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 2 

Abstract 23 

Background: Substantial research is underway to develop next-generation interventions that 24 

address current malaria control challenges. As there is limited testing in their early development, 25 

it is difficult to predefine intervention properties such as efficacy that achieve target health goals, 26 

and therefore challenging to prioritize selection of novel candidate interventions. Here, we present 27 

a quantitative approach to guide intervention development using mathematical models of malaria 28 

dynamics coupled with machine learning. Our analysis identifies requirements of efficacy, 29 

coverage, and duration of effect for five novel malaria interventions to achieve targeted reductions 30 

in malaria prevalence. This study highlights the role of mathematical models to support 31 

intervention development.   32 

Methods: A mathematical model of malaria transmission dynamics is used to simulate 33 

deployment and predict potential impact of new malaria interventions by considering operational, 34 

health-system, population, and disease characteristics. Our method relies on consultation with 35 

product development stakeholders to define the putative space of novel intervention specifications. 36 

We couple the disease model with machine learning to search this multi-dimensional space and 37 

efficiently identify optimal intervention properties that achieve specified health goals. We 38 

demonstrate the power of our approach by application to five malaria interventions in 39 

development.  40 

Results: Aiming for malaria prevalence reduction, we identify and quantify key determinants of 41 

intervention impact along with their minimal properties required to achieve the desired health 42 

goals. While coverage is generally identified as the largest driver of impact, higher efficacy, longer 43 

protection duration or multiple deployments per year are needed to increase prevalence reduction. 44 

We show that the efficacy and duration needs depend on the biological action of the interventions. 45 
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Interventions on multiple parasite or vector targets, as well as combinations the new interventions 46 

with drug treatment, lead to significant burden reductions and lower efficacy or duration 47 

requirements.  48 

Conclusions: Our approach uses disease dynamic models and machine learning to support 49 

decision-making and resource investment, facilitating development of new malaria interventions. 50 

By evaluating the intervention capabilities in relation to the targeted health goal, our analysis 51 

allows prioritization of interventions and of their specifications from an early stage in 52 

development, and subsequent investments to be channeled cost-effectively towards impact 53 

maximization. Although we focus on five malaria interventions, the analysis is generalizable to 54 

other new malaria interventions. 55 

 56 

 57 

Keywords: infectious diseases, malaria, novel interventions, mathematical modelling, machine 58 

learning 59 

 60 

Background 61 

Significant efforts to deploy malaria interventions worldwide have led to considerable progress 62 

and have reduced global malaria prevalence in Africa by half over the 2000 to 2015 period (1). 63 

Reductions were achieved through a diverse range of interventions including mass distribution of 64 

insecticide-treated mosquito nets, indoor residual spraying, rapid diagnosis, as well as artemisinin-65 

based combination therapies. However, since 2015 progress has stalled, and several countries have 66 

seen an increase in malaria incidence of over 40% (2). Current interventions and malaria control 67 

programs are facing major challenges due to lack of funding, increases in drug and insecticide 68 

resistance and diagnostic-resistant parasites, as well as supply chain and deployment difficulties 69 
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(3, 4). Strategic investment and timely development of novel interventions is crucial to maintain 70 

the progress made and to advance towards malaria elimination (2, 5). Two recent reports issued 71 

by the World Health Organization (WHO) (6) and the Lancet Commission (7) emphasize the need 72 

for novel malaria products, calling for a sustained investment in research and development (R&D). 73 

Consequently, the malaria product development space has steadily expanded over the last 15 years. 74 

Novel products are diverse, ranging from therapeutic and immunological interventions, such as 75 

drugs and vaccines, to new vector control tools. Here we provide an overview of these novel 76 

interventions and explore the properties for a subset of key interventions.  77 

With over 13 new drug compounds in early clinical development (2, 8), new antimalarial therapies 78 

will hopefully be available in the next five years (9). Nevertheless, emergence of drug resistance 79 

remains a threat for novel drugs, advocating for products that ensure sustained protection. Several 80 

malaria vaccine candidates are under development (10, 11), and after 30 years including phase 3 81 

clinical trial and pilot implementation (12-14) the RTS,S/AS01 vaccine has potential to avert 82 

mortality in children in combination with other interventions (15-17), including as seasonal 83 

prevention (18). Several other vaccines are in phase 2 clinical studies, such as R21 which 84 

demonstrated a clinical efficacy of up to 77% (19). More recently, biological alternatives to 85 

vaccines include passive immunization with injectable small molecules (20) or monoclonal 86 

antibodies (21-23). Conferring protection against malaria during several months and being safe to 87 

administer during pregnancy, monoclonal antibodies are seen as potential interventions for 88 

seasonal malaria chemoprevention and protection for certain risk groups, with first human trials of 89 

monoclonal antibodies ongoing (7, 23).  90 
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Vector control has seen active development over the past years, with over 10 different categories 91 

of novel products aiming to reduce both indoor and outdoor mosquito biting (24-26). These include 92 

new insecticides (27), vector traps (28, 29), as well as genetically-altered mosquitoes that will 93 

eradicate mosquito populations (called ‘gene drives’) (30, 31). Furthermore, improved housing has 94 

been shown to significantly reduce indoor mosquito biting (32, 33), and  effective house traps or 95 

lures are being developed to supplement traditional indoor interventions (34).  96 

Malaria products under development are defined through Target Product Profiles (TPPs), which 97 

constitutes a vital reference for dialogue between various stakeholders (listed in the Methods 98 

section) to guide R&D investments. TPPs are dynamic documents used during the development 99 

of a cutting-edge medical product, defining its required characteristics to fulfill an unmet health 100 

need (35). Given the large amount of malaria interventions currently in the development pipeline, 101 

a systematic approach is essential to inform development decisions and prioritization of novel 102 

interventions to ensure a sustainable investment of resources and a fast pace of innovation. 103 

Currently, there is no approach systematically incorporating quantitative evidence and the 104 

aforementioned operational aspects in malaria product development (including intervention 105 

deployment, efficacy, duration, decay, and public health impact) from early development stages.  106 

Mathematical models of malaria transmission dynamics can be used to bridge this gap, as they 107 

quantitatively estimate the impact of interventions while including considerable evidence of 108 

disease progression and transmission, host immunity, as well as environmental or health system 109 

dynamics and their interaction with interventions (36) (Fig. 1). These models have been used 110 

extensively to estimate the impact of malaria interventions and to optimize intervention packages 111 

for specific geographies (37, 38). Here an established individual-based malaria-transmission 112 

model, OpenMalaria (37, 39-43), has been used to simulate epidemiological disease and 113 
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intervention dynamics to project the impact on public health, as has been employed to conduct 114 

several consensus modeling and validation studies (37, 41-43).  115 

Due to absence of data at early intervention development stages and computational limitations in 116 

exploring a highly combinatorial parameter space of presumed intervention characteristics, models 117 

have mainly been used at late stages of intervention development. To date, models have only been 118 

minimally applied in directing the design of new interventions, or in understanding how 119 

intervention-specific, epidemiological, and systems factors jointly contribute to impact. Model 120 

investigations are usually informed by scenario analysis accounting for delivery and target age 121 

groups, as well as with properties of the new intervention pre-defined or informed by late clinical 122 

trials (41, 44, 45). In these constrained scenarios, high model and parameter complexity tend to 123 

obscure the complex relationships between intervention parameters, operational factors, health 124 

outcomes, and public health impact (46). Exhaustive scenario analyses are computationally 125 

expensive, rendering the full exploration of all possible interventions, in conjunction with all 126 

possible delivery scenarios, combinatorically infeasible. Previous approaches using disease 127 

models to inform TPPs have tackled the combinatorically complex parameter space by only 128 

exploring a discrete, constrained set of parameters (47-49). These approaches have provided 129 

insightful knowledge and have emphasized the importance of using disease models for defining 130 

TPPs. Nevertheless, they have provided a constrained view of intervention specifications.  131 

Here, we propose a different approach (Fig. 2), where epidemiological models guide development 132 

of novel disease interventions designed to achieve quantified health goals from the early stages, 133 

placing the end goal of public health impact at the center of decision-making. To do this efficiently, 134 

we undertook an iteratively engaged exchange with malaria product development stakeholders to 135 

define desired outcomes and likely delivery use-cases of new malaria interventions. We then used 136 
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mathematical models combined with machine learning to perform a directed search of the entire 137 

space of intervention profiles, to define properties of new interventions towards achieving the 138 

desired health goals. We used Gaussian processes (GPs) (50) to generate computationally light 139 

emulators that work in combination with the established OpenMalaria model of malaria dynamics. 140 

These emulators accurately captured the non-linear relationships between properties of deployed 141 

interventions, operational factors, and resulting health outcomes. They allowed efficient sensitivity 142 

analyses of intervention and health system parameters on predicted public health impacts at low 143 

computational cost. Furthermore, by coupling emulators with nonlinear optimization techniques, 144 

we constructed a predictive framework that identified key determinants of intervention impact as 145 

well as the minimal intervention profiles required for achieving a given health goal (Fig. 2).  146 

We covered a diverse spectrum of interventions in the malaria development space, pertaining to 147 

1) anti-infective monoclonal antibodies, 2) anti-infective vaccines, 3) transmission-blocking 148 

vaccines, 4) outdoor attractive targeted sugar baits, and 5) eave tubes. We used our approach to 149 

understand the link between intervention characteristics and resulting impact, and to define the 150 

requirements of these interventions in terms of coverage, efficacy, and impact duration to reach 151 

desired prevalence reduction goals, contingent on operational constraints (Fig. 2). We show how 152 

modelling can support the development process, and introduce a framework that quantitatively 153 

defines malaria product characteristics within TPPs. Our approach illustrates how modelling 154 

enables translation of R&D efforts into potential impact. 155 

 156 
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 157 
Fig. 1. Simulation of malaria transmission dynamics with OpenMalaria: model schematic. Key components 158 

specified in the model are displayed on the top row including vector, intervention, case management, and human 159 

host-specific factors. Below, a detailed representation of the intrinsic modelled mosquito feeding and host 160 

transmission cycles is provided. The dashed, orange arrows mark the action and targets of the modelled 161 

interventions in this study, as indicated below the arrows. ATSBs stands for attractive targeted sugar baits. A 162 

detailed overview of model assumptions and parameters is provided in the Methods section and Additional file 163 

1: section 1 and Tables S1.1- S1.3. 164 

 165 

Methods 166 

The approach introduced here combines infectious disease modeling with machine learning to 167 

understand determinants and define quantitative properties of target product profiles of new 168 

malaria interventions. The methodological approach is schematically outlined in Fig. 2 with a full 169 

description in Additional file 1.  170 

 171 

Stakeholder engagement 172 

There was active engagement and regular exchanges with different expert groups during 173 

development of the methodological framework for guiding TPPs of novel malaria interventions as 174 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 9 

described in full details in Additional file 1: section 1.1. Stakeholders involved in these discussions 175 

were the Bill and Melinda Gates Foundation (BMGF), the Innovative Vector Control Consortium 176 

