Thinner cortex is associated with psychosis onset in individuals at Clinical High Risk for Developing Psychosis: An ENIGMA Working Group mega-analysis ====================================================================================================================================================== * Maria Jalbrzikowski * Rebecca A. Hayes * Stephen J. Wood * Dorte Nordholm * Juan H. Zhou * Paolo Fusar-Poli * Peter J. Uhlhaas * Tsutomu Takahashi * Gisela Sugranyes * Yoo Bin Kwak * Daniel H. Mathalon * Naoyuki Katagiri * Christine I. Hooker * Lukasz Smigielski * Tiziano Colibazzi * Esther Via * Jinsong Tang * Shinsuke Koike * Paul E. Rasser * Chantal Michel * Irina Lebedeva * Wenche ten Velden Hegelstad * Camilo de la Fuente-Sandoval * James A. Waltz * Romina R.M. Mizrahi * Cheryl Corcoran * Franz Resch * Christian K. Tamnes * Shalaila S. Haas * Imke L.J. Lemmers-Jansen * Ingrid Agartz * Paul Allen * Ole A. Andreassen * Kimberley Atkinson * Peter Bachman * Inmaculada Baeza * Helen Baldwin * Cali F. Bartholomeusz * Kolbjørn S. Brønnick * Sabrina Catalano * Michael W.L. Chee * Xiaogang Chen * Kang Ik K. Cho * Rebecca E. Cooper * Vanessa L. Cropley * Montserrat Dolz * Bjørn H. Ebdrup * Adriana Fortea * Louise B. Glenthøj * Birte Y. Glenthøj * Lieuwe de Haan * Holly K. Hamilton * Mathew A. Harris * Kristen M. Haut * Ying He * Karsten Heekeren * Andreas Heinz * Daniela Hubl * Wu Jeong Hwang * Michael Kaess * Kiyoto Kasai * Minah Kim * Jochen Kindler * Mallory J. Klaunig * Tina D. Kristensen * Jun Soo Kwon * Stephen M. Lawrie * Jimmy Lee * Pablo León-Ortiz * Ashleigh Lin * Rachel L. Loewy * Xiaoqian Ma * Daniel H. Mathalon * Patrick McGorry * Philip McGuire * Masafumi Mizuno * Paul Møller * Toma Moncada-Habib * Daniel Munoz-Samons * Barnaby Nelson * Takahiro Nemoto * Merete Nordentoft * Maria A. Omelchenko * Ketil Oppedal * Lijun Ouyang * Christos Pantelis * Jose C. Pariente * Jayachandra Raghava * Francisco Reyes-Madrigal * Brian J. Roach * Jan I. Røssberg * Wulf Rössler * Dean F. Salisbury * Daiki Sasabayashi * Ulrich Schall * Jason Schiffman * Florian Schlagenhauf * Andre Schmidt * Mikkel E. Sørensen * Michio Suzuki * Anastasia Theodoridou * Alexander S. Tomyshev * Jordina Tor * Tor G Vaernes * Dennis Velakoulis * Gloria D. Venegoni * Sophia Vinogradov * Christina Wenneberg * Lars T. Westlye * Hidenori Yamasue * Liu Yuan * Alison R. Yung * Thérèse A.M.J. van Amelsvoort * Jessica A. Turner * Theo G.M. van Erp * Paul M. Thompson * Dennis Hernaus * Koppel * Borgwardt ## Abstract **Importance** The ENIGMA clinical high risk for psychosis (CHR) initiative, the largest pooled CHR-neuroimaging sample to date, aims to discover robust neurobiological markers of psychosis risk in a sample with known heterogeneous outcomes. **Objective** We investigated baseline structural neuroimaging differences between CHR subjects and healthy controls (HC), and between CHR participants who later developed a psychotic disorder (CHR-PS+) and those who did *not* (CHR-PS-). We assessed associations with age by group and conversion status, and similarities between the patterns of effect size maps for psychosis conversion and those found in other large-scale psychosis studies. **Design, Setting, and Participants** Baseline T1-weighted MRI data were pooled from 31 international sites participating in the ENIGMA CHR Working Group. MRI scans were processed using harmonized protocols and analyzed within a mega- and meta-analysis framework from January-October 2020. **Main Outcome(s) and Measure(s)** Measures of regional cortical thickness (CT), surface area (SA), and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR, HC) and conversion status (CHR-PS+, CHR-PS-, HC). **Results** The final dataset consisted of 3,169 participants (CHR=1,792, HC=1,377, age range: 9.5 to 39.8 years, 45% female). Using longitudinal clinical information, we identified CHR-PS+ (N=253) and CHR-PS- (N=1,234). CHR exhibited widespread thinner cortex compared to HC (average *d*=-0.125, range: -0.09 to -0.17), but not SA or subcortical volume. Thinner cortex in the fusiform, superior temporal, and paracentral regions was associated with psychosis conversion (average *d*=-0.22). Age showed a stronger negative association with left fusiform and left paracentral CT in HC, compared to CHR-PS+. Regional CT psychosis conversion effect sizes resembled patterns of CT alterations observed in other ENIGMA studies of psychosis. **Conclusions and Relevance** We provide evidence for widespread subtle CT reductions in CHR. The pattern of regions displaying greater CT alterations in CHR-PS+ were similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread CT disruptions coupled with abnormal age associations in CHR may point to disruptions in postnatal brain developmental processes. **Question** How do baseline brain morphometric features relate to later psychosis conversion in individuals at clinical high risk (CHR)? **Findings** In the largest coordinated international analysis to date, reduced baseline cortical thickness, but not cortical surface area or subcortical volume, was more pronounced in CHR, in a manner highly consistent with thinner cortex in established psychosis. Regions that displayed greater cortical thinning in future psychosis converters additionally displayed abnormal associations with age. **Meaning** CHR status and later transition to psychosis is robustly associated with reduced cortical thickness. Abnormal age associations and specificity to cortical thickness may point to aberrant postnatal brain development in CHR, including pruning and myelination. Key words * magnetic resonance imaging * cortical thickness * ultra high-risk for psychosis * prodromal * schizophrenia * at-risk mental states * gray matter * brain volume * CHR * clinical high risk ## 1. INTRODUCTION The clinical high-risk paradigm is a widely used framework to investigate mechanisms underlying psychosis vulnerability. Help-seeking individuals who do not meet diagnostic criteria for a psychotic disorder, but typically present with subthreshold psychotic symptoms and accumulating risk factors, are considered at clinical high-risk (CHR) for developing psychosis1–3. An estimated 18-20% of CHR individuals develop a psychotic disorder within 2 years of identification4, although conversion rates vary5–11, likely due to heterogeneous recruitment and sampling strategies, and interventions applied2,13. However, despite decades of research, the nature of morphometrical alterations associated with psychosis conversion remains largely unknown. Here, we aim to address this question by combining all available structural neuroimaging data in CHR to date, in an attempt to better understand brain mechanisms associated with psychosis risk and conversion in this population. A large body of work has used structural magnetic resonance imaging (sMRI) to investigate morphometric brain alterations in CHR individuals14–37. However, the extent to which characteristic baseline structural neuroimaging differences exist between those at CHR who later develop a psychotic disorder (CHR-PS+) compared to those who do *not* (CHR-PS-) is debated. Many studies failed to find baseline differences between CHR-PS+ and CHR-PS- 15,35,38,39, though a meta-analysis and multi-center study found lower prefrontal and temporal volumes or cortical thickness (CT) in CHR-PS+40,41. High attrition rates in CHR samples42–44, coupled with low psychosis conversion rates4,45, often yield insufficient power to detect between-group structural brain differences. Moreover, small sample sizes can be associated with inflated effect sizes46,47, so effect sizes of prior studies that found structural brain alterations in CHR may be overestimated. Although multi-site consortia aim to address these challenges34,48–50, the largest published sMRI studies to date included fewer than 50 CHR-PS+38,41. Furthermore, it is currently unknown whether group differences are robust enough to predict outcomes. Importantly, many CHR participants are adolescents or young adults, a timeframe associated with psychosis onset51,52. Several brain regions implicated in psychosis show protracted developmental courses continuing through adolescence53–63, suggesting that morphometric alterations associated with psychosis risk vary with age. Indeed, there are developmental influences on psychotic symptom presentation64–68, perhaps driven by differences in regional brain changes. It is not fully understood how age-related patterns in brain morphometry in CHR differ from normal development. Thus, using a developmental framework to examine whether morphometric alterations in CHR are influenced by age may provide important insights into mechanisms associated with psychosis risk, and the stability of neuroimaging measures associated with psychosis risk across development. Finally, it is unknown whether baseline brain alterations associated with future conversion to psychosis resemble those observed in other large-scale psychosis studies. Understanding whether morphometric alterations in CHR overlap with those observed in individuals who have schizophrenia69–71 and individuals with a genetic subtype of psychosis72,73 will provide insights into convergent or distinct alterations across the psychosis spectrum. To address these questions, we founded the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Clinical High Risk Working Group in 2018. Using baseline sMRI data and longitudinal clinical information from 31 sites, this study addressed the following questions: 1. Do CHR and healthy control (HC) participants differ in CT, surface area (SA), and/or subcortical volumes? 