C) Moderate IFTA 

and (D) Severe IFTA. For each grade, two different images are shown, where the left image had 

no annotations because the entire image comprised of the cortical region. On the images on the 

right side, a nephropathologist (C.A.C.) annotated the cortical regions. For cases with no 

annotations, the entire image served as inputs to the DL model, and for cases with annotations, 

the annotated regions were segmented, which served as inputs to the DL model. The final IFTA 

grading was derived by performing majority voting on the ratings obtained from five 

nephropathologists. 

 

Figure 2. Deep learning architecture. (A) The proposed deep neural network uses a novel 

approach that learns from both local and global image features to predict the output label of 

interest. The local features are learned at the level of image patches and the global features are 

learned on a downsampled version of the whole image. (B) A schematic showing local and 

global feature sharing is shown. The current local and global feature maps that are fused at each 

layer, where each layer is represented as a blue-dashed box. 

 

Figure 3. Pathologist-level IFTA grading. (A) Pairwise values of percentage agreement 

between the nephropathologists are shown on the cases obtained from The Ohio State University 

Wexner Medical Center (OSUWMC). The values were normalized to lie between 0 and 1. (B) 

Pairwise kappa scores between the nephropathologists on the OSUWMC data are shown. The 
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kappa values range from 0 to 1, where 0 indicates no agreement and 1 indicates perfect 

agreement. 

 

Figure 4. Deep learning model performance on The Ohio State University Wexner Medical 

Center dataset. (A-D) Patch-level performance of the 5-fold cross validated model is shown for 

each IFTA grade. In (A), the receiver operating characteristic (ROC) curve for the “minimal” 

grade is shown whereas in (B), the ROC curve for the “mild” grade is shown. In (C) and (D), the 

ROC curves for “moderate” and “severe” grades are shown. (E) Model performance including 

precision, sensitivity and specificity on the entire WSIs is shown for each IFTA grade. 

 

Figure 5. Visualization of discriminatory regions within the pathology images. The first 

column represents the original whole slide images (WSIs) along with the ground truth labels 

derived using majority voting on the pathologists’ IFTA grades. The second column shows 

global class activation maps (CAMs) generated on the entire WSI and the global CAM-based 

model predictions. The third to sixth columns show CAMs derived by combining local and 

global representations for each class label along with their corresponding model predictions. In 

the first row (A), a case with a ‘minimal’ IFTA grade is shown. The approach that used global 

CAMs only predicted the IFTA grade as ‘mild’, whereas the approach using local and global 

CAMs correctly predicted the IFTA grade as ‘minimal’. In the second row (B), a case with a 

‘mild’ IFTA grade is shown. Both the approaches that used global CAMs only and the one that 

used local and global CAMs correctly predicted the IFTA grade as ‘mild’. In the third row (C), a 

case with a ‘moderate’ IFTA grade is shown. The approach that used global CAMs only 

predicted the IFTA grade as ‘severe’, whereas the approach using local and global CAMs 

correctly predicted the IFTA grade as ‘moderate’. In the fourth row (D), a case with a ‘severe’ 

IFTA grade is shown. Both the approaches that used global CAMs only and the one that used 

local and global CAMs correctly predicted the IFTA grade as ‘severe’. All these cases were 

obtained from the Ohio State University Wexner Medical Center. 

 

Figure 6. Patch-level probabilities of the deep learning model. Selected image patches and 

their corresponding probability values for each IFTA grade are shown. The set of image patches 

in (A) shows the ones with “minimal” IFTA, the patches in (B) indicate the ones with “mild” 
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IFTA, the cases in (C) show image patches with “moderate” IFTA and finally, the image patches 

in (D) indicate the cases with “severe” IFTA. All the images patches and their corresponding 

probability values were reviewed by a nephropathologist (C.A.C.). 