(IVCC), the Program for Appropriate Technology in Health - Malaria Vaccine Initiative (PATH-177 

MVI), and the World Health Organization (WHO). Guided by the BMGF, the stakeholder 178 

engagement process included initial meetings, interim meetings to define analyses, and 179 

presentations of results. 180 

 181 

The model 182 

We used OpenMalaria v38.0 (39, 40), an established open-source stochastic, individual-based 183 

model to simulate malaria epidemiology and transmission dynamics across humans and 184 

mosquitoes in various settings with an overview in Fig. 1 and fully described in Additional file 1: 185 

section 1.2 and Tables S1.1-S1.3, with source code available from 186 

https://github.com/SwissTPH/openmalaria/. The OpenMalaria model was calibrated and validated 187 

in previous studies using historical epidemiological data (39, 40, 51), and this calibration was used 188 

for this study (as fully described in Additional file 1: section 1.2.1-1.2.2, including model 189 

components, core parameters and mosquito cycle dynamics in Tables S1.1-S1.3).  190 

 191 

Description of simulation experiments 192 

The simulated human population size in this analysis was 10,000 individuals, with its age structure 193 

informed by health and demographic surveillance data for Ifakara, Tanzania (52). It is assumed 194 

that no infections were imported over the entire study period. Health system characteristics, 195 

mosquito entomological parameters driving infection patters, and seasonal exposure patterns are 196 

described in Additional file 1: sections 1.2.1-1.2.4, Figs. S2.1-S2.3, and Tables S1.1-S1.3. Parasite 197 
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infections in simulated hosts are simulated individually and disease effects such as immunity, 198 

infectiousness to mosquitoes, morbidity, or mortality are tracked. Setting-specific characteristics 199 

include demographics, mosquito species entomological profiles are explicitly modelled and a wide 200 

range of human and vector interventions can be applied. Various health outcomes are monitored 201 

over time, including Plasmodium falciparum prevalence of infections (PfPR), uncomplicated 202 

clinical or severe disease, hospitalization, and malaria mortality. Model assumptions have been 203 

described and validated with field data in previous studies (53, 54). 204 

 205 

 206 

Definition of intervention profiles their impact and health goals 207 

We built a standardized representation for each malaria intervention. Accordingly, a malaria 208 

intervention was characterized according to the targets of the transmission life cycle it affects, 209 

along with the efficacy, half-life, and decay (Fig. 1, Additional file 1: Fig. S2.2 and Table 1). 210 

Descriptions of quantification of the efficacy of a given therapeutic or immunologic intervention, 211 

as well as definitions of intervention targets (as shown in Fig 1) are provided in Additional file 1: 212 

section 1.2.3. Each intervention or combination of interventions was applied as mass intervention 213 

targeting to all ages equally, along with continuous case management. Additional file 1 also 214 

provides descriptions of deployment of mass intervention packages (section 1.2.3), how the input 215 

the EIR was translated to PfPR2-10 (section 1.2.4), as well as definitions of intervention impact and 216 

health goals (section 1.2.5). 217 

 218 

Disease model emulator with Gaussian processes 219 
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As it was computationally intensive to simulate an exhaustive number of simulations to explore 220 

the entire parameter space for diverse combinations of interventions, settings, and deployments, 221 

machine learning techniques and kernel methods were applied. A full description of how the model 222 

emulator was built with Gaussian processes is provided in Additional file 1: section 2.1, along with 223 

a description of how the training dataset was built for each intervention and setting (section 2.2) 224 

and how emulators were trained on this dataset (section 2.3). 225 

 226 

Identifying impact determinants through sensitivity analysis 227 

To estimate the contribution of each model input and its interactions with the other inputs to the 228 

variance of the model outcome, a global sensitivity analysis based on variance decomposition (55) 229 

was conducted. A complete description of the sensitivity analysis process can be found in 230 

Additional file 1: section 4.1. 231 

 232 

Finding minimal intervention properties 233 

The trained GP models for each transmission setting and intervention were used within a general-234 

purpose optimization scheme to identify minimum intervention properties that reach a defined 235 

PfPR0-99 reduction goal given operational and intervention constraints. The calculations for finding 236 

the minimal intervention properties are provided in Additional file 1: section 5.1. 237 

 238 

Results 239 

We present a disease model and machine learning approach to quantitatively define malaria 240 

interventions. Our approach (Fig. 2) started with an iterative consultation with product 241 

development experts to build sensibly informed TPP simulation scenarios, i.e., to define the 242 
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breadth, range, and intervention profiles to simulate with OpenMalaria for the five malaria 243 

interventions considered. Accordingly, we collaborated with the BMGF, and the PATH-MVI and 244 

IVCC product development partnerships. For each new intervention in the portfolios for PATH-245 

MVI, IVCC, and others, we conducted several expert group discussion sessions to catalogue the 246 

ranges of potential intervention effectiveness; potential delivery strategies; parasite or vector 247 

targets; and likely properties (age target, mass intervention, yearly deployment) in terms of mode 248 

of action (target), efficacy, and duration; and use-cases/delivery (see Methods and Additional file 249 

1: section 1 for a description of the iterative stakeholder engagement process). 250 

The public health goal in this study is to reduce the prevalence of Plasmodium falciparum malaria 251 

(denoted as PfPR0-99 when evaluated for all ages and PfPR2-10 when evaluated for 2-10-year-olds) 252 

between years one and three following deployment (Fig. 3A). We modelled each intervention by 253 

identifying their action on parasite or vector targets during the malaria transmission cycle (orange 254 

arrows in Fig. 1). Accordingly, each intervention was defined by its target, the ranges of the 255 

deployment coverage, initial efficacy, half-life, or duration of effect as well as the type of efficacy 256 

decay (see section 2 of the Methods and Additional file 1: section 1, Fig. S2.2 and Table 1 for 257 

detailed intervention specifications). For simplification, the words ‘half-life and ‘duration’ are 258 

used interchangeably to describe the longevity of an intervention effect. The simulated malaria 259 

transmission settings were defined by the yearly EIR, seasonality level, access to treatment, as well 260 

as proportion of indoor mosquitoes. Table 1 summarizes the results of the stakeholder discussions 261 

to set-up the OpenMalaria simulation scenarios and presents a comprehensive description of all 262 

subsequent intervention characteristics explored in this study, as well as the simulated malaria 263 

transmission settings.  264 
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Next, within the “Disease model” component of our approach (Fig. 2A), malaria transmission was 265 

modeled by the means of the established, stochastic, individual-based model OpenMalaria (39) 266 

(Figs. 1 and 3A, and Additional file 1: section 1 and Tables S1.1-S1.3). Here we used a previously 267 

published calibration of OpenMalaria, which reflects demographics, epidemiology, entomology, 268 

health system access, and seasonality (Additional file 1: Fig. S2.1) for a catchment area in Tanzania 269 

(56). Intervention impact was assessed through predicted reduction in PfPR0-99, corresponding to 270 

true infection prevalence and not patent (detected with a diagnostic such as rapid diagnostic test 271 

(RDT) or polymerase chain reaction (PCR), Fig. 3A and Additional file 1: Figs. S2.3 and S3.1-272 

S3.4). We simulated malaria epidemiology and transmission dynamics within various transmission 273 

settings based on the Tanzanian calibration. These settings cover a broad spectrum of transmission 274 

and mosquito biting behavior archetypes relevant for attaining general guiding principles in the 275 

early development phase of new malaria interventions. A comprehensive set of simulated scenarios 276 

was built by uniformly sampling the parameter space defined by intervention and transmission 277 

setting characteristics (defined in Fig. 2A and detailed in Table 1). These scenarios were simulated 278 

with OpenMalaria, yielding an extensive database of disease outcomes for the defined scenarios. 279 

In the machine learning part of the approach (illustrated in the “Machine learning” panel of Fig. 280 

2A), the database of simulated scenarios and corresponding outcomes (PfPR0-99 reductions 281 

following intervention deployment) was used to train predictive models for the OpenMalaria 282 

simulation results (for an example of simulated PfPR0-99 time series with OpenMalaria see Fig. 3A 283 

and Additional file 1: Fig. S3.1). A Heteroskedastic Gaussian process (GP) model was trained for 284 

each intervention and transmission setting (see detailed training procedure in section 3 of the 285 

Methods). Trained GP models accurately captured the dependencies between the disease model 286 

input parameters and the output intervention impact (Fig. 3B and C) and were able to reliably 287 
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predict the reduction in PfPR0-99 attributable to any input intervention characteristics in a given 288 

malaria transmission setting. Precisely, the correlation between true and predicted PfPR0-99 289 

reduction on out-of-sample test sets exceeded 95% while the absolute mean error was below 3% 290 

for all trained GP models (Fig. 3B and Additional file 1: Figs. S4.1-S4.3 and Table S4.1). As a 291 

result, the trained predictive GP models acted as emulators of the complex modelled parameter 292 

dynamics and non-linear relationships within the individual-based mathematical model of malaria 293 

transmission (Fig. 3C and Additional file 1: Figs. S4.5-S4.6) and could predict the disease outcome 294 

for the given health goal and for any set of input parameters.  295 

Due to the significantly less intensive computational requirements of our emulator-based approach 296 

compared with OpenMalaria, we could reduce the analysis execution time by several orders of 297 

magnitude. This allowed us to conduct global sensitivity and optimization analyses, which 298 

required a large number of parameter set evaluations and would otherwise not have been possible 299 

(Fig. 3D and Additional file 1: Fig. S4.7). Thus, the trained GP emulators could be efficiently and 300 

promptly used in downstream analyses to explore the multi-dimensional space of intervention 301 

properties to design TPPs of new malaria interventions (panel “Target product profiles” in Fig. 302 

2A), i.e., to identify the drivers of their impact and their quantitative properties in meeting the 303 

health goals previously defined (Fig. 2B and C). Specifically, through global sensitivity analysis, 304 

we identified the key determinants of intervention impact (Fig. 2B). In addition, we performed a 305 

constrained search for intervention and delivery profiles (TPPs) that maximized impact under a 306 

particular health goal, given concrete, expert-informed, operational constraints such as possible 307 

deployment coverage, or feasible intervention properties such as efficacy or duration of protection 308 