2. Is there a neuroanatomic signature associated with future transition to a psychotic disorder (CHR-PS+ versus CHR-PS-versus HC)? 3. Do structural neuroimaging measures identified in Aims 1 and 2 display group differences in age associations, suggestive of abnormal developmental trajectories? 4. Is the pattern of morphometric alteration associated with psychosis conversion similar to that observed in ENIGMA studies of psychosis? ## 2. METHODS ### Participants We included 1,792 CHR and 1,377 HC from 31 sites participating in the ENIGMA CHR Working Group (Table 1). CHR data consisted of CHR-PS+ (N=253), CHR-PS- (N=1,234), and CHR individuals without follow-up data (CHR-UNK, N=305). CHR participants met CAARMS (N=821) or SIPS (N=971) CHR criteria (see details in Supplement). Site-specific inclusion/exclusion criteria are detailed in **eTable 1**. All sites obtained Institutional Review Board approval prior to data collection. Informed written consent was obtained from every participant or the participant’s guardian (for participants <18 years). All studies were conducted in accordance with the Declaration of Helsinki74. View this table: [Table 1.](http://medrxiv.org/content/early/2021/01/21/2021.01.05.20248768/T1) Table 1. Age and sex information for healthy controls (HC) and clinical high risk for psychosis (CHR) participants at each site ### Image Acquisition and Processing Thirty-one sites contributed T1-weighted MRI brain scans from 50 MRI scanners (**eTable 2** for MRI acquisition details). We conducted power calculations to estimate the sample size necessary to detect statistically significant effects (see **Supplement** for details). We extract structural gray matter measures of 68 CT, 68 SA measures, and 16 subcortical volume measures using the FreeSurfer analysis software75–78. We implemented the ENIGMA consortium quality assessment pipeline70,73,79–82 (**Supplement** for further details). Prior to conducting the mega-analysis, all neuroimaging data were adjusted for scanner protocol effects using neuroComBat83, a modified version of ComBat84 that increases the statistical power and precision of neuroimaging effect size estimates83. ### Statistical Analyses #### Group and conversion-related differences in structural neuroimaging metrics We assessed group differences using general linear models (GLMs) within a mega-analysis framework, with each sMRI measure (i.e., regional CT, SA or subcortical volume) as the dependent variable and group (HC/CHR) or conversion status (CHR-PS+/CHR-PS-/HC) as the independent variable. We included age, age2, sex, and estimated total intracranial volume (ICV) as covariates in all models, and corrected for multiple comparisons (N=155) using the False Discovery Rate (FDR85) method. We considered *q*-values<0.05 statistically significant. For all structural neuroimaging measures, we conducted pairwise comparisons and calculated Cohen’s *d* effect sizes between two (CHR vs. HC) or three groups of interest (CHR-PS+ vs. HC/CHR-PS+ vs. CHR-PS-/CHR-PS-vs. HC). We also conducted analyses within a meta-analysis framework and fitted linear mixed models of sMRI data (not adjusted with neuroCombat), with scanner as a random effect. We investigated sMRI differences associated with the specific psychosis-risk syndromes (e.g., Attenuated Positive Symptom Syndrome; details in **Supplement**). To evaluate the stability of group and conversion status differences, we performed analyses statistically controlling for psychotropic medication exposure at baseline. To assess effects of site, we conducted jackknife resampling analyses, i.e., iteratively removing one site’s data and re-running respective analyses86,87. sMRI measures that failed to show a group or conversion status effect at *q*<0.05 in >10% of jackknife iterations (i.e., 4/31 sites) were considered “unstable”. To assess the meaningfulness of obtained effect sizes we used two analytic approaches: equivalence testing (to assess whether observed differences fell within the upper and lower bounds of a predefined smallest effect size of interest, providing support for the *absence* of a meaningful effect) and minimal-effects testing (to assess whether observed effects *were greater* than the same pre-defined effect size88). Upper/lower bounds (representing the positive/negative predefined smallest effect size of interest) were set to *d* = +/- 0.15 (further details and effect size rationale, see **Supplement**). #### Group and conversion-related differences in sMRI age-associations We used general additive models89,90 to model group and conversion status differences in the relationship between age and sMRI measures. General additive models extend GLMs by allowing for a non-linear relationship between independent and dependent variables. Here, age is modeled as a smooth function (continuous derivatives), which is akin to the “age-related” slope in a GLM. Analyses were confined to sMRI measures that displayed statistically significant effects of I) HC vs. CHR (N=56 measures) and II) CHR-PS+ vs. HC/CHR-PS+ vs. CHR-PS-/CHR-PS- vs. HC (N=4). We examined the effect of baseline age, group/conversion status, and the interaction between the two variables. Sex and estimated ICV were included as covariates. Similar to prior work examining age effects during adolescent development91,92, we restricted our sample’s age range to 12-25 years (**eTable 3**). Details on post-hoc analyses for significant interaction effects are provided in the **Supplement**. #### Comparison of psychosis conversion-related effects to other ENIGMA findings We computed Spearman’s rank correlations to assess the extent to which the pattern of observed effect sizes (Cohen’s *d’s* for CHR-PS+ vs. HC and CHR-PS-) correlated with the pattern found in prior psychosis studies, specifically the ENIGMA Schizophrenia(SZ vs. HC69,70) and ENIGMA 22q11.2 Deletion Syndrome (22q11DS with psychosis vs. 22q11DS without psychosis72,73) Working Groups. As a control, we compared CHR-PS+/CHR-PS- vs. HC effect sizes to effect sizes published by the Major Depressive Disorder Working Group (MDD vs. HC93). Additional details of correlation analyses are reported in the **Supplement**. ## 3. RESULTS ### Sample Characteristics Site demographics are reported in **Table 1**. See **eTables 4-6** for IQ and symptom comparisons. Few CHR participants reported typical (<1%) and/or atypical antipsychotic (12.4%) medication use (**eTable 7**). ### Widespread lower CT in CHR versus HC Compared to HC, the CHR group had smaller global neuroimaging measures: estimated ICV (*d*=-0.13, CI=-0.2 to -0.06), mean CT (*d*=-0.18, CI=-0.25 to -0.11) and total SA (*d*=-0.15, CI=-0.22 to -0.08). Fifty-three additional regions exhibited a significant effect of group (*q*<0.05, **eTable 8**). The largest group effects were observed for widespread lower CT in CHR vs. HC (42/68 comparisons, *d* range=-0.09 to -0.17; **Figure 1A** for overview; **eTable 8** and **eFigure 1** for details). Few subcortical (3/16) and SA (8/68) group differences were observed (*d* range=- 0.09 to -0.16). No group-by-sex interactions were detected (all *q*>0.05). ![Figure 1.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/01/21/2021.01.05.20248768/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2021/01/21/2021.01.05.20248768/F1) Figure 1. Effect sizes for mega-analysis of group and conversion status. **A**. Overview of effect sizes for HC vs. CHR. The top row reflects the results of the overall generalized linear model. A deeper purple color indicates a greater effect of group (HC vs. CHR) in this region. We observed the greatest effects of group in cortical thickness measures. The second row indicates the pairwise effect sizes for HC vs. CHR, in regions that were statistically significant (*q*<0.05) in the overall comparison (top row of **A**.). Regions that were not statistically significant in the overall comparison are in gray. In comparison to HC, CHR exhibited lower cortical thickness across the cortex. Red color indicates that HC has a larger value in comparison to CHR for this region. **B**. Overview of effect sizes for HC vs. CHR-PS+ vs. CHR-PS-. The top row reflects the results of the overall generalized linear model. A deeper purple color indicates a greater effect of conversion status (HC vs. CHR-PS+ vs. CHR-PS-) in this region. The second and third rows indicate the pairwise effect sizes for HC vs. CHR-PS+ and CHR-PS- vs. CHR-PS+, respectively. Pairwise comparisons are presented in regions that were statistically significant (*q*<0.05) in the overall comparison (top row of **B**.). Regions that were not statistically significant in the overall comparison are in gray. Regions that CHR-PS+ had lower cortical thickness in comparison to HC and CHR-PS-, CHR-PS+ are highlighted in yellow. **C**. Bar graphs for regions in which CHR-PS+ (pink) had lower CT in comparison to CHR-PS- (purple) and HC (green). Group difference magnitudes remained similar when controlling for antipsychotic and psychotropic medication use (**eTable 9**). 91% of group differences remained statistically significant (*q*<0.05) in >90% of jackknife resampling iterations (eFigure 2), providing evidence that site effects were not driving results. Equivalence testing revealed that effect sizes for group differences were likely not meaningfully greater than our *a priori*-defined smallest effect size of interest in 3/56 measures (**eFigure 1, eTable 10**). ![Figure 2.