 

Figure 7. Deep learning model performance on the Kidney Precision Medicine Project 

dataset. (A) Model performance including precision, sensitivity and specificity on the entire 

whole slide images is shown for each IFTA grade (n=28). Note that performance scores for the 

“severe” IFTA label were not computed because none of the cases were graded as “severe” 

IFTA. (B-D) Class activation maps (CAMs) were generated on the dataset. The first column 

represents the original whole slide images (WSIs) along with the ground truth labels derived 

using majority voting on the pathologists’ IFTA grades. The second column shows global CAMs 

generated on the entire WSI and the global CAM-based model predictions. The third to sixth 

columns show CAMs derived by combining local and global representations for each class label 

along with their corresponding model predictions. In the first row (B), a case with a ‘minimal’ 

IFTA grade is shown. The approach that used global CAMs only predicted the IFTA grade as 

‘mild’, whereas the approach using local and global CAMs correctly predicted the IFTA grade as 

‘minimal’. In the second row (C), a case with a ‘mild’ IFTA grade is shown. Both the approaches 

that used global CAMs only and the one that used local and global CAMs correctly predicted the 

IFTA grade as ‘mild’. In the third row (D), a case with a ‘moderate’ IFTA grade is shown. The 

approach that used global CAMs only predicted the IFTA grade as ‘minimal’, whereas the 

approach using local and global CAMs correctly predicted the IFTA grade as ‘moderate’.  

 

Table 2. Performance of the traditional machine learning model. A machine learning model 

based on WND-CHARM was constructed by deriving ~3,000 features from the whole slide 

image data obtained from the Ohio State University Wexner Medical Center (OSUWMC) to 

predict IFTA grade. The trained model was then used to predict on the data obtained from the 

Kidney Precision Medicine Project (KPMP). (A) Performance of the model after 5-fold cross 

validation on the OSUWMC dataset is shown. (B) Performance of the trained model using 

OSUWMC dataset and predicted on the KPMP dataset is shown. 

 

Table S1. Kidney Precision Medicine Project cohort. Clinical and demographic characteristics 
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of the KPMP participants (n=14) are shown. For each participant, two trichrome stained whole 

slide images in SVS format were available. More info on the KPMP project is available at 

https://www.kpmp.org.  

 

Figure S1. WSI distribution. Number of WSIs per IFTA grade in the OSUWMC and KPMP 

datasets are shown. 

 

Figure S2. Quality check and ROI selection. A manual quality check was performed by a 

nephropathologist to identify and select whole slide image regions that served as inputs to the 

DL model. (A) This case shows that the core on the extreme right containing both the cortex and 

the medulla was selected for further analysis. (B) This case shows the presence of air bubbles 

(indicated by red arrows) on the second core. The third core was selected for further analysis. (C) 

This case shows staining artifacts (indicated by red arrows) on the second core. The first core 

was selected for further analysis. 

 

Table S2. WND-CHARM features. The table shows the image features and the transforms used 

in WND-CHARM, which is based on traditional and classic image processing. More details can 

be found in the original paper (29).  

 

Figure S3. Model agreement with the ground truth. We performed 5-fold cross validation on 

the OSUWMC dataset to evaluate the DL model. For each fold, Kappa was computed to evaluate 

the agreement of the model with the ground truth defined using majority voting on the IFTA 

grading performed by the nephropathologists.   

 

Figure S4. Visualization of discriminatory regions within the pathology images. The first 

column represents the original whole slide images (WSIs) along with the ground truth labels 

derived using majority voting on the pathologists’ IFTA grades. The second column shows 

global class activation maps (CAMs) generated on the entire WSI and the global CAM-based 

model predictions. The third to sixth columns show CAMs derived by combining local and 

global representations for each class label along with their corresponding model predictions. In 

the first row (A), a case with a ‘minimal’ IFTA grade is shown. The approach that used global 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.03.21249179doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.03.21249179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zheng et. al.,  

 21

CAMs only predicted the IFTA grade as ‘moderate’, whereas the approach using local and 

global CAMs predicted the IFTA grade as ‘severe’. In the second row (B), a case with a ‘mild’ 

IFTA grade is shown. In this case, the global only CAM-based model correctly predicted the 

IFTA grade, whereas the local and global CAM-based approach predicted the IFTA grade as 

‘minimal’. In the third row (C), a case with a ‘moderate’ IFTA grade is shown. The approach 

that used global CAMs only correctly predicted the IFTA grade as ‘moderate’, whereas the 

approach using local and global CAMs incorrectly predicted the IFTA grade as ‘mild’. In the 

fourth row (D), a case with a ‘severe’ IFTA grade is shown. The approach that used global 

CAMs only correctly predicted the IFTA grade as ‘severe’, whereas the approach using local and 

global CAMs correctly predicted the IFTA grade as ‘moderate’. All these cases were obtained 

from the Ohio State University Wexner Medical Center. 
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Description Value Units
Number of patients 64