(Fig. 2C). Results of these analyses are detailed in the following sections and illustrated for 309 

seasonal transmission settings with high indoor mosquito biting. Results for the other simulated 310 
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transmission settings (perennial settings and for other mosquito biting patterns) are provided in the 311 

supplement (additional sensitivity analysis results presented in Additional file 1: Figs. S5.1-S5.2, 312 

additional optimization results presented in Additional file 1: Figs. S6.1-S6.6 and S7.1-S7.5) and 313 

summarized in Table 2. 314 

 315 
Fig. 2. Overview of the approach to quantitatively define TPPs for novel malaria interventions. (A) 316 

Schematic description of the proposed model-based, quantitative framework to guide malaria product 317 

development. Results for applying this framework to guide development of five novel malaria interventions are 318 

provided for a range of simulated, true median PfPR2-10 (before intervention deployment), and schematically 319 

described in subsequent figure panels. (B) Global sensitivity analysis for identifying the determinants of 320 

intervention impact: colors define intervention specifications, deployment coverage, and health system access 321 

levels varied in the analysis; the magnitude of the colored area at different levels of transmission (x-axis) 322 

represent the relative importance (y-axis) attributable to factors driving the observed PfPR0-99 reductions 323 
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following intervention deployment. (C) Optimization of intervention properties to achieve desired health goals: 324 

the heatmap (left panel) displays, for a given intervention property (coverage, efficacy, or half-life), the 325 

landscape of minimum required values to achieve various target PfPR0-99 reductions. Each row of the heatmap 326 

corresponds to a target of PfPR0-99 reduction and constitutes a minimum profile of the considered intervention 327 

characteristic (right panel). 328 

 329 
Table 1. Description and ranges of OpenMalaria simulation interventions and transmission 330 
settings 331 

Interventions and transmission settings were defined through consultation with product 332 
development stakeholders. Parameters varied within the OpenMalaria simulations include 333 
characteristics of applied malaria interventions (see Additional file 1: Fig. S2.2 for visual ranges 334 
of these parameters), as well as malaria transmission setting characteristics.  335 
 336 

Simulated 
malaria 

intervention 
properties 

Intervention Coverage Initial efficacy Half-life or 
duration (years) Decay type 

Preventing infection 
Anti-infective 
vaccine 0 – 1 0.3 – 0.95 0.5 – 5 Weibull (k = 0.8) 

(Sigmoidal) 
Anti-infective 
monoclonal 
antibody 

0 – 1 0.3 – 0.95 0.167 – 0.667 Weibull (k = 3) 
(Biphasic) 

Blood stage clearance 
Antimalarial drugs 0 – 1 0.8 – 1 0 – 0.1667 Exponential 
Transmission blocking 

Vaccine 0 – 1 0.3 – 0.95 0.5 – 5 Weibull (k = 0.8) 
(Biphasic) 

Preprandial killing effect (affects indoor mosquito biting) 

Eave tubes 0 – 1 0.3 – 0.99 0.5 – 5 Weibull (k = 3) 
(Sigmoidal) 

Preprandial and postprandial killing effect (affects outdoor mosquito biting) 
Attractive targeted 
sugar baits 0 – 1 0.7 – 0.99 0.167 – 0.667 Step 

Simulated 
malaria 

transmission 
settings 

EIR range: 1 – 25, representing a PfPR0-99 of 13-88% and a PfPR0-2 of 7.2-74.0% 
Case management (baseline scenario) range: 0 – 0.8, corresponding to a probability range of 
seeking care within 5 days from the onset of fever of 0 - 0.5  
Seasonality levels 

1. high seasonal setting with one transmission peak over a year 
2. perennial setting with constant yearly transmission 

Proportion of indoor-biting mosquitoes, out of total indoor and outdoor biting mosquitoes: 
3. high (0.8) 
4. medium (0.5) 
5. low (0.2) 
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 337 
Fig. 3. Training predictive GP emulators of simulated intervention impact with OpenMalaria. Examples 338 

are shown for attractive targeted sugar baits (ATSBs); results for other interventions are shown in Additional 339 

file 1: Figs. S3.1 and S4.2-S4.7 and Table S4.1. (A) Simulated malaria PfPR0-99 time series at EIR=10 where 340 

ATSBs were deployed at a coverage of 70% and had an efficacy of 70%. Results are shown for three intervention 341 

half-life levels. The dotted lines indicate when interventions were applied (beginning of June). The effect of the 342 

interventions was assessed by evaluating the yearly average PfPR0-99 reduction in all ages relative to the year 343 

prior to deployment (first grey block). Two outcomes were assessed, depending on whether the average 344 

prevalence was calculated over the year following deployment (immediate follow-up), or over the third year 345 

following deployment (late follow-up). (B) Correlation between simulated true (horizontal axis) and predicted 346 

(vertical axis) PfPR0-99 reduction with a GP emulator trained to predict the immediate impact of ATSBs. The GP 347 

emulator was trained in a cross-validation scheme (distribution of the Pearson correlation coefficient r2 shown 348 

in the boxplot) and validated on an out-of-sample test set (r2 left upper corner and grey diamond lower right 349 

corner of the boxplot). (C) Relationship between each normalized input parameter and the resulting PfPR0-99 350 

reduction predicted with the trained GP emulator. Each parameter was in turn varied within its defined ranges 351 

(Table 1) while other parameters were set to their average values. (D) Estimated CPU execution time for varying 352 

sizes of input parameter sets evaluated with OpenMalaria (black) and with the trained GP emulator (grey). 353 
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Impact of malaria interventions and the importance of their characteristics. Following 356 

simulation with OpenMalaria of deployment of each of the studied interventions through mass 357 

administration campaigns over several years (see Methods), we first analyzed the predicted 358 

distributions of reduction in true PfPR0-99. We found that, in general, when aiming for substantial, 359 

prompt reductions in prevalence for this particular health target, vector control was by far the most 360 

impactful intervention across all settings. Conversely, monoclonal antibodies, anti-infective and 361 

transmission-blocking vaccines had a more pronounced impact in low-transmission settings 362 

compared to endemic settings (Fig. 4A and Additional file 1: Figs. S3.1-S3.4 and Table 2).  363 

Sensitivity analysis indicated that the impact of these interventions on malaria prevalence was 364 

driven by different characteristics of their efficacy profiles, deployment strategies, or access to 365 

care for treatment of clinical cases, for short- and long-impact follow-up. Across a large proportion 366 

of the simulated scenarios, for all parasite and vector targets and interventions, deployed 367 

intervention coverage was overwhelmingly the primary driver of impact, especially in low-368 

transmission settings (Fig. 4B-F and Additional file 1: Figs. S5.1-S5.2). For immunological 369 

interventions, the impact of short-term passive immunizations such as monoclonal antibodies 370 

relied on their deployment coverage and the health system (Fig. 4B and Additional file 1: Fig. 371 

S5.1). In contrast, for long-acting interventions such as vaccines, impact was driven by deployment 372 

coverage and efficacy (Fig. 4C and D and Additional file 1: Fig. S5.1). Highly efficient vector 373 

control interventions such as attractive targeted sugar baits had a strong effect on prevalence (Fig. 374 

4A), and their duration of effect was the most important determinant (Fig. 4E and Additional file 375 

1: Fig. S5.2). The immediate impact of long-term vector control interventions such as eave tubes 376 

was driven by deployment coverage, while their half-life was a key determinant for preventing 377 

resurgence (Fig. 4F and Additional file 1: Fig. S5.2). Determinants of impact were identified for 378 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 19 

both immediate and late follow-up when interventions were applied once per year for three years 379 

(full intervention specifications are provided in Methods and results for other settings and 380 

interventions are shown in Table 2 and Additional file 1: Figs. S5.1-S5.2). 381 

382 
Fig. 4. Effects of novel malaria interventions on PfPR0-99 and their key drivers of impact. (A) Distribution 383 

of obtained reduction in PfPR0-99 across the simulated scenarios with OpenMalaria following deployment of 384 

various malaria interventions under development (shown with different colors) for a range of simulated 385 

transmission settings (specified by median true PfPR2-10 rounded values, x-axis). Each boxplot displays the 386 

interquartile range (box), the median value (horizontal line), the largest and smallest values within 1.5 times the 387 

interquartile range (whiskers), and the remaining outside values (points) of the PfPR0-99 reduction values 388 
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obtained across all the simulations for each given setting. The remaining panels present the results of global 389 

sensitivity analysis showing, across the same simulated PfPR2-10 settings, the contribution of intervention 390 

characteristics to the resulting PfPR0-99 reduction for anti-infective monoclonal antibodies (B), anti-infective 391 

vaccines (C), transmission-blocking vaccines (D), attractive targeted sugar baits (E), and eave tubes (F). 392 

 393 

Minimal requirements of novel malaria interventions to achieve a defined health goal. For 394 

the five aforementioned malaria interventions, we explored their optimal properties for a broad set 395 

of PfPR0-99 reduction targets, creating landscapes of intervention profiles according to their 396 

minimal characteristics across various transmission settings (Fig. 5 and 6 and Additional File 1: 397 

Figs. S6.1-S6.6 and S7.1-S7.5). These landscapes provide a comprehensive overview of the 398 

intervention potential capabilities and limitations in achieving a desired health goal. For example, 399 

as opposed to an anti-infective monoclonal antibody which required high efficacy and duration to 400 

achieve large PfPR0-99 reductions in only a limited number of settings (Fig. 5A and B and 401 

Additional File 1: Figs. S6.1 and S6.2), attractive targeted sugar baits that kill mosquitoes also 402 

achieved a wider range of target PfPR0-99 reductions in high-transmission settings (Fig. 6A and B 403 

and Additional File 1: Fig. S6.5). Similarly, while anti-infective and transmission-blocking 404 

vaccines had comparable requirements in achieving similar PfPR0-99 reduction targets in settings 405 

with lower transmission (PfPR2-10 < 30%), anti-infective vaccines showed a higher potential and 406 

reached additional targets in high-transmission, endemic settings (Fig. 5C-F).  407 

For a detailed overview of landscapes of intervention profiles for all simulated settings and 408 

interventions see Additional File 1: Figs. S6.1-S6.6. These landscapes together with results of the 409 

sensitivity analysis offer an evidence-based prioritization of resources during product 410 

development. For example, we found that while both efficacy and half-life were important for 411 

immediate prevalence reductions with monoclonal antibodies, their effect was limited in 412 
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preventing resurgence and was only supported by high case-management levels (Figs. 4 and 5 and 413 

Additional File 1: Figs. S5.1 and S6.1-S6.2). Conversely, the efficacy of anti-infective vaccines 414 

determined their immediate impact, whereas half-life of effect had greater importance for 415 

achieving and maintaining PfPR0-99 reductions (Figs. 4 and 5 and Additional File 1: Figs. S5.1, 416 

S6.3, and S6.4). These results suggest that if monoclonal antibodies were to support preventing 417 

resurgence, then R&D efforts should focus on increasing and establishing antibody longevity. 418 