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/01/21/2021.01.05.20248768/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2021/01/21/2021.01.05.20248768/F2) Figure 2. Age effects of regions that exhibited an effect of conversion status. HC are in green, CHR-PS+ are pink, and CHR-PS-are purple. Each graph has a line of best fit for the effect of age on the respective neuroimaging measures. Shading around the line indicates the standard error. The bars underneath the age plots reflect the derivative of the slope, i.e., the rate of change taking place at a particular age, scaled as a pseudo *t*-statistic, based on the posterior simulation. Age effects are plotted for A. fusiform cortical thickness, B. paracentral cortical thickness, and C. superior temporal cortical thickness. Mega- and meta-analyses of neuroimaging data prior to neuroCombat harmonization provided similar results (Spearman’s ρ>0.93; **eTable 11**). No sMRI measures were uniquely sensitive to psychosis-risk syndrome (see **Supplement** and **eTables 12-15** forresults). ### Thinner paracentral, fusiform, and superior temporal CT are associated with psychosis conversion Forty-eight structural neuroimaging measures (NCT=37) exhibited a significant overall effect of psychosis conversion status (*q*<0.05, **Figure 1B**; **eFigure 3** and **eTable 16**). The three groups differed from each other on four structural neuroimaging measures: in comparison to HC and CHR-PS-, CHR-PS+ exhibited thinner cortex in bilateral paracentral, right superior temporal, and left fusiform regions (**Figure 1C**, average *d* of four sMRI measures=-0.22). CHR-PS+ and CHR-PS- (vs. HC) exhibited thinner cortex in the left superior temporal and right fusiform regions;similar trends were observed for CHR-PS+ vs. CHR-PS-differences (*p*<0.08; Figure 1C). Results remained stable when length of follow-up period was included as a covariate. ![Figure 3.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/01/21/2021.01.05.20248768/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2021/01/21/2021.01.05.20248768/F3) Figure 3. Cortical thickness alterations in CHR-PS+, schizophrenia, and 22q.11DS **A**. Magnitude of cortical thickness alterations for the three groups. Whole-brain cortical thickness effect sizes were not reported for SZ and 22q.11DS in original publications; values shown are the hemispheres with the smallest effect size. Colored bars represent standard error. **B**. Spearman’s rank correlations between cortical thickness alterations in CHR-PS+ and individuals with schizophrenia (top) and 22q.11 DS with psychosis (bottom). Using minimal-effects testing, we observed that effect sizes for bilateral paracentral (L Z=-2.43, *p*=0.02; R Z=-1.86 *p*=0.06), right superior temporal (Z=-2.29, *p*=0.02) and left fusiform (Z=-2.00, *p*=0.05) in CHR-PS+ vs. HC were all significantly *greater* than 0.15, at least at trend level, underscoring the presence of notable group differences. In the remaining follow-up comparisons, CHR-PS+ and CHR-PS-differed from HC at *p*<0.05, but there were no significant differences between CHR-PS+ and CHR-PS- (29/48 comparisons; **eTable 16**). We observed no conversion status-by-sex interactions (all *q*>0.05). When we controlled for antipsychotic or psychotropic medication exposure, most overall psychosis conversion effects remained statistically significant (**eTable 17**). sMRI measures that differentiated the three groups showed an overall conversion effect at *q*<0.05 in all jackknife iterations, ruling out site effects as a potential confound (**eFigure 2**). No pairwise comparisons for structural neuroimaging measures that showed an overall conversion effect at *q*<0.05 were statistically equivalent to our predefined smallest effect size of interest (**eTable 18**). There were no statistically significant psychosis-risk syndrome-by-conversion status interactions (**eTable 19**). ### CHR-PS+ fail to show expected age-associations with fusiform and paracentral CT There were no significant group-by-age interactions in the 56 neuroimaging measures that differed between CHR and HC (*q*>0.05, **eTable 20**). In contrast, 2/4 sMRI measures in which all groups differed (HC vs. CHR-PS+ vs. CHR-PS-) displayed a statistically significant conversion status-by-age interaction. In left fusiform, age-CT associations differed between CHR-PS+ vs. HC (F=9.8, *p*=4.9e-05, *q*=5.9e-04) and CHR-PS- vs. HC (F=8.7, *p*=1.5e-04, *q*=9.1e-04, Figure 2A, left). Between ages 12-16, HC showed a stronger negative association between age and CT, compared to CHR-PS+ and CHR-PS-, suggesting a reduced rate of CT change in CHR-PS+ and CHR-PS-. Though the age-by-conversion status interaction was not statistically significant, a similar pattern emerged for the right fusiform CT (Figure 2A, right). Age-effects in the left paracentral CT differed between CHR-PS+ vs. HC (F=5.9, *p*=4.9e-03, *q*=0.02, Figure 2B, left). Between 12-15.8 years of age, HC showed a stronger negative association between age and CT in comparison to CHR-PS+. Age-CT associations did not differ between CHR-PS- vs. HC (F=0.2, *p*=0.69). This pattern of results was not observed for the right paracentral CT (Figure 2B, right). We found no significant age-by-conversion status interactions for the superior temporal CT (Figure 2C); all three groups showed negative CT-age associations. ### CT aberrations in CHR-PS+ resemble the pattern observed in SZ and 22q11DS with a psychotic disorder diagnosis, but not MDD **Figure 3A** provides a visual overview of CT alterations in CHR-PS+ relative to SZ and individuals with 22q11DS and a psychotic disorder. The pattern of baseline CT alterations in CHR-PS+ (CHR-PS+ vs. HC effect sizes) correlated significantly with that observed in SZ (ρ=0.35, *p**permute*=0.004, **Figure 3B** top) and individuals with 22q11DS and psychosis (ρ=0.43, *p**permute*=0.001, **Figure 3B** bottom). CT alterations in CHR did *not* correlate with those observed in MDD (CHR-PS+ ρ=-0.03) and slopes for CHR-PS+/SZ and CHR-PS+/MDD correlations significantly differed (Steiger’s Z=2.06, *p**permute*=0.008). No significant correlations were observed for SA (SZ ρ=-0.03; 22q.11DS ρ=-0.06, eFigure 5). Subcortical volume alterations in CHR-PS+ correlated with those observed in SZ (ρ=0.54, *p*=0.03) and a similar non-significant trend was observed for 22q11DS and psychosis (ρ=0.46, *p*=0.07). Associations for CHR-PS- (vs. HC) effect sizes were similar to those reported here (see **Supplement**). ## 4. DISCUSSION We conducted the largest multisite neuroimaging investigation to date in CHR participants, examining baseline structural neuroimaging measures associated with later transition to psychosis. We found widespread thinner cortex in CHR, consistent with previously-reported CT alterations in individuals with an established psychotic disorder. Compared to CHR-PS- and HC, at baseline, CHR-PS+ exhibited thinner cortex in bilateral paracentral, right fusiform and left superior temporal regions, with effect sizes significantly greater than what we considered to be meaningful *a priori*. Our results were robust to effects of medication exposure, sex, site, and length of follow-up period. Findings from this international effort suggest that conversion to psychosis amongst those at high risk is associated with thinner cortex at baseline. We identified widespread regional thinner cortex in CHR compared to HC. Thinner cortex has been observed in SZ, as well as other psychiatric disorders69,79,93–95. Importantly, the overall pattern of thinner cortex in CHR resembled that observed in SZ and individuals with 22q11DS and a psychotic disorder, but not in MDD. For CHR-PS+, correlations with SZ CT alterations were significantly greater than the relationship observed with MDD CT alterations. Taken together, our results suggest that the overall constellation of reported CT alterations resembles the regional pattern of alterations observed in SZ and genetic disorders associated with psychosis, and thus argues in favour of psychosis-specific thinner cortex in CHR We also observed thinner cortex specific to psychosis conversion in paracentral, superior temporal and fusiform CT; CHR-PS+ exhibit significantly lower CT than CHR-PS- and HC in these regions. Lower baseline CT and/or volume in these regions has previously been reported in CHR-PS+96,97 (data not used here). Furthermore, longitudinal CT decreases in these regions have been associated with transition to psychosis in CHR17,98,99. The magnitude of altered CT in CHR-PS+ in paracentral, superior temporal and fusiform regions was highly consistent with findings in SZ70,100–102 and lower fusiform and paracentral CT has been observed in non-clinical voice hearers103. Thus, the observed pattern of CT alterations in CHR-PS+ is consilient with morphometric disruptions across the wider psychosis spectrum. Consistent with previous CHR studies examining baseline neuroimaging associations with later conversion to psychosis96,104, we did not observe widespread subcortical volume or SA alterations associated with later psychosis transition. Taken together, these results suggest that CT reductions may be among the most widespread, robust, and specific morphometric changes associated with psychosis risk and