Number of whole slide images 67

Age (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89) (Binned)* 2, 1, 12, 4, 10, 9, 17, 4, 1 Years

Gender (Males, Females) 34, 30

Patients per ethnicity (White, Black, Others, Unknown) 35, 10, 4, 15 

Creatinine (Median, Range)** 1.5 [0.3-10.9] mg/dL

Proteinuria (Median, Range)*** 4 [0.5-22] g/day

Table 1

(B) Description Value Units
Number of participants 14

Number of whole slide images 28

Age (30-39, 40-49, 50-59, 60-69, 70-79) (Binned) 4, 0, 1, 7, 2 Years

Gender (Males, Females) 7, 7

Patients per ethnicity (White, Black, Others, Unknown) 10, 3, 0, 1

Baseline eGFR (<15, 15-29, 30-59, 60-89, >=90) (Binned) 0, 1, 7, 3, 3 (mL/min/1.73m2)

Proteinuria (<150, 150-499, 500-999, >=1000) (Binned)**** 3, 2, 3, 2 mg

(A)
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Table 2
Description Minimal Mild Moderate Severe

Precision 0.12±0.15 0.25±0.13 0.22±0.12 0.29±0.18

Recall/Sensitivity 0.10±0.13 0.40±0.17 0.27±0.13 0.23±0.17

Specificity 0.89±0.09 0.59±0.14 0.67±0.12 0.86±0.07

(A)

Description Minimal Mild Moderate Severe

Precision 0.52±0.26 0.30±0.40 0.26±0.20 N/A

Recall/Sensitivity 0.49±0.30 0.07±0.08 0.27±0.20 N/A

Specificity 0.63±0.24 0.88±0.17 0.79±0.23 N/A

(B)



Supplementary figures and tables



Table S1

Participant ID Tissue Type Sex
Age (Years) 

(Binned) Race KDIGO Stage

Baseline eGFR 
(ml/min/1.73
m2) (Binned)

Proteinuria 
(mg) (Binned)

A1c (%) 
(Binned)

Albuminuria 
(mg) (Binned)

Diabetes 
History

Hypertension 
History

On RAAS 
Blockade

933001 CKD Male 60-69 White 50-59 < 150mg < 6.5 30-299mg Yes Yes Yes

511894 CKD Female 60-69

Black or 
African-

American 80-89 500-999mg 500-999mg Yes Yes Yes

338160 CKD Female 60-69

Black or 
African-

American 30-39 > 8.5 300-499mg Yes Yes Yes
572651 CKD Female 60-69 White 40-49 < 6.5 < 30mg No Yes No
587172 CKD Male 60-69 White 50-59 < 6.5 30-299mg No Yes No
830043 CKD Male 70-79 White 40-49 150mg-499mg 6.5-7.49 < 30mg Yes Yes Yes
888493 CKD Male 50-59 White 20-29 < 150mg < 6.5 No Yes No
604248 CKD Male 60-69 White 30-39 < 150mg > 8.5 < 30mg Yes No No
309543 CKD Female 30-39 White 30-39 >= 1000mg 6.5-7.49 Yes Yes Yes
670825 CKD Female 30-39 White 100-109 500-999mg 500-999mg Yes Yes Yes
684365 AKI Male 60-69 White Stage 3 80-89 6.5-7.49 Yes Yes No
843487 AKI Male 30-39 Don't Know Stage 2 120-129 150mg-499mg No No No
162015 AKI Female 30-39 White Stage 3 110-119 500-999mg No No No

117144 AKI Female 70-79

Black or 
African-

American Stage 2 70-79 >= 1000mg 6.5-7.49 >= 1000mg Yes Yes No
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Table S2
Image 
features

Radon, Chebyshev, Gabor, Multi-scale 
histograms, First 4 moments, Tamura texture, 
Edge statistics, Object statistics, Zernike, 
Haralick, Chebyshev-Fourier

Transforms Raw Pixels, Fast Fourier Transform (FFT), 
Chebyshev, Wavelet, FFT-Chebyshev, FFT-
Wavelet, Edge, Edge-Fourier, Edge-Wavelet, 
Chebyshev-FFT, Wavelet-FFT 
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