Our analysis showed that coverage was a primary driver of impact (Fig. 4B-F and Additional File 419 

1: Figs. S5.1 and S5.2). This has important implications for interventions requiring multiple 420 

applications to achieve high efficacy, indicating that it is of crucial importance to target both 421 

vulnerable populations and the proportion of the population missed by the intervention. While, for 422 

some interventions, high coverage deployment might be difficult or impossible to achieve, our 423 

analysis showed that this can be alleviated by increasing the deployment frequency or through 424 

deploying combinations of interventions, which may also have cost implications (Figs. 5B, 5D, 425 

5F, and 6B, and Additional File 1: Figs. S6.1-S6.5 and S7.1-S7.4). 426 

We found that combining several interventions targeting different stages in the transmission cycle 427 

can strongly affect the minimum requirements of a putative new intervention, potentially 428 

increasing the impact of an otherwise weaker intervention. For example, for an anti-infective 429 

monoclonal antibody with an initial half-life of 4 months that is deployed at a coverage of 60% 430 

reflecting completion of multiple doses, achieving 80% prevalence reduction was impossible when 431 

deployed once yearly for three years (Fig. 5A, and Additional File 1: Fig. S6.1). Furthermore, 432 

achieving the aforementioned health goal required an efficacy of over 80% when the intervention 433 

was deployed twice per year for three years (Additional File 1: Fig. S6.2). However, when 434 

monoclonal antibody deployment was coupled with a short half-life blood-stage parasite treatment 435 
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such as dihydroartemisinin-piperaquine or artemether-lumefantrine, its minimum required 436 

efficacy was considerably reduced for both delivery frequencies (Fig. 5B and Additional File 1: 437 

Figs. S6.1, S6.2, and S7.1). Conversely, if an initial efficacy of 85% for the monoclonal antibody 438 

was assumed, its minimal required half-life could be reduced if this intervention was deployed in 439 

combination with a blood-stage parasite-clearing drug (Fig. 5B and Additional File 1: Figs. S6.1, 440 

S6.2, and S7.1). These results partly motivated the current development of anti-infective 441 

monoclonal antibodies; use-cases will likely include deployment with existing or new antimalarial 442 

treatment.  443 

When coupled with a short half-life blood-stage parasite treatment, requirements of coverage, 444 

efficacy and half-life were also reduced for anti-infective and transmission blocking vaccines to 445 

achieve targeted reductions of PfPR0-99 (Fig. 5C-F and Additional File 1: Figs. S6.3, S6.4, S7.2, 446 

and S7.3). In particular, for high-transmission settings (PfPR2-10 > 30%), given an RTS,S-like half-447 

life of seven months, both anti-infective and transmission-blocking vaccines could not achieve a 448 

defined prevalence reduction goal of 70% if deployed singly (Figs. 5D and 5F). This was the case 449 

for any deployment coverage given an initial efficacy of 85%, as well as for any efficacy given a 450 

60% deployment coverage. Combining vaccine deployment with a blood-stage drug not only 451 

significantly expanded the achievable health targets in high-transmission settings, but also reduced 452 

vaccine properties requirements. Our analysis revealed that anti-infective vaccines had a higher 453 

potential than transmission-blocking vaccines, requiring less performance and achieving higher 454 

prevalence reductions targets in higher transmission settings. When combined with blood-stage 455 

parasite treatment, the coverage, efficacy, and half-life requirements of anti-infective vaccines 456 

were lower compared with those of transmission-blocking vaccines for the same prevalence 457 

reduction targets (Fig. 5 and Additional File 1: Figs. S6.3, S6.4, S7.2, and S7.3). 458 
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We also showed that a modified deployment schedule could reduce requirements for properties of 459 

some interventions. For example, for highly efficacious attractive targeted sugar baits, higher 460 

coverage and half-life were required when implemented once per year for three years compared 461 

with accelerated delivery of twice per year for three years (Fig. 6A and B). Except for high-462 

transmission settings (PfPR2-10 > 41%), a required efficacy of 70% was sufficient to attain the 463 

desired health goal for the majority of settings, for both delivery schedules (Fig. 6A and B, and 464 

Additional File 1: Figs. S6.5 and S7.4). This result was also reflected in the sensitivity analysis 465 

(Fig. 4E). Accordingly, the variation in intervention efficacy, across its investigated ranges, had 466 

little importance in driving the intervention impact. This suggests that, once a vector control 467 

intervention, such as attractive targeted sugar baits, has achieved a high killing efficacy (here 468 

≥70%), a next step of optimizing other intervention characteristics, such as deployment coverage 469 

or duration, would lead to higher impact. These results demonstrate the strength of our analysis in 470 

identifying intervention characteristics to be prioritized for R&D. 471 

Our comprehensive analysis was applied to explore determinants of impact and required profiles 472 

of interventions across two seasonal settings (seasonal and perennial) and three types of indoor 473 

mosquito biting patterns (low, medium, and high). A detailed overview of impact determinants 474 

and optimal intervention profiles is presented in Additional File 1: Figs. S6.1-S6.6 and S7.1-S7.5, 475 

with additional key results summarized in Table 2.  476 

 477 
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 478 
Fig. 5. Estimated optimal intervention TPPs for immunological interventions. The heatmaps in panels (A), 479 

(C) and (E) display, for each intervention property (coverage, efficacy, or half-life), the landscape of minimum 480 

required values to achieve various target PfPR0-99 reductions (y-axis) across different simulated transmission 481 

settings (true PfPR2-10 rounded values, x-axis). Each row of the heatmap corresponds to a target of PfPR0-99 482 

reduction and constitutes the minimum required profile of the considered intervention. For a health goal of 70% 483 

PfPR0-99 reduction (dotted line on each heatmap), panels (B), (D), and (F) present in detail how the minimum 484 

profile changes with transmission intensity. Each intervention characteristic was minimized in turn, while 485 

keeping other characteristics fixed (values marked on each panel where c = coverage, e = efficacy, and h = half-486 
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life). The simulated access to treatment, corresponding to a probability of seeking care within 5 days, was 25%. 487 

TPP=Target Product Profiles. 488 

 489 

490 
Fig. 6. Estimated optimal intervention TPPs for vector control interventions. The heatmaps in panels (A) 491 

and (C) display, for each intervention property (coverage, efficacy, or half-life), the landscape of minimum 492 

required values to achieve various target PfPR0-99 reductions (y-axis) across different simulated transmission 493 

settings (true PfPR2-10 rounded values, x-axis). Each row of the heatmap corresponds to a target of PfPR0-99 494 

reduction and constitutes the minimum required profile of the considered intervention. For a selected health goal 495 

of 60% PfPR0-99 reduction (dotted line on each heatmap), panels (B) and (D) present in detail how the minimum 496 

profile changes with transmission intensity. Each intervention characteristic was minimized in turn, while 497 

keeping the other characteristics fixed (values marked on each panel where c = coverage, e = efficacy, and h = 498 

half-life). The simulated access to treatment, corresponding to a probability of seeking care within 5 days, was 499 

25%. TPP=Target Product Profiles. 500 

  501 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

0

25

50

75

100

Minimum
Coverage (%) 

e=85%, h=4mos

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

70

80

90

Minimum
Efficacy (%) 

c=60%, h=4mos

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

0

2

4

6

8

Minimum
half−life (months) 

e=85%, c=60%
Attractive targeted sugar baits: landscapes of minimum propertiesA

0

30

60

90

34 4412 25
Median PfPR2−10 (%)M

in
im

um
 c

ov
er

ag
e 

(%
)

Once per year 
Twice per year 

e=85%, h=4mos

0

30

60

90

34 4412 25
Median PfPR2−10 (%)

M
in

im
um

 e
ffi

ca
cy

 (%
)

Once per year 
Twice per year 

c=60%, h=4mos

0.0

2.5

5.0

7.5

10.0

34 4412 25
Median PfPR2−10 (%)

M
in

im
um

 h
al

f−
life

 
(m

on
th

s)

Once per year 
Twice per year 

e=85%, c=60%
Attractive targeted sugar baits: minimum profiles of propertiesB

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

0

25

50

75

100

Minimum
Coverage (%) 

e=85%, h=3y

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

40

60

80

Minimum
Efficacy (%) 

c=60%, h=3y

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)
0
10
20
30
40
50
60

Minimum
half−life (months) 

e=60%, c=85%
Eave tubes: landscapes of minimum propertiesC

0

30

60

90

34 4412 25
Median PfPR2−10 (%)M

in
im

um
 c

ov
er

ag
e 

(%
)

Once per year

e=85%, h=3y

0

30

60

90

34 45 4412 20 25 30
Median PfPR2−10 (%)

M
in

im
um

 e
ffi

ca
cy

 (%
)

Once per year

c=60%, h=3y

0
5

10
15
20
25

34 45 4412 20 25 30
Median PfPR2−10 (%)

M
in

im
um

 h
al

f−
life

 
(m

on
th

s)

Once per year

e=85%, c=60%
Eave tubes: minimum profiles of propertiesD

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 26 

Table 2. Key findings of our quantitative approach guiding target product profiles of new 502 
malaria interventions 503 

Intervention Summary of analysis results 

Immunological 
interventions 

 
- Anti-infective 

monoclonal 
antibodies 
 

- Anti-infective 
vaccines 
 

- Transmission-
blocking 
vaccines 

Key determinants of impact  
(Fig. 4, Additional File 1: Fig. S5.1) 
- The main driver of intervention impact was coverage  
- The second determinant of intervention impact depended on intervention half-life. 

For interventions with short half-lives such as monoclonal antibodies, the half-life 
was the second driver, while for long-term interventions such as vaccines, efficacy 
played a key role.  