conversion, compared to SA or subcortical volume. The neuroanatomic pattern of group differences and age-associated disruptions observed in CHR may provide important insights into mechanisms underlying increased risk for psychosis. Pre-clinical models 105,106 and recent genome-wide association studies107 suggest that genetic variants associated with SZ are linked to the regulation of neural progenitor cells during fetal development, while genetic markers associated with CT were associated with regulatory processes in adulthood. Thus, CT alterations may be the end result of maladaptive maturation-related mechanisms that occur during post-fetal development, including proliferation, synaptic pruning and/or myelination108–111. Thinner CT, particularly in early adolescence112,113 (**Figure 2**), could reflect abnormal synaptic plasticity or pruning, which have both been implicated in *in vitro* SZ models114. Although excessive synaptic pruning is one plausible explanation for thinner cortex associated with psychosis transition, recent evidence suggests that intracortical myelination and/or expression of myelin-related genes may be mechanisms driving cortical thinning115,116. To better understand neurobiological mechanisms underlying psychosis transition in CHR, investigations of concomitant measures of cortical thickness, macroscale white matter tracts, and intracortical myelination are necessary. Even if CT reductions in CHR were robust, effect sizes for between-group differences were nevertheless small-to-moderate and accounted for ∼1% of the variance in CHR-PS+ vs. CHR-PS-comparisons. The subtle nature of these morphometric alterations underscores the importance of adequate statistical power, achievable only through large-scale multi-site collaborations. Consistent with recent work showing that SZ polygenic risk scores only improved differentiation of CHR-PS+ and HC (not CHR-PS+ from CHR-PS-)117, we anticipate that baseline, univariate sMRI metrics will to have a similar impact on psychosis risk prediction algorithms. Given the logistic and financial challenges that MRI brings, the use of MRI metrics in isolation may not be feasible or useful for psychosis risk prediction. A viable solution may be to adopt sequential assessment frameworks, as recently implemented34. Alternatively, sMRI alterations may be a better predictor of general psychopathology, and would be better suited for transdiagnostic risk prediction models118,119. ### Limitations One limitation common to multi-site studies is that data were collected from multiple scanners, although leave-one-out analyses suggest that site effects were not prominent. Secondly, this initial study focused on baseline cross-sectional data, and did not investigate progressive sMRI changes (trajectories) associated with psychosis conversion, as identified in prior work17,19,38,97–99,120–123. This is a future goal of the ENIGMA CHR Working Group, now that feasibility of this collaboration has been established. ## Conclusions and Future Directions In the largest study of brain abnormalities in CHR to date, we found robust evidence for a subtle, widespread pattern of CT alterations, consistent with observations in psychosis. The specificity of these alterations to CT - as well as age-associated deviations in regions sensitive to psychosis conversion - may point to abnormal development processes. These findings also point to age ranges (i.e., early adolescence) when morphometric abnormalities in CHR might be greatest. ## Supporting information supplemental text & tables [[supplements/248768_file03.pdf]](pending:yes) ## Data Availability All code used in this project is publicly available here: [https://osf.io/p9ntr/](https://osf.io/p9ntr/) Due to individual site IRB restrictions, data is not publicly available. Please contact the ENIGMA CHR Working Group co-chairs if you are interested in joining and participating in the working group. Then you will be able to submit secondary data proposals. [https://osf.io/p9ntr/](https://osf.io/p9ntr/) ## Table and Figure Legends **Table 1.** Demographic descriptives for every site in HC and CHR, and CHR-PS+ and CHR-PS- The Ns for CHR-PS+ and CHR-PS- do not always sum to the sample CHR N because most sites lose individuals to follow-up (CHR-UNK). ## Acknowledgements BHE (Bjørn H. Ebdrup) is part of the Advisory Board of Eli Lilly Denmark A/S, Janssen-Cilag, Lundbeck Pharma A/S, and Takeda Pharmaceutical Company Ltd; and has received lecture fees from Bristol-Myers Squibb, Otsuka Pharma Scandinavia AB, Eli Lilly Company, Boehringer Ingelheim Danmark A/S, and Lundbeck Pharma A/S. DH (Dennis Hernaus) has received financial compensation as a consultant for P1vital Produicts Ltd. F-RM (Francisco Reyes-Madrigal) has received compensation as a speaker for Janssen (Johnson & Johnson). All reported activities were unrelated to the work presented in this manuscript. ## Footnotes * We corrected the name for Montserrat Dolz * Received January 5, 2021. * Revision received January 21, 2021. * Accepted January 21, 2021. * © 2021, Posted by Cold Spring Harbor Laboratory The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. ## References 1. 1.Miller TJ, McGlashan TH, Rosen JL, et al. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull. 2003;29(4):703. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/oxfordjournals.schbul.a007040&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14989408&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000188873800007&link_type=ISI) 2. 2.Yung AR, McGorry PD, McFarlane CA, Jackson HJ, Patton GC, Rakkar A. Monitoring and care of young people at incipient risk of psychosis. Schizophr Bull. 1996;22(2):283–303. doi:10.1093/schbul/22.2.283 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/22.2.283&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8782287&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1996UP86900009&link_type=ISI) 3. 3.Yung AR, Phillips LJ, McGorry PD, et al. Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry Suppl. 1998;172(33):14–20. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9764121&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000074221200004&link_type=ISI) 4. 4.Fusar-Poli P, Bonoldi I, Yung AR, et al. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):220–229. doi:10.1001/archgenpsychiatry.2011.1472 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2011.1472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22393215&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000301066200002&link_type=ISI) 5. 5.Simon AE, Umbricht D. High remission rates from an initial ultra-high risk state for psychosis. Schizophr Res. 2010;116(2-3):168–172. doi:10.1016/j.schres.2009.10.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2009.10.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19854621&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000274946000009&link_type=ISI) 6. 6.Ruhrmann S, Schultze-Lutter F, Salokangas RKR, et al. Prediction of psychosis in adolescents and young adults at high risk: results from the prospective European prediction of psychosis study. Arch Gen Psychiatry. 2010;67(3):241–251. doi:10.1001/archgenpsychiatry.2009.206 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2009.206&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20194824&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000275042900004&link_type=ISI) 7. 7.Cannon TD, Cadenhead K, Cornblatt B, et al. Prediction of Psychosis in Youth at High Clinical Risk: A Multisite Longitudinal Study in North America. Arch Gen Psychiatry. 2008;65(1):28. doi:10.1001/archgenpsychiatry.2007.3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2007.3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18180426&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000252176400005&link_type=ISI) 8. 8.Yung AR, Phillips LJ, Yuen HP, et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res. 2003;60(1):21–32. doi:10.1016/s0920-9964(02)00167-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0920-9964(02)00167-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12505135&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000181043300004&link_type=ISI) 9. 9.Cornblatt BA, Lencz T, Smith CW, Correll CU, Auther AM, Nakayama E. The schizophrenia prodrome revisited: a neurodevelopmental perspective. Schizophr Bull. 2003;29(4):633–651. doi:10.1093/oxfordjournals.schbul.a007036 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/oxfordjournals.schbul.a007036&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14989404&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000188873800003&link_type=ISI) 10. 10.Zhang T, Li H, Tang Y, et al. Validating the Predictive Accuracy of the NAPLS-2 Psychosis Risk Calculator in a Clinical High-Risk Sample from the SHARP (Shanghai At Risk for Psychosis) Program. Am J Psychiatry. 2018;175(9):906–908. doi:10.1176/appi.ajp.2018.18010036 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2018.18010036&link_type=DOI) 11. 11.Tor J, Dolz M, Sintes A, et al. Clinical high risk for psychosis in children and adolescents: a systematic review. Eur Child Adolesc Psychiatry. 2018;27(6):683–700. doi:10.1007/s00787-017-1046-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00787-017-1046-3&link_type=DOI) 12. 