- As opposed to long-term vaccines whose impact was mainly driven by coverage and 
efficacy, interventions with short half-lives (e.g., anti-infective monoclonal 
antibodies) relied on case management to prevent resurgence 

- The various biting patterns of mosquitoes did not influence the intervention 
determinants of impact 

Optimal intervention profiles  
(Fig. 5, Additional File 1: Fig. S6.1-S6.4 and S7.1-S7.3) 
- As opposed to vaccines, anti-infective monoclonal antibodies required high efficacy 

and deployment coverage while achieving limited reduction in PfPR0-99 with very 
little impact in perennial settings 

- Increasing the deployment frequency for anti-infective monoclonal antibodies from 
once to twice per year, extended the landscape of feasible health targets mainly in 
seasonal settings 

- Combination with a blood-stage drug proved more impactful compared with 
increasing the deployment frequency for anti-infective monoclonal antibodies, 
extending the achievable health goals in perennial settings as well 

Vector control 
interventions 

 
- Attractive 

targeted sugar 
baits 
 

- Eave tubes 

Key determinants of impact 
(Fig. 4, Additional File 1: Fig. S5.2) 
- As with short-term immunological interventions, attractive targeted sugar baits 

relied on case management to prevent resurgence 
- Limited difference between key drivers for attractive targeted sugar baits in different 

mosquito biting settings was observed because mosquitoes sugar feed before biting 
indoors or outdoors 

- It was observed that intervention properties of eave tubes rather than health system 
access were larger drivers of impact in high indoor biting settings, as mosquitoes in 
those settings will be more likely to contact the eave tube 

Optimal intervention profiles 
(Figs. 3 and 6, Additional File 1: Figs. S6.5, S6.6, S7.4, and S7.5) 
- Increasing deployment frequency from once to twice per year for attractive targeted 

sugar baits resulted in a significant increase in intervention impact and less 
requirements in terms of coverage and half-life 

- Increasing efficacy of attractive targeted sugar baits did not have a significant 
impact 

 504 

Discussion 505 

In this study, we introduced a quantitative framework, using detailed simulation models of malaria 506 

transmission dynamics that enables for the first time a quantitative differentiation between 507 

operational, transmission setting, and intervention parameters to better understand the potential 508 
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impact of novel interventions against malaria. The framework consists of (i) a comprehensive 509 

disease progression and transmission simulation model applied on a discrete, uniformly sampled 510 

set of input parameters; (ii) training of a GP emulator on the sampled set of parameters and 511 

corresponding impact outcomes; (iii) using sensitivity analysis to understand drivers of 512 

intervention impact; and (iv) applying a non-linear constrained optimization algorithm to explore 513 

intervention operational and effectiveness characteristics meeting various targets and deployment 514 

use-cases specified following iterative consultation with product development experts. Our work 515 

thus builds on recent applications of GPs in disease modelling and burden prediction for malaria 516 

(57). 517 

The value of our approach is realized through iterative collaboration with product development 518 

experts, by providing model-based guidance throughout the development process, and by refining 519 

feedback on model predictions as interventions progress through development. For malaria, where 520 

multiple interventions are in development, it also offers an approach for product developers from 521 

diverse fields (such as therapeutics and insecticide development) to collaborate and incorporate 522 

knowledge of other interventions into their TPP development. Coordinated by BMGF, the 523 

exchanges with stakeholders ensured a crucial discussion environment, guiding and supporting the 524 

methodology at various levels, from intervention profiling and defining relevant intervention use-525 

cases to shaping research questions and subsequent analyses. This framework has been presented 526 

and validated in the presence of stakeholders in successive meetings. Discussions contributed to 527 

refinement of the investigation of various intervention profiles and led to an exploration of 528 

intervention combinations. Consequently, iterative exchanges with stakeholders have not only 529 

shaped the study approach, but had proven the value of this methodological framework in its 530 

versatility to adapt and address key questions along the product development pathway.  531 
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Using a detailed individual-based malaria transmission model like OpenMalaria brings significant 532 

advantages compared to a simpler and computationally less intensive Ross-MacDonald model. 533 

Individual-based models capture interactions between hosts, vectors, and parasites at the individual 534 

level, which provides a more realistic representation of the nonlinear transmission and 535 

epidemiological processes in the population as well as of the stochasticity of the modelled system 536 

(58). Second, it allows a realistic implementation of interventions, allowing for explicitly modeling 537 

intervention characteristics relevant for defining TPPs such as deployment regimes, efficacy, half-538 

life, or shape of decay as well as explicit action at the different stages of the transmission cycle. 539 

Conversely, with Ross-MacDonald models, the modelled interventions have a very simplified 540 

representation through their effect only on transmission rates and this representation does not scale 541 

to the required detailed specifications of interventions in TPP documents.  542 

The machine learning layer of our approach builds a simplified approximation of the relationships 543 

between intervention characteristics and resulting intervention impact. This approximation is very 544 

specific to the varied components across the model simulations (intervention characteristics, 545 

access to treatment and EIR) and to the resulting PfPR0-99 reduction and does not explicitly provide 546 

a low-dimensional representation of all the processes captured by OpenMalaria. The complex 547 

disease dynamics processes captured by OpenMalaria (for a detailed description see Additional 548 

File 1: Table S1.1) are intrinsically captured when training the GP emulator and cannot be 549 

disentangled from the observed effects of the interventions per se. Furthermore, these relationships 550 

are non-linear and change with the transmission intensity (EIR) as shown in Additional File 1: 551 

Figs. S4.5 and S4.6. Therefore, to allow translation with product development processes, our 552 

approach for guiding novel interventions requires a model of disease transmission that is able to 553 
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capture the non-linear disease dynamics processes and offers a realistic representation of 554 

interventions and their effects. 555 

Although in this analysis we used reduction of PfPR0-99 as a health goal, this method can be applied 556 

to other continuous disease burden statistics as required (see Additional File 1: Fig. S4.4 for 557 

performance predicting malaria incidence reduction). The same rationale applies for investigating 558 

other deployment strategies, required doses of interventions, or additional intervention 559 

combinations. However, this approach, which uses a smooth GP model, is not tailored for 560 

classification and categorical health goals. Nevertheless, it could be adapted to these types of 561 

outputs by replacing the GP emulator with a predictive model/alternative algorithm suited for 562 

categorical data, such as support vector machines. While sensitivity analysis would still be 563 

applicable for identifying the drivers of the categorical outcomes, the optimization questions and 564 

analyses would need to be reformulated to be relevant for the chosen categorical outcomes.  565 

While bringing valuable quantitative insights to guide product development, our analysis of novel 566 

malaria interventions reproduces previous findings concerning intervention characteristics that are 567 

key drivers of impact. Previous studies have shown that intervention coverage is a major 568 

determinant of impact in the context of mass drug administration (41), of vaccines (59), as well as 569 

of vector control (26). Furthermore, this analysis reaffirms previous work showing the ability of 570 

vector control interventions to achieve substantial reductions in malaria burden (60).  571 

This approach constitutes a powerful tool to help address the challenges of current malaria 572 

strategies and develop new interventions to progress towards malaria elimination. While currently 573 

promising interventions such as insecticide treated nets, seasonal malaria chemoprevention 574 

(SMC), and intermittent preventative treatment (IPT) have been very successful at reducing 575 

malaria incidence and saving lives, their improved burden reduction and future success is being 576 
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challenged by limited adherence, limited resources, and time constraints towards increasing 577 

coverage and usage in underserved populations, as well as resistance (61). Furthermore, for 578 

settings where SMC is not recommended or has not been implemented (for example in East Africa 579 

or in perennial settings), there remains a gap in available interventions to protect vulnerable 580 

populations who experience the highest burden of malaria. Similarly, for settings with outdoor 581 

biting mosquitoes, development and rollout of novel vector control interventions is needed. New 582 

therapeutics and immune therapies suitable for seasonal delivery, such as long-acting injectables 583 

or monoclonal antibodies, are being developed and may close the development gap (21, 22). 584 

However, to efficiently make decisions on their development, guidance on their key performance 585 

characteristics and definition of their TPP is needed from early stages.  586 

This quantitative framework can support the development of interventions from the beginning by 587 

generating evidence to inform and define evaluation criteria ensuring new products meet relevant 588 

health targets, while considering how these products may affect disease burden and epidemiology 589 

within a population. As shown here, this relies on iterative dialogue with stakeholders, to first 590 

define health targets, simulated scenarios, achievable intervention properties, and operational 591 

settings. The modelling part of the framework incorporates all this information as well as relevant 592 

disease transmission dynamics, building an in-silico system for testing developed interventions. 593 

Next, the sensitivity analysis part of the framework informs which intervention characteristics 594 

drive impact and are thus crucial in achieving the defined health goal. Providing insights on the 595 

development processes to be prioritized. Finally, the optimization analysis part of the framework 596 

reveals the potential of the developed intervention and how its efficacy and coverage requirements 597 

change according to the defined health targets and deployment setting. The landscapes of 598 

intervention profiles help product developers gauge development and investment efforts and select 599 
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promising products. Furthermore, our approach allows investigating combinations of new and 600 

existing interventions, identifying alternatives to alleviate shortcomings such as coverage 601 

limitations. To achieve a final TPP, several iterations of this analysis are required, to ensure that 602 

the optimal tradeoffs between intervention capabilities and target goals for a given setting are best 603 

achieved. 604 

As with all modelling studies, this approach is subject to several limitations. While the emulators 605 

capture not just the mean tendency of complex disease models dynamics, but also the inherent 606 

output variance caused by the stochasticity in the models (62), the estimations provided in this 607 

study are dependent on the performance of the trained emulator. This challenge was addressed 608 

with extensive adaptive sampling and testing to ensure a high level of accuracy of the trained 609 

emulators (Fig. 3, and Additional File 1: Figs. S4.1-S4.3 and Table S4.1). Despite the intrinsic 610 

uncertainty, this framework is intended to provide guiding principles and an efficient means of 611 

exploring the high dimensional space of intervention characteristics that otherwise would not be 612 

possible. Evidently, this analysis relies on the representativeness of model assumptions of disease 613 

and transmission dynamics as well as of expert opinion of likely intervention parameterizations in 614 

absence of clinical knowledge. Lastly, this analysis only explored a subset of use-cases, 615 

transmission settings, and intervention combinations. Future work should focus on the most likely 616 

settings and relevant use-cases as interventions are being developed and corresponding TPP 617 

documents are being refined. 618 

Moving beyond the work presented in this paper, this framework would allow combining 619 

simulation models with other sources of data describing geographical variation in disease, for 620 

example, modelled health systems or modelled prevalence (63 ) and would allow incorporating 621 

interactions of interventions with novel interventions for surveillance. Clinical trials for new 622 
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interventions could thereby be prioritized to geographical settings, where public health impact is 623 

likely to be maximized, and where appropriate, to inform decisions on achieving non-inferiority 624 

or superiority endpoints (64). A significant extension would be to incorporate economic 625 

considerations that may affect development decisions, including both R&D costs, as well as 626 

implementation and systems costs for final deployment.  627 

 628 

Conclusions 629 

In this work, we provide mathematical tools for efficiently and quantitatively defining the 630 

minimum profiles of malaria interventions, as well as delivery approaches required to reach a 631 

desired health goal. Our framework can be extended and used for any disease where a valid model 632 

of disease progression or natural history of disease is available. It can be used to direct the design 633 

of novel interventions and to better understand how intervention-specific, epidemiological and 634 

systems factors jointly contribute to impact. Most immediately, this approach is highly relevant to 635 

define successful interventions against new diseases, and to support efficient, fast development of 636 

operational strategies. As uncertainties in disease progression and epidemiology can be 637 

incorporated in our approach by accordingly adjusting the putative parameter space of intervention 638 

characteristics, it also provides a way to systematically sort through large complex landscapes of 639 

unknowns and refine properties of interventions following clinical trials as more knowledge 640 

becomes available. 641 

Our framework tackles and moves beyond current challenges in product development. On one 642 

hand, it allows rigorous definition of TPPs by efficiently exploring highly complex parameter 643 

spaces of disease models, and on the other hand, it allows determinants of desired public health 644 

impact to be identified to inform tradeoffs between product characteristics and use-cases.  645 
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 976 