12.Hartmann JA, Yuen HP, McGorry PD, et al. Declining transition rates to psychotic disorder in “ultra-high risk” clients: Investigation of a dilution effect. Schizophr Res. 2016;170(1):130–136. doi:10.1016/j.schres.2015.11.026 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2015.11.026&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26673973&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 13. 13.Fusar-Poli P, Palombini E, Davies C, et al. Why transition risk to psychosis is not declining at the OASIS ultra high risk service: The hidden role of stable pretest risk enrichment. Schizophr Res. 2018;192:385–390. doi:10.1016/j.schres.2017.06.015 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2017.06.015&link_type=DOI) 14. 14.Bakker G, Caan MWA, Vingerhoets WAM, et al. Cortical Morphology Differences in Subjects at Increased Vulnerability for Developing a Psychotic Disorder: A Comparison between Subjects with Ultra-High Risk and 22q11.2 Deletion Syndrome. PLOS ONE. 2016;11(11):e0159928. doi:10.1371/journal.pone.0159928 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0159928&link_type=DOI) 15. 15.Zikidi K, Gajwani R, Gross J, et al. Grey-matter abnormalities in clinical high-risk participants for psychosis. Schizophr Res. Published online November 15, 2019. doi:10.1016/j.schres.2019.08.034 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2019.08.034&link_type=DOI) 16. 16.Velakoulis D, Wood SJ, Wong MTH, et al. Hippocampal and Amygdala Volumes According to Psychosis Stage and Diagnosis: A Magnetic Resonance Imaging Study of Chronic Schizophrenia, First-Episode Psychosis, and Ultra–High-Risk Individuals. Arch Gen Psychiatry. 2006;63(2):139. doi:10.1001/archpsyc.63.2.139 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archpsyc.63.2.139&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16461856&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000235150900004&link_type=ISI) 17. 17.Sun D, Phillips L, Velakoulis D, et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophrenia Research. 2009;108(1-3):85–92. doi:10.1016/j.schres.2008.11.026 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2008.11.026&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19138834&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000264506500011&link_type=ISI) 18. 18.Fornito A, Yung AR, Wood SJ, et al. Anatomic Abnormalities of the Anterior Cingulate Cortex Before Psychosis Onset: An MRI Study of Ultra-High-Risk Individuals. Biological Psychiatry. 2008;64(9):758–765. doi:10.1016/j.biopsych.2008.05.032 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2008.05.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18639238&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000260365300004&link_type=ISI) 19. 19.Takahashi T, Wood SJ, Yung AR, et al. Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research. 2009;111(1-3):94–102. doi:10.1016/j.schres.2009.03.024 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2009.03.024&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19349150&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000266745900013&link_type=ISI) 20. 20.Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG. Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatry Res Neuroimaging. 2019;289:26–36. doi:10.1016/j.pscychresns.2019.05.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pscychresns.2019.05.002&link_type=DOI) 21. 21.Kwak YB, Kim M, Cho KIK, Lee J, Lee TY, Kwon JS. Reduced cortical thickness in subjects at clinical high risk for psychosis and clinical attributes. Aust N Z J Psychiatry. 2019;53(3):219–227. doi:10.1177/0004867418807299 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0004867418807299&link_type=DOI) 22. 22.Yassin W, Nakatani H, Zhu Y, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry. 2020;10(1):278. doi:10.1038/s41398-020-00965-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41398-020-00965-5&link_type=DOI) 23. 23.Nakamura M, Takahashi T, Takayanagi Y, et al. Surface morphology of the orbitofrontal cortex in individuals at risk of psychosis: a multicenter study. Eur Arch Psychiatry Clin Neurosci. 2019;269(4):397–406. doi:10.1007/s00406-018-0890-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00406-018-0890-6&link_type=DOI) 24. 24.Sasabayashi D, Takayanagi Y, Takahashi T, et al. Increased Occipital Gyrification and Development of Psychotic Disorders in Individuals With an At-Risk Mental State: A Multicenter Study. Biol Psychiatry. 2017;82(10):737–745. doi:10.1016/j.biopsych.2017.05.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2017.05.018&link_type=DOI) 25. 25.Iwashiro N, Suga M, Takano Y, et al. Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia. Schizophr Res. 2012;137(1-3):124–131. doi:10.1016/j.schres.2012.02.024 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2012.02.024&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22425035&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 26. 26.Nakamura K, Takahashi T, Nemoto K, et al. Gray matter changes in subjects at high risk for developing psychosis and first-episode schizophrenia: a voxel-based structural MRI study. Front Psychiatry. 2013;4:16. doi:10.3389/fpsyt.2013.00016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fpsyt.2013.00016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23508623&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 27. 27.Takayanagi Y, Kulason S, Sasabayashi D, et al. Reduced Thickness of the Anterior Cingulate Cortex in Individuals With an At-Risk Mental State Who Later Develop Psychosis. Schizophr Bull. 2017;43(4):907–913. doi:10.1093/schbul/sbw167 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbw167&link_type=DOI) 28. 28.Takahashi T, Tsugawa S, Nakajima S, et al. Thalamic and striato-pallidal volumes in schizophrenia patients and individuals at risk for psychosis: A multi-atlas segmentation study. Schizophr Res. Published online May 21, 2020. doi:10.1016/j.schres.2020.04.016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2020.04.016&link_type=DOI) 29. 29.Buechler R, Wotruba D, Michels L, et al. Cortical Volume Differences in Subjects at Risk for Psychosis are Driven by Surface Area. Schizophr Bull. Published online May 28, 2020. doi:10.1093/schbul/sbaa066 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbaa066&link_type=DOI) 30. 30.Chung Y, Allswede D, Addington J, et al. Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort. Neuroimage Clin. 2019;23:101862. doi:10.1016/j.nicl.2019.101862 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nicl.2019.101862&link_type=DOI) 31. 31.Chung Y, Addington J, Bearden CE, et al. Use of Machine Learning to Determine Deviance in Neuroanatomical Maturity Associated With Future Psychosis in Youths at Clinically High Risk. JAMA Psychiatry. 2018;75(9):960–968. doi:10.1001/jamapsychiatry.2018.1543 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2018.1543&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29971330&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 32. 32.Koutsouleris N, Meisenzahl EM, Davatzikos C, et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66(7):700–712. doi:10.1001/archgenpsychiatry.2009.62 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2009.62&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19581561&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000267720200003&link_type=ISI) 33. 33.Koutsouleris N, Riecher-Rössler A, Meisenzahl EM, et al. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophr Bull. 2015;41(2):471–482. doi:10.1093/schbul/sbu078 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbu078&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24914177&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 34. 34.Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, et al. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. JAMA Psychiatry. 2018;75(11):1156–1172. doi:10.1001/jamapsychiatry.2018.2165 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2018.2165&link_type=DOI) 35. 35.Klauser P, Zhou J, Lim JKW, et al. Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study. Schizophr Bull. 2015;41(6):1285–1293. doi:10.1093/schbul/sbv012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbv012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25745033&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 36. 36.Ziermans TB, Durston S, Sprong M, et al. No evidence for structural brain changes in young adolescents at ultra high risk for psychosis. Schizophr Res. 2009;112(1-3):1–6. doi:10.1016/j.schres.2009.04.013 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2009.04.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19419840&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000268153900001&link_type=ISI) 37. 37.Takahashi T, Yücel M, Yung AR, et al. Adhesio interthalamica in individuals at high-risk for developing psychosis and patients with psychotic disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1708–1714. doi:10.1016/j.pnpbp.2008.07.007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pnpbp.2008.07.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18675876&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 38. 38.Cannon TD, Chung Y, He G, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77(2):147–157. doi:10.1016/j.biopsych.2014.05.023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2014.05.023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25034946&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000346386600010&link_type=ISI) 39. 