1  Stakeholder engagement, role of TPP, model description, and interventions 977 

1.1  Stakeholder engagement 978 
There was active engagement and regular communication exchanges with different expert groups 979 
during development of this methodological framework for guiding Target Product Profiles (TPPs) 980 
of novel malaria interventions. The aims of these exchanges were (1) to create a communication 981 
environment with stakeholders to be able to incorporate their feedback to ensure realistic 982 
representation of novel malaria interventions and of the simulated disease transmission settings in 983 
this approach, (2) to continuously shape this methodology to enable generating the relevant 984 
quantitative evidence to inform TPPs of novel malaria interventions from early stages of product 985 
development, and (3) to define and refine the priority research questions to be addressed with our 986 
analysis. 987 
 988 
By offering a comprehensive snapshot of the development process at any given point in time, a 989 
TPP constitutes a vital reference for dialogue between various stakeholders to guide decisions on 990 
the development direction (35, 65-68). A well-constructed TPP is thus essential for efficient 991 
resource allocation and success during development (35, 68). However, the process of establishing 992 
TPPs relies on minimal clinical or quantitative evidence. They are often set by expert opinion and 993 
consensus is based on limited quantitative consideration of the complex dynamics of disease or on 994 
predictions of the likely intervention impact while achieving the identified unmet health needs 995 
(69). Furthermore, few malaria TPPs consider operational aspects such as deployment coverage in 996 
addition to product-specific characteristics such as efficacy or half-life. This has implications for 997 
the appropriate definition of intervention effectiveness characteristics according to local health 998 
systems and health targets (35, 69).  999 

The stakeholders involved in these discussions were the Bill & Melinda Gates Foundation 1000 
(BMGF), the Innovative Vector Control Consortium (IVCC), and the Program for Appropriate 1001 
Technology in Health - Malaria Vaccine Initiative (PATH-MVI) and the WHO (7). Exchanges 1002 
with these stakeholders were coordinated and guided by BMGF through regular meetings as 1003 
follows. First, there was an initial convening with all stakeholders to frame the key study questions, 1004 
to establish a network for iterative dialogue and to inform the partners about OpenMalaria, its 1005 
components, features, and validity of assumptions. At these meetings, there were over 15 1006 
participants from BMGF, IVCC, PATH-MVI, and Swiss TPH. The health goal of malaria 1007 
prevalence reduction in all ages was chosen during this meeting, as well as the five malaria 1008 
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interventions on which to focus our analysis. Second, several one-to-one iterative meetings were 1009 
held with each stakeholder to define the way the five chosen interventions are implemented in 1010 
OpenMalaria and to define relevant aspects to consider for their deployment (e.g., targets in the 1011 
malaria transmission cycle, shape of decay, mass deployment, assessing impact at early and late 1012 
follow-up), as well as putative ranges of their characteristics. We consulted with BMGF and 1013 
PATH-MVI to refine the modeled vaccines, monoclonal antibodies, and drugs, and with IVCC to 1014 
refine attractive targeted sugar baits and eave tubes. The set of simulated transmission settings 1015 
(seasonality, indoor biting) were also defined during these meetings. Interim meetings were held 1016 
with several stakeholders where we presented proof-of-concept and intermediate analyses. These 1017 
meetings ensured building trust and a high level of confidence from our stakeholders in this 1018 
analysis, while shaping the research questions. For example, an intermediate result was that the 1019 
determinants of impact of novel interventions were different in low as compared with moderate 1020 
transmission settings. This motivated exploring a wide range of PfPR settings to ascertain how 1021 
impact determinants were modulated as transmission increased. Another early result was that the 1022 
efficacy, coverage, and half-life requirements of monoclonal antibodies and vaccines were 1023 
significantly high, and that it was infeasible to reach high targets of prevalence reduction in high-1024 
transmission settings deploying these interventions alone. The subsequent discussions led to the 1025 
exploration of deploying combinations of these interventions with an antimalarial drug and to 1026 
refining target health goals based on the capabilities of the interventions to reduce burden. Results 1027 
were presented during several stakeholder meetings and included in reports along with outlining 1028 
prospects for future work. 1029 
 1030 
Regular presentations of this ongoing analysis were provided to BMGF. These presentations 1031 
covered relevant model assumptions for implementing different interventions, focusing on aspects 1032 
where stakeholder feedback was needed, as well as intermediary results where model predictions 1033 
for the interventions were shown. This ensured a dynamic iterative exchange where stakeholders 1034 
were directly involved in shaping intervention characteristics, allowing them to see how their input 1035 
was incorporated in this methodology (Table 1) and how these assumptions influenced the impact 1036 
predictions of this analysis. These exchanges helped us design and refine the means of 1037 
communication for this methodological approach and model predictions to a wider stakeholder 1038 
audience. For this purpose, communication elements were used, such as tables summarizing the 1039 
key quantitative results (e.g., Table 2), clear definitions of modeled intervention properties (see 1040 
Additional file 1: section 1.2.3, and Table 1), schematic diagrams offering an intuitive 1041 
representation for the methodological processes (Fig. 1 and 2), and a standardized system of plots 1042 
showing results for the different interventions explored (Fig. 2-6). There were three types of 1043 
standardized plots. First, sensitivity analysis plots (Fig. 2B and 4) displaying, for each intervention, 1044 
the relative importance of the intervention characteristics in determining the impact on PfPR0-99 1045 
reduction. Relative importance was calculated following global sensitivity analysis using Sobol’ 1046 
indices (see Additional file 1: section 4.1 for a detailed description and calculations). These plots 1047 
facilitated visual communication of key drivers of intervention impact and importantly how these 1048 
drivers changed across various transmission settings, across immediate versus late follow-up of 1049 
intervention impact, as well as across interventions. Second, landscapes of minimum intervention 1050 
properties plot displaying, for different malaria transmission levels, an overview of the minimum 1051 
intervention requirements in terms of coverage, efficacy, and half-life for a wide range of target 1052 
PfPR0-99 reductions (Fig. 2C - left panel, Fig. 5A, C, and E and 6A and C) (see Additional file 1: 1053 
section 5.1 for a detailed description of the optimization process). These plots allowed for 1054 
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communication of overall intervention capabilities in reducing malaria prevalence, as well as their 1055 
minimal requirements across different malaria transmission settings and for a wide range of PfPR0-1056 
99 reduction targets. These requirements defined the profiles of intervention characteristics. Third, 1057 
minimum profiles of properties plot displaying for different malaria transmission levels, the 1058 
estimated minimum intervention requirements in terms of coverage, efficacy, and half-life for a 1059 
chosen PfPR0-99 reduction target (Fig. 2C – right, 5B, D, and F, and 6B and D) (see Additional file 1060 
1: section 5.1 for a detailed description of the optimization process). These plots facilitated the 1061 
visual communication of the minimal intervention profiles and their variance across a range of 1062 
different transmission settings for a chosen PfPR0-99 reduction target. Furthermore, they allowed 1063 
direct comparison of the required intervention profiles between immediate and long follow-up, 1064 
across different deployment regimes (once versus twice per year), as well as across different 1065 
intervention strategies (medical interventions deployed separately or in combination with an 1066 
antimalarial drug). 1067 
 1068 

1.2  Description of the OpenMalaria model of malaria transmission dynamics 1069 

1.2.1  Individual-based model of malaria transmission 1070 
OpenMalaria is an individual-based model of malaria transmission that considers the natural 1071 
history of malaria in humans linked with a deterministic, entomological model of the mosquito 1072 
oviposition cycle and malaria transmission in mosquitoes (70, 71) (Table S1.1). The modelled 1073 
transmission cycle (Fig. 1) considers the chain of processes following infection of a human host, 1074 
simulating malaria infection in individuals and modelling infection characteristics such as parasite 1075 
density, duration of infection, infectivity to mosquitoes, and health outcomes such as anemia, other 1076 
morbidities, or mortality. OpenMalaria specifically captures heterogeneity in host exposure, 1077 
susceptibility, and immune response, taking into consideration the effects of several factors such 1078 
as acquired immunity, human demography structure, and seasonality (72-75). Furthermore, the 1079 
model includes a detailed representation of the health system (76), and a wide range of human and 1080 
vector control interventions while tracking multiple health outcomes over time (Fig. 1 and Table 1081 
S1.1).  1082 
 1083 
In OpenMalaria, the pattern of yearly malaria infection in the absence of interventions is 1084 
determined by the input entomological inoculation rate (EIR) (Additional file 1: Fig. S2.1). Each 1085 
simulated infected human host has an associated parasite density and duration of infection 1086 
(modelled individually and capturing disease effects such as immunity, infectiousness to 1087 
mosquitoes, morbidity, or mortality). Setting-specific characteristics such as population 1088 
demographics, mosquito species entomological characteristics or seasonality are explicitly 1089 
modelled and a wide range of human and vector interventions can be applied, affecting the 1090 
transmission cycle at various stages. Various health outcomes are monitored over time, including 1091 
Plasmodium falciparum prevalence of infections (PfPR), uncomplicated clinical disease, severe 1092 
disease in and out of hospital, and malaria mortality. Disease dynamics model assumptions have 1093 
been described and validated with field data in previous studies, notably in (39) and very recently 1094 
revisited in (54). Several major consensus modeling studies have shown the validity of 1095 
OpenMalaria predictions regarding the public health impact of the RTS,S vaccine (37), mass drug 1096 
administration (41), or vector control (42). Additional validation studies conducted using 1097 
published data on various malaria indicators such as EIR, PfPR, incidence, and mortality have 1098 
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shown that OpenMalaria accurately captures the seasonally-dependent relationships between these 1099 
indicators (43).  1100 
 1101 
OpenMalaria has been widely documented and validated against a multitude of field studies, 1102 
compared to existing models, and used in extensive studies to provide evidence for the 1103 
epidemiological effects of various interventions (37, 39, 51, 58, 77, 78). It comprises 14 model 1104 
variants based on distinct sets of assumptions of its epidemiology and transmission components 1105 
(40). For the present analysis, the “base” simulation model was used. Mathematical equations of 1106 
the OpenMalaria model, its assumptions, calibration, and validation have been thoroughly 1107 
described in numerous publications (see the Background section), and are therefore not specified 1108 
here, however, an overview of the key modelled disease processes and assumptions along with the 1109 
corresponding references where model descriptions have been elaborated are provided in Table 1110 
S1.1. In the sections below, an overview of the calibration and simulation settings used for this 1111 
study has been provided. 1112 
 1113 

Table S1.1. Overview of the OpenMalaria model components 1114 

Name and 
references Description of core assumptions  

Key modelled epidemiological processes (base model) 

Malaria infection 
of humans  
(79) and eq. 1-4 of 
Additional file 1 in 
(39) 

- Determined by EIR which is a model input and affects the force of 
infection in the simulated setting  

- Considers an age-dependent exposure of human hosts to mosquitoes 
(correlating with body-surface area)  

- The relationship between infection rates and EIR is defined and fitted 
with data from The Gambia, Nigeria and Kenya in (79)  

Infection 
progression in 
humans: asexual 
parasite densities 
and immunity 
(39, 72, 79, 80) and 
eq. 5-15 of 
Additional file 1 in 
(39) 

- Blood-stage parasite density depends on the time since infection and is 
affected by naturally acquired immunity. Acquired immunity reduces 
parasite density of subsequent infections. 