39.Sakuma A, Obara C, Katsura M, et al. No regional gray matter volume reduction observed in young Japanese people at ultra-high risk for psychosis: A voxel-based morphometry study. Asian J Psychiatr. 2018;37:167–171. doi:10.1016/j.ajp.2018.09.009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ajp.2018.09.009&link_type=DOI) 40. 40.Fusar-Poli P, Borgwardt S, Crescini A, et al. Neuroanatomy of vulnerability to psychosis: a voxel-based meta-analysis. Neurosci Biobehav Rev. 2011;35(5):1175–1185. doi:10.1016/j.neubiorev.2010.12.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neubiorev.2010.12.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21168439&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 41. 41.Mechelli A, Riecher-Rössler A, Meisenzahl EM, et al. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Arch Gen Psychiatry. 2011;68(5):489–495. doi:10.1001/archgenpsychiatry.2011.42 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2011.42&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21536978&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000290114500009&link_type=ISI) 42. 42.Farris MS, Devoe DJ, Addington J. Attrition rates in trials for adolescents and young adults at clinical high-risk for psychosis: A systematic review and meta-analysis. Early Interv Psychiatry. 2020;14(5):515–527. doi:10.1111/eip.12864 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/eip.12864&link_type=DOI) 43. 43.Schlosser DA, Jacobson S, Chen Q, et al. Recovery from an at-risk state: clinical and functional outcomes of putatively prodromal youth who do not develop psychosis. Schizophr Bull. 2012;38(6):1225–1233. doi:10.1093/schbul/sbr098 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbr098&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21825282&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000310944500018&link_type=ISI) 44. 44.Rutigliano G, Valmaggia L, Landi P, et al. Persistence or recurrence of non-psychotic comorbid mental disorders associated with 6-year poor functional outcomes in patients at ultra high risk for psychosis. J Affect Disord. 2016;203:101–110. doi:10.1016/j.jad.2016.05.053 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2016.05.053&link_type=DOI) 45. 45.Simon AE, Borgwardt S, Riecher-Rössler A, Velthorst E, de Haan L, Fusar-Poli P. Moving beyond transition outcomes: meta-analysis of remission rates in individuals at high clinical risk for psychosis. Psychiatry Res. 2013;209(3):266–272. doi:10.1016/j.psychres.2013.03.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psychres.2013.03.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23871169&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 46. 46.Button KS, Ioannidis JPA, Mokrysz C, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–376. doi:10.1038/nrn3475 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nrn3475&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23571845&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 47. 47.Consideration of Sample Size in Neuroscience Studies. J Neurosci. 2020;40(21):4076–4077. doi:10.1523/JNEUROSCI.0866-20.2020 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiI0MC8yMS80MDc2IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMjEvMjAyMS4wMS4wNS4yMDI0ODc2OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 48. 48.Addington J, Cadenhead KS, Cornblatt BA, et al. North American Prodrome Longitudinal Study (NAPLS 2): Overview and recruitment. Schizophrenia Research. 2012;142(1):77–82. doi:10.1016/j.schres.2012.09.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2012.09.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23043872&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 49. 49.Addington J, Liu L, Brummitt K, et al. North American Prodrome Longitudinal Study (NAPLS 3): Methods and baseline description. Schizophrenia Research. Published online April 18, 2020. doi:10.1016/j.schres.2020.04.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2020.04.010&link_type=DOI) 50. 50.Tognin S, van Hell HH, Merritt K, et al. Towards Precision Medicine in Psychosis: Benefits and Challenges of Multimodal Multicenter Studies-PSYSCAN: Translating Neuroimaging Findings From Research into Clinical Practice. Schizophr Bull. 2020;46(2):432–441. doi:10.1093/schbul/sbz067 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbz067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31424555&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 51. 51.Jones P, Rodgers B, Murray R, Marmot M. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet. 1994;344(8934):1398–1402. doi:10.1016/s0140-6736(94)90569-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(94)90569-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7968076&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1994PR78600010&link_type=ISI) 52. 52.Lauronen E, Miettunen J, Veijola J, Karhu M, Jones PB, Isohanni M. Outcome and its predictors in schizophrenia within the Northern Finland 1966 Birth Cohort. Eur Psychiatry. 2007;22(2):129–136. doi:10.1016/j.eurpsy.2006.07.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eurpsy.2006.07.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17129711&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 53. 53.Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience. 1999;2(10):861–863. doi:10.1038/13158 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/13158&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10491603&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000083883200008&link_type=ISI) 54. 54.Raznahan A, Shaw P, Lalonde F, et al. How Does Your Cortex Grow? Journal of Neuroscience. 2011;31(19):7174–7177. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIzMS8xOS83MTc0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMjEvMjAyMS4wMS4wNS4yMDI0ODc2OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 55. 55.Sowell ER. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. Journal of Neuroscience. 2004;24(38):8223–8231. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIyNC8zOC84MjIzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMjEvMjAyMS4wMS4wNS4yMDI0ODc2OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 56. 56.Shaw P, Lerch J, Greenstein D, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(5):540–549. doi:10.1001/archpsyc.63.5.540 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archpsyc.63.5.540&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16651511&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000237215800008&link_type=ISI) 57. 57. van Soelen Ilc, Brouwer RM, van Baal Gcm, et al. Genetic influences on thinning of the cerebral cortex during development. Neuroimage. 2012;59(4):3871–3880. doi:10.1016/j.neuroimage.2011.11.044 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroimage.2011.11.044&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22155028&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000301090100080&link_type=ISI) 58. 58.Vijayakumar N, Allen NB, Youssef G, et al. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum Brain Mapp. 2016;37(6):2027–2038. doi:10.1002/hbm.23154 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/hbm.23154&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26946457&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 59. 59.Tamnes CK, Herting MM, Goddings A-L, et al. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. J Neurosci. 2017;37(12):3402–3412. doi:10.1523/JNEUROSCI.3302-16.2017 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIzNy8xMi8zNDAyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMjEvMjAyMS4wMS4wNS4yMDI0ODc2OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 60. 60.Mills KL, Goddings A-L, Herting MM, et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016;141:273–281. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroimage.2016.07.044&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27453157&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 61. 61.Mills KL, Goddings A-L, Clasen LS, Giedd JN, Blakemore S-J. The developmental mismatch in structural brain maturation during adolescence. Dev Neurosci. 2014;36(3-4):147–160. doi:10.1159/000362328 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000362328&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24993606&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 62. 62.Mills KL, Tamnes CK. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci. 2014;9:172–190. doi:10.1016/j.dcn.2014.04.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.dcn.2014.04.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24879112&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 63. 63.Mills KL, Lalonde F, Clasen LS, Giedd JN, Blakemore S-J. Developmental changes in the structure of the social brain in late childhood and adolescence. Soc Cogn Affect Neurosci. 2014;9(1):123–131. doi:10.1093/scan/nss113 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/scan/nss113&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23051898&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 64. 64.Bridgwater M, Bachman P, Tervo-Clemmens B, et al. Developmental influences on symptom expression in antipsychotic-naïve first-episode psychosis. Psychol Med. Published online October 6, 2020:1–12. doi:10.1017/S0033291720003463 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291720003463&link_type=DOI) 65. 