- The duration of infection follows a log-normal distribution and is 
estimated from a malaria therapy dataset ((80) and eq. 1 in (72)) 

- Immunity (both pre-erythrocytic and blood-stage) develops progressively 
following consequent episodes of exposure to infection and total 
parasitemia seen by an individual in their lifetime.  

- Super-infection is possible with cumulative parasite densities 
- The parasite density in a host at a given time is defined and fitted with 

data from Ghana, Nigeria and Tanzania in (72) 

Transmission 
from infected 
humans to 
mosquitoes 
(39, 73, 81) and eq. 
16-21 of Additional 
file 1 in (39) 

- Infectivity to mosquitoes depends on the density of parasites present in 
the human (including a time-lag for gametocyte development) 

- The fraction of resulting infected mosquitoes after feeding on a human 
host follows a binomial distribution  

- The relationship between infectivity to mosquitoes and parasite density 
was defined and fitted in (73) with data from malaria therapy collected in 
Georgia between 1940 and 1963 and available from (80)  

- The age-specific contribution to overall infectiousness to mosquitoes was 
validated in (73) against field data collected from Liberia, The Gambia, 
Tanzania, Kenya, Papua New Guinea and Cameroon. 
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Clinical illness, 
morbidity, 
mortality, and 
anemia 
(39, 74, 75, 82) and 
eq. 22-32 of 
Additional file 1 in 
(39) 

- Acute clinical illness depends on human host parasite densities and their 
pyrogenic threshold which evolves over time depending on the 
individual exposure history 

- Acute morbidity episodes can be uncomplicated or evolve to severe 
episodes; a proportion of the severe episodes leads to deaths 

- The probability of a clinical malaria episode was defined and fitted with 
data from Senegal in (75) 

- The probabilities that a clinical episode becomes severe and the risk of 
mortality for a severe episode are defined and fitted to field data from 
over 10 African countries in (74) 

Modelled characteristics of the transmission setting 

Population age 
structure 
(52, 74) 

- Informed by health and demographic surveillance data from Tanzania  

Transmission 
seasonality 
(43, 79) 

- Seasonally forced, the same transmission pattern is reproduced each year 
in absence of interventions, displayed in Fig. S2.1. Seasonal patterns are 
inputs to the model and users can define any patterns as needed e.g., 
perennial, one or two peak seasonal patterns, etc. 

Case management 
(76) 

-  Modelled through a comprehensive decision tree-based model defined 
and validated in (76) which determines the corresponding treatment 
implications depending on the occurring clinical events such as fevers 
and seeking of care 

- Its representation includes specification of access to official or non-
official care, access to hospital for severe cases, diagnostic tests (use, 
specificity, sensitivity, and threshold of detection), treatments for first, 
second line and non-official care, effects of treatment, case fatality rate, 
case sequelae and cure rates 

Entomological 
setting 
(71) 

- Comprehensive simulation of the mosquito lifecycle and behavior 
towards human and animal hosts (biting, resting) embedded in a dynamic 
entomological model of the mosquito feeding cycle defined in (71) 

- Multiple vector species can be simulated simultaneously 

Modelled interventions and their action 

Vector control 
(42, 83, 84) 

- Acts on the availability of the protected human hosts to mosquitoes 
(deterrence), on the probability that a mosquito bites a protected human 
host (preprandial effect) and on the probability that a mosquito survives 
host feeding (postprandial effect) 

Drugs and 
Vaccines 
(37, 85) 

- Act at various levels of the parasite life cycle (transmission blocking, 
anti-infective, blood-stage clearance) and their action is defined by their 
initial efficacy, half-life, and decay 

Deployment 
characteristics 

- Interventions can be deployed for several rounds to a targeted group of 
individuals and specified coverages (proportion of the population 
covered by the intervention) 

Simulation regimes and model variants 
Time steps - Simulation outputs are tracked every 5 days 
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Model variants 
(40) 

- Varying assumptions in immunity decay, treatment and heterogeneity of 
transmission are covered in 14 model variants described in (40). In the 
present study, we use the base model (parameterization described in 
Table 2 in (40) under the denomination R0001) 

Software availability and documentation 

Source code and wiki page available on GitHub: https://github.com/SwissTPH/openmalaria/ 
The OpenMalaria individual based, stochastic model of malaria transmission in humans was 1115 
originally developed in 2003-2006 (39), with mosquito dynamics updated in 2008 (70) and an 1116 
additional 13 structural model variants developed and parameterized in 2012 (40). In this table 1117 
we summarize the key model components and assumptions and reference the previous studies 1118 
where these assumptions have been quantified, fitted, and validated using field epidemiological 1119 
data. 1120 
  1121 
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Table S2.2. Estimated core parameters of OpenMalaria describing the natural history of 1122 
the disease in human hosts 1123 

Parameter Estimated value from (40)  
(model R0001) 

Lower limit of success probability of inoculations at 
high EIR 0.049 

Critical value of EIR 0.032 inoculations/person-night 

Lower limit of success probability of inoculations in 
immune individuals 0.14 

Critical value of cumulative number of 
entomological inoculations 1’514.4 inoculations 

Steepness of relationship between success of 
inoculation and the critical value of cumulative 
number of entomological inoculations 

2.04 

Variation between hosts on parasite densities 
(variance of log-normal distribution) 10.174 

Critical value of cumulative number of parasite days 3.52 parasite-days/µl x 10-7 

Critical value of cumulative number of infections 97.3 infections 

Maternal protection at birth 0.90 

Decay of maternal protection 2.53 per year 

Fixed variance component for densities 0.66 [ln(parasites/µl)]2 

Critical value of cumulative number of infections for 
variance in parasite densities 0.92 infections 

Critical value in determining an increase of the 
pyrogenic threshold 6’502.3 parasites/µL 

Factor determining an increase in the pyrogenic 
threshold 143’000 parasites2µl-2day-1 

Density bias (non Garki) 0.177 

Mass action parameter 1 

Case fatality for severe episodes in the community 
compared to hospital 2.09 

Co-morbidity intercept relevant to indirect mortality 0.019 

Non-malaria intercept for infant mortality rate 49.5 deaths/1000 live births 
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Density bias (Garki) 4.796 

Parasitemia threshold for severe episodes type B1 784’000 parasites/µL 

Immune penalty 1 

Immune effector decay 1 

Prevalence of co-morbidity/susceptibility at birth 
relevant to severe episodes 0.092 

Decay rate of the pyrogenic threshold  2.5 per year 

Critical value of parasite density in determining an 
increase in the pyrogenic threshold 0.6 parasites/µl 

Asexual immunity decay 0 

Pyrogenic threshold at birth 296.302 parasites/µl 

Idete multiplier 2.798 

Critical age of co-morbidity 0.117 

These parameters have been previously estimated in (39) and (40) through model calibration (see 1124 
Additional file 1: section 1.2.2, and Table S1.1) and were kept unchanged during all the 1125 
simulations in the present study. EIR: entomological inoculation rate. 1126 
  1127 
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Table S1.3. OpenMalaria model parameters describing the dynamics of the mosquito 1128 
feeding cycle.  1129 

Parameter Value 

Duration of the period when a mosquito is resting 3 days 

Extrinsic incubation period (time required for sporozoite development) 11 days 

Proportion of mosquitoes which are host seeking on same day as oviposition 0.313 

Maximum proportion of the day that a mosquito spends host-seeking 0.33 

Probability that a mosquito survives the feeding cycle 0.623 

Probability that a mosquito successfully bites the chosen human host 0.95 
Probability that a mosquito escapes the human host and finds a resting place after 
biting 0.95 

Probability that a mosquito successfully rests after finding a resting site 0.99 

Probability that a mosquito successfully lays eggs given that it has rested 0.88 

Human blood index: the proportion of resting mosquitoes which fed on human 
blood during their last feed 0.5 

These parameters have been previously estimated in (70) and were kept unchanged during all the 1130 
simulations in the present study. 1131 
 1132 

1.2.2  Calibration of the disease model and description of simulation experiments.  1133 
The present analysis is based on a previously calibrated version of the model that reflects 1134 
demographic, epidemiology, entomology, health system, and seasonality of a health facility 1135 
catchment area in Tanzania (56, 74, 76). Core calibration parameters were previously estimated 1136 
using a genetic algorithm approach, with optimization of a weighted sum over 10 objective 1137 
functions (40). These objective functions represent key epidemiological relationships captured 1138 
from available study survey and study site data as follows (along with figures displaying data and 1139 
model fits from the reference studies): age patterns of incidence after interventions (Fig. 5 from 1140 
(79)), age patterns of prevalence (Fig. 4 in (72)), age patterns of parasite density (Fig. 6 in (72)), 1141 
age patterns of the multiplicity of infections (Fig. 5 in (72)), age patterns of clinical malaria 1142 
incidence (Fig. 1 in (75)), age patterns of the parasite density threshold for clinical attacks (Fig. 4 1143 
in (75)), hospitalization rate in relation to prevalence in children (Fig. 2 in (74)), age patterns of 1144 
hospitalization in relation to severe malaria (Fig. 4 in (74)), malaria specific mortality in children 1145 
less than 5-years-old (Fig. 7 and 8 in (74)), and indirect malaria infant mortality rate (Fig. 9 in 1146 
(74)). Full calibration procedure details have been described in (40) and (54), and the estimated 1147 
parameters have been previously summarized in Table 1 in (39), in Table 3 in (40), and in 1148 
Additional file 1: Table S1 in (54). A summary of the model parameters has been provided in 1149 
Additional file 1: Tables S1.2 and S1.3. 1150 
 1151 
As summarized in the Methods section, the simulated human population size in this analysis was 1152 
10,000 individuals, with its age structure informed by data collected from a health and 1153 
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demographic surveillance site in Ifakara, Tanzania, available through the INDEPTH network (52). 1154 
For all simulations, it is assumed there were no imported infections during the entire study period. 1155 
 1156 
Health system characteristics (Additional file 1: Table S1.1) were defined through 1157 
parameterization of a case management model based on data provided by the Tanzanian National 1158 
Malaria Control Program (76). To define the simulated case management level, the probability of 1159 
effective cure within two weeks from the onset of fever (E14) was varied within the interval [0-0.8] 1160 
corresponding to a probability of seeking care (access to treatment) within 5 days from the onset 1161 
of fever (E5) within the interval [0.04-0.5] (77). During model simulations, the case management 1162 
level was held constant over time. 1163 
 1164 
Mosquito entomological parameters and seasonal exposure patterns were estimated from field 1165 
studies conducted in the Namawala and Michenga villages located nearby Ifakara in Tanzania (86, 1166 
87). Two archetypal seasonal settings were simulated: a seasonal exposure setting with one 1167 
transmission peak in September estimated from the mentioned field studies (Fig. S2.1), and a 1168 
perennial setting with uniform, constant exposure throughout the year. Two mosquito species were 1169 
present in the simulated settings: endophagic (indoor-biting, human blood index of 0.99) and 1170 
exophagic (outdoor-biting, human blood index of 0.5), respectively. The ratios between the 1171 
population sizes of indoor and outdoor mosquito species were classified into three levels 1172 
corresponding to high (indoor proportion of 0.8 of total mosquito population), mid (indoor 1173 
proportion of 0.5) and low biting (indoor proportion of 0.2). The extent of malaria transmission in 1174 
each simulation was defined by the annual entomological inoculation rate (EIR). For each 1175 
simulation, EIR was sampled from the interval [1-25] leading to a simulated range of Plasmodium 1176 
falciparum parasite rate or prevalence (PfPR) distributions across the various transmission settings 1177 
(Additional file 1: Fig. S2.1 and S2.3, and Table S2.1).  1178 
 1179 

1.2.3  Definition of intervention profiles.  1180 
As summarized in the Methods section, a standardized representation for each malaria intervention 1181 
was built. Accordingly, a malaria intervention was characterized through the targets of the 1182 
transmission life cycle it affects, along with the efficacy, half-life, and decay of its effect (Fig. 1, 1183 
Additional file 1: Fig. S2.2, and Table 1). The efficacy of a therapeutic or immunologic 1184 
intervention was quantified by its ability to clear parasites or to prevent infection, while for 1185 
mosquito-targeted interventions (vector control) it corresponded to the ability of the intervention 1186 
to kill or to prevent mosquitoes from biting humans. For each intervention, its efficacy decayed 1187 
over time according to a specific decay type (defined in Fig. S2.2). Intervention coverage was 1188 
quantified by the percentage of the population affected by the respective intervention. Where 1189 
interventions were applied to individual humans they were equally applied across ages, and not 1190 
targeted to certain populations. Geographical setting characteristics such as entomological 1191 
inoculation rates (EIR), seasonality, case-management coverage, as well as transmission and 1192 
vector characteristics were also included in the simulation specifications (Fig. 1, Table 1). 1193 
 1194 
The following intervention targets were defined in the transmission cycle (Fig. 1): “anti-infective” 1195 
as acting at the liver stage and preventing occurrence of a new infection, “blood stage clearance” 1196 
as clearing blood-stage parasites by administration of a drug, “transmission blocking” as 1197 
preventing parasite development into gametocytes, “mosquito life-cycle killing effect” as killing 1198 
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mosquitoes during different stages of their life cycle, for example, before a blood meal (pre-1199 
prandial killing) and/or after a blood meal (post-prandial killing). Furthermore, mosquitoes are 1200 
affected by vector control interventions according to their indoor and outdoor biting patterns. 1201 
 1202 
The length of the intervention effect was described by half-life for exponential, sigmoidal, or 1203 
biphasic decay profiles, or by duration for step-like decay profiles. Generally, half-life refers to 1204 
the half-life of intervention efficacy decay, representing the time in which the initial intervention 1205 
efficacy has been reduced by 50% (Additional file 1: Fig. S2.2, Table 1). The full duration of this 1206 
effect is equivalent to the entire decay time. For simplicity, since only one intervention had a step-1207 
like decay, we used the words half-life and duration interchangeably.  1208 
 1209 
Each intervention or combination of interventions was applied as mass intervention targeting to 1210 
all ages equally, along with continuous case management. As part of development of this approach, 1211 
targeting of particular populations or age groups was not examined. Mass intervention packages 1212 
were deployed for a long model warm-up period (150 years) and were then implemented in June 1213 
and/or December for three years (Fig. 3, Additional file 1: Fig. S3.1). Coverage at deployment 1214 
time refers to the percentage of the population covered by the intervention’s initial efficacy, 1215 
irrespective of how many doses/applications are required to reach that coverage, assuming that the 1216 
necessary doses have previously occurred. The base scenario XML files used for these simulations 1217 
can be found at 1218 
 https://github.com/SwissTPH/TPP_workflow/tree/master/Intervention_scenarios. 1219 
 1220 

1.2.4  Translation of input EIR to PfPR2-10 and PfPR0-99 1221 
For each simulation, OpenMalaria requires the definition of the intensity and seasonality of malaria 1222 
exposure specified through the input EIR level and its yearly profile in the absence of interventions 1223 
(Additional file 1: Fig. S2.1). EIR is an appropriate measure for reflecting transmission intensity 1224 
(88), however it is difficult to measure in the field and its interpretation in the context of 1225 
intervention impact is difficult to capture when looking at the effects of drugs and vaccines (89, 1226 
90). For this reason, although EIR is the force of infection input for all OpenMalaria simulations, 1227 
simulation outcomes and downstream analyses at the corresponding median PfPR2-10 were 1228 
reported before interventions were deployed. True infection prevalence was reported and not 1229 
patent PCR or RDT-detected. To do so, the continuous EIR space was discretized into unit-wide 1230 
intervals and the median PfPR was calculated across the obtained PfPR for all simulations at each 1231 
discrete interval (Additional file 1: Fig. S2.3). 1232 
 1233 

1.2.5  Definition of intervention impact and health goals 1234 
A comprehensive set of simulated scenarios was built by uniformly sampling the parameter space 1235 
of setting and intervention characteristics. To estimate the impact of the deployed interventions, in 1236 
each simulation, the reduction in PfPR0-99 attributable to the deployed intervention was calculated. 1237 
PfPR0-99 reduction was calculated by comparing the initial average prevalence in the year before 1238 
any interventions were deployed to the average annual prevalence obtained in the first (short 1239 
follow-up) and third year (long follow-up) after interventions deployment (Fig. 3 and Additional 1240 
file 1: Fig. S3.1). Consequently, the defined health goals corresponded to a given minimum 1241 
threshold of PfPR0-99 reduction that the deployed interventions should achieve.  1242 
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 1243 
Additional file 1: Figures S3.2-S3.4 present the distributions of obtained PfPR0-99 reduction for the 1244 
OpenMalaria simulation experiments covering all the interventions and deployments investigated 1245 
in the present study. In seasonal, low-transmission settings (EIR < 2) a high proportion of 1246 
simulations reached elimination before any intervention was deployed and were removed from the 1247 
analysis (Additional file 1: Fig. S3.5). Since this happened for over 75% of simulations at EIR < 1248 
2, we did not investigate optimal intervention profiles for transmission settings with EIR < 2. 1249 
Arguably, for settings close to elimination, a different health goal, such as the probability of 1250 
elimination, would be more appropriate which is outside the scope of this study, which focuses on 1251 
reducing PfPR0-99. 1252 
  1253 
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2 Disease scenarios 1254 
 1255 

 1256 

Fig. S2.1. Illustration of the yearly malaria transmission and prevalence patterns in 1257 
simulated seasonal settings.  1258 
(A) Observed, normalized, monthly seasonal pattern of malaria EIR in Namawala, Tanzania 1259 
extracted from (74). (B) Corresponding input, 5-day seasonal EIR pattern used in OpenMalaria 1260 
simulations, obtained by scaling and extrapolating the monthly seasonality profile from (74) to 5-1261 
day time steps. For this example, the simulated input EIR was 7.78 infectious bites per person 1262 
per year. (C) Resulting simulated yearly PfPR0-99 profile. In all figures, the arrows indicate the 1263 
month of September, the peak of transmission and show the delay between the peak of 1264 
transmission and the resulting peak in malaria prevalence. The dotted vertical lines on figures 1265 
(B) and (C) indicate the deployment times of first and second rounds of malaria interventions 1266 
when applicable. 1267 
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 1269 

Fig. S2.2. Representation of decay and the range of efficacy and half-life against different 1270 
parasite or vector targets for intervention-agnostic malaria interventions.  1271 
The simulated malaria interventions (A–F) were modeled in terms of their targets in the malaria 1272 
transmission cycle. The effect of each intervention is represented through the half-life of its 1273 
decay (x-axis) as well as the initial efficacy (y-axis). The color blocks represent the range of 1274 
parameter space of efficacy and half-life of decay considered in the current analysis for each 1275 
intervention. The half-life and the color block do not represent the entire duration of effect, as 1276 
that depends on the decay shape chosen for each intervention. The decay shape for each 1277 
intervention is displayed in the right side insert of each plot where the dotted lines specify the 1278 
half-life and corresponding half of the intervention efficacy. The definitions of all the parameter 1279 
ranges for all interventions are provided in each figure on the lower left side and detailed in 1280 
Table S2.1. 1281 
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 1283 
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Fig. S2.3. Simulated distributions of true and patent (detected with PCR or RDT) PfPR0-99 1284 
and PfPR2-10 for various input EIR levels in absence of interventions.  1285 
The input entomological inoculation rate (EIR) defines the simulated malaria transmission level. 1286 
In every simulation experiment, EIR was uniformly sampled from the interval [1, 25]. In figures 1287 
(A)–(C), each panel corresponds to a simulated setting and presents the distributions of true (A), 1288 
patent with PCR (B) and patent with RDT (C) Plasmodium falciparum prevalence (PfPR, shown 1289 
with boxplots, blue for 0-99-year-old and orange for 2-10-year-old) at varying EIR levels (x-1290 
axis). The 6 represented settings are defined by the seasonality pattern (perennial shown in the 1291 
first row, or seasonal shown in the second row of each figure) and mosquito indoor biting 1292 
behavior (low- shown in the first column, mid- shown in the second column or high-indoor 1293 
biting shown in the third column of each figure). Each EIR level on the x-axis is defined as a set 1294 
of continuous input EIR values which range between the current level and the current level-1, 1295 
e.g., an input EIR level of 1 contains EIR values in the