65.Schimmelmann BG, Michel C, Martz-Irngartinger A, Linder C, Schultze-Lutter F. Age matters in the prevalence and clinical significance of ultra-high-risk for psychosis symptoms and criteria in the general population: Findings from the BEAR and BEARS-kid studies. World Psychiatry. 2015;14(2):189–197. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.20216&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26043337&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 66. 66.Gerstenberg M, Theodoridou A, Traber-Walker N, et al. Adolescents and adults at clinical high-risk for psychosis: age-related differences in attenuated positive symptoms syndrome prevalence and entanglement with basic symptoms. Psychol Med. 2016;46(5):1069–1078. doi:10.1017/S0033291715002627 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291715002627&link_type=DOI) 67. 67.Schultze-Lutter F, Hubl D, Schimmelmann BG, Michel C. Age effect on prevalence of ultra-high risk for psychosis symptoms: replication in a clinical sample of an early detection of psychosis service. Eur Child Adolesc Psychiatry. 2017;26(11):1401–1405. doi:10.1007/s00787-017-0994-y [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00787-017-0994-y&link_type=DOI) 68. 68.Schultze-Lutter F, Schimmelmann BG, Flückiger R, Michel C. Effects of age and sex on clinical high-risk for psychosis in the community. World J Psychiatry. 2020;10(5):101–124. doi:10.5498/wjp.v10.i5.101 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5498/wjp.v10.i5.101&link_type=DOI) 69. 69. van Erp Tgm, Hibar DP, Rasmussen JM, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry. 2016;21(4):547–553. doi:10.1038/mp.2015.63 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/mp.2015.63&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26033243&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 70. 70. van Erp Tgm, Walton E, Hibar DP, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84(9):644–654. doi:10.1016/j.biopsych.2018.04.023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2018.04.023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29960671&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 71. 71.Okada N, Fukunaga M, Yamashita F, et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry. 2016;21(10):1460–1466. doi:10.1038/mp.2015.209 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/mp.2015.209&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26782053&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 72. 72.Ching CRK, Gutman BA, Sun D, et al. Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness. AJP. Published online February 12, 2020:appi.ajp.2019.1. doi:10.1176/appi.ajp.2019.19060583 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2019.19060583&link_type=DOI) 73. 73.Sun D, Ching CRK, Lin A, et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. Mol Psychiatry. Published online June 13, 2018. doi:10.1038/s41380-018-0078-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41380-018-0078-5&link_type=DOI) 74. 74.World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi:10.1001/jama.2013.281053 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2013.281053&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24141714&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000327404400028&link_type=ISI) 75. 75.Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/nimg.1998.0395&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9931268&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078608900001&link_type=ISI) 76. 76.Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9(2):195–207. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/nimg.1998.0396&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9931269&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078608900002&link_type=ISI) 77. 77.Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050–11055. doi:10.1073/pnas.200033797 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTcvMjAvMTEwNTAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wMS8yMS8yMDIxLjAxLjA1LjIwMjQ4NzY4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 78. 78.Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–355. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0896-6273(02)00569-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11832223&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000173643200006&link_type=ISI) 79. 79.Hibar DP, Westlye LT, Doan NT, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23(4):932–942. doi:10.1038/mp.2017.73 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/mp.2017.73&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28461699&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 80. 80.van Rooij D, Anagnostou E, Arango C, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry. 2018;175(4):359–369. doi:10.1176/appi.ajp.2017.17010100 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2017.17010100&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29145754&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 81. 81.Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–319. 82. 82.Boedhoe PSW, Schmaal L, Abe Y, et al. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. Am J Psychiatry. 2018;175(5):453–462. doi:10.1176/appi.ajp.2017.17050485 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2017.17050485&link_type=DOI) 83. 83.Radua J, Vieta E, Shinohara R, et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage. 2020;218:116956. doi:10.1016/j.neuroimage.2020.116956 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroimage.2020.116956&link_type=DOI) 84. 84.Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–127. doi:10.1093/biostatistics/kxj037 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/biostatistics/kxj037&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16632515&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000242715400008&link_type=ISI) 85. 85.Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995;57(1):289–300. doi:[https://doi.org/10.1111/j.2517-6161.1995.tb02031.x](https://doi.org/10.1111/j.2517-6161.1995.tb02031.x) [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2307/2346101&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:A1995QE4&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995QE45300017&link_type=ISI) 86. 86.Efron B, Stein C. The Jackknife Estimate of Variance. Ann Statist. 1981;9(3):586–596. doi:10.1214/aos/1176345462 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1214/aos/1176345462&link_type=DOI) 87. 87.Efron B. The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104); 1982. 88. 88.Lakens D. Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Soc Psychol Personal Sci. 2017;8(4):355–362. doi:10.1177/1948550617697177 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1948550617697177&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28736600&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 89. 89.Hastie T, Tibshirani R. Generalized Additive Models. Statist Sci. 1986;1(3):297–310. doi:10.1214/ss/1177013604 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1214/ss/1177013604&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9707142&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 90. 90.Hastie T, Tibshirani R. Generalized Additive Models. CRC Press; 1990. 91. 91.Jalbrzikowski M, Larsen B, Hallquist MN, Foran W, Calabro F, Luna B. Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression. Biol Psychiatry. 2017;82(7):511–521. doi:10.1016/j.biopsych.2017.01.008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2017.01.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28274468&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 92. 92.Marek S, Hwang K, Foran W, Hallquist MN, Luna B. The Contribution of Network Organization and Integration to the Development of Cognitive Control. PLoS Biol. 2015;13(12):e1002328. doi:10.1371/journal.pbio.1002328 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pbio.1002328&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26713863&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 93. 93.Schmaal L, Veltman DJ, van Erp Tgm, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21(6):806–812. doi:10.1038/mp.2015.69 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/mp.2015.69&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26122586&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 94. 94.Rimol LM, Nesvåg R, Hagler DJ, et al. Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry. 2012;71(6):552–560. doi:10.1016/j.biopsych.2011.11.026 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2011.11.026&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22281121&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000300789100016&link_type=ISI) 95. 95.Writing Committee for the Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Bipolar Disorder, et al. Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry. Published online August 26, 2020. doi:10.1001/jamapsychiatry.2020.2694 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2020.2694&link_type=DOI) 96. 96.Del Re EC, Stone WS, Bouix S, et al. Baseline Cortical Thickness Reductions in Clinical High Risk for Psychosis: Brain Regions Associated with Conversion to Psychosis Versus Non-Conversion as Assessed at One-Year Follow-Up in the Shanghai-At-Risk-for-Psychosis (SHARP) Study. Schizophr Bull. Published online September 14, 2020. doi:10.1093/schbul/sbaa127 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbaa127&link_type=DOI) 97. 97.Borgwardt SJ, McGuire PK, Aston J, et al. Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. Br J Psychiatry Suppl. 2007;51:s69–75. doi:10.1192/bjp.191.51.s69 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1192/bjp.191.51.s69&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18055941&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 98. 98.Pantelis C, Velakoulis D, Mcgorry PD, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lance t. 2003;361(9354):281–288. 99. 99.Takahashi T, Wood SJ, Yung AR, et al. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry. 2009;66(4):366–376. doi:10.1001/archgenpsychiatry.2009.12 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2009.12&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19349306&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000264924400003&link_type=ISI) 100.100.Lee CU, Shenton ME, Salisbury DF, et al. Fusiform gyrus volume reduction in first-episode schizophrenia: a magnetic resonance imaging study. Arch Gen Psychiatry. 2002;59(9):775–781. doi:10.1001/archpsyc.59.9.775 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archpsyc.59.9.775&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12215076&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000177935300001&link_type=ISI) 101.101.Onitsuka T, Shenton ME, Kasai K, et al. Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch Gen Psychiatry. 2003;60(4):349–355. doi:10.1001/archpsyc.60.4.349 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archpsyc.60.4.349&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12695311&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000182096000003&link_type=ISI) 102.102.Takahashi T, Suzuki M, Zhou S-Y, et al. Temporal lobe gray matter in schizophrenia spectrum: a volumetric MRI study of the fusiform gyrus, parahippocampal gyrus, and middle and inferior temporal gyri. Schizophr Res. 2006;87(1-3):116–126. doi:10.1016/j.schres.2006.04.023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2006.04.023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16750349&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000241310100015&link_type=ISI) 103.103.van Lutterveld R, van den Heuvel MP, Diederen KMJ, et al. Cortical thickness in individuals with non-clinical and clinical psychotic symptoms. Brain. 2014;137(Pt 10):2664–2669. doi:10.1093/brain/awu167 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/brain/awu167&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24951640&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 104.104.Sasabayashi D, Takayanagi Y, Takahashi T, et al. Subcortical Brain Volume Abnormalities in Individuals With an At-risk Mental State. Schizophr Bull. 2020;46(4):834–845. doi:10.1093/schbul/sbaa011 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbaa011&link_type=DOI) 105.105.Pontious A, Kowalczyk T, Englund C, Hevner RF. Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci. 2008;30(1-3):24–32. doi:10.1159/000109848 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000109848&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18075251&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000251661200003&link_type=ISI) 106.106.Rakic P. Specification of cerebral cortical areas. Science. 1988;241(4862):170–176. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIyNDEvNDg2Mi8xNzAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wMS8yMS8yMDIxLjAxLjA1LjIwMjQ4NzY4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 107.107.Grasby KL, Jahanshad N, Painter JN, et al. The genetic architecture of the human cerebral cortex. Science. 2020;367(6484). doi:10.1126/science.aay6690 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjE3OiIzNjcvNjQ4NC9lYWF5NjY5MCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzAxLzIxLzIwMjEuMDEuMDUuMjAyNDg3NjguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 108.108.Huttenlocher PR. Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 1979;163(2):195–205. doi:10.1016/0006-8993(79)90349-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0006-8993(79)90349-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=427544&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1979GM38000002&link_type=ISI) 109.109.Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232(4747):232–235. doi:10.1126/science.3952506 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIyMzIvNDc0Ny8yMzIiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wMS8yMS8yMDIxLjAxLjA1LjIwMjQ4NzY4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 110.110.Petanjek Z, Judas M, Kostović I, Uylings HBM. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex. 2008;18(4):915–929. doi:10.1093/cercor/bhm124 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cercor/bhm124&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17652464&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000254007900018&link_type=ISI) 111.111.Natu VS, Gomez J, Barnett M, et al. Apparent thinning of human visual cortex during childhood is associated with myelination. Proc Natl Acad Sci U S A. 2019;116(41):20750–20759. doi:10.1073/pnas.1904931116 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTE2LzQxLzIwNzUwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDEvMjEvMjAyMS4wMS4wNS4yMDI0ODc2OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 112.112.Pantelis C, Yücel M, Wood SJ, et al. Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull. 2005;31(3):672–696. doi:10.1093/schbul/sbi034 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbi034&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16020551&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000231789200008&link_type=ISI) 113.113.Sun D, Stuart GW, Jenkinson M, et al. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry. 2009;14(10):976–986. doi:10.1038/mp.2008.34 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/mp.2008.34&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18607377&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000270331000008&link_type=ISI) 114.114.Sellgren CM, Gracias J, Watmuff B, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22(3):374–385. doi:10.1038/s41593-018-0334-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41593-018-0334-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30718903&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 115.115.Whitaker KJ, Vértes PE, Romero-Garcia R, et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci U S A. 2016;113(32):9105–9110. doi:10.1073/pnas.1601745113 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTEzLzMyLzkxMDUiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wMS8yMS8yMDIxLjAxLjA1LjIwMjQ4NzY4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 116.116.Parker N, Patel Y, Jackowski AP, et al. Assessment of Neurobiological Mechanisms of Cortical Thinning During Childhood and Adolescence and Their Implications for Psychiatric Disorders. JAMA Psychiatry. Published online June 17, 2020. doi:10.1001/jamapsychiatry.2020.1495 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2020.1495&link_type=DOI) 117.117.Perkins DO, Olde Loohuis L, Barbee J, et al. Polygenic Risk Score Contribution to Psychosis Prediction in a Target Population of Persons at Clinical High Risk. Am J Psychiatry. 2020;177(2):155–163. doi:10.1176/appi.ajp.2019.18060721 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2019.18060721&link_type=DOI) 118.118.1. Baune BT Mei C, Nelson B, Hartmann J, Spooner R, McGorry PD. Chapter 4 - Transdiagnostic early intervention, prevention, and prediction in psychiatry. In: Baune BT, ed. Personalized Psychiatry. Academic Press; 2020:27–37. doi:10.1016/B978-0-12-813176-3.00004-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/B978-0-12-813176-3.00004-3&link_type=DOI) 119.119.McGorry PD, Hartmann JA, Spooner R, Nelson B. Beyond the “at risk mental state” concept: transitioning to transdiagnostic psychiatry. World Psychiatry. 2018;17(2):133–142. doi:10.1002/wps.20514 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.20514&link_type=DOI) 120.120.Dazzan P, Soulsby B, Mechelli A, et al. Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophr Bull. 2012;38(5):1083–1091. doi:10.1093/schbul/sbr035 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbr035&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21518921&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000309027900026&link_type=ISI) 121.121.Ziermans TB, Schothorst PF, Schnack HG, et al. Progressive structural brain changes during development of psychosis. Schizophr Bull. 2012;38(3):519–530. doi:10.1093/schbul/sbq113 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbq113&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20929968&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000303169000020&link_type=ISI) 122.122.Walter A, Studerus E, Smieskova R, et al. Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophr Res. 2012;142(1-3):217–222. doi:10.1016/j.schres.2012.10.013 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2012.10.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23123134&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F01%2F21%2F2021.01.05.20248768.atom) 123.123.Valli I, Marquand AF, Mechelli A, et al. Identifying Individuals at High Risk of Psychosis: Predictive Utility of Support Vector Machine using Structural and Functional MRI Data. Front Psychiatry. 2016;7:52. doi:10.3389/fpsyt.2016.00052 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fpsyt.2016.00052&link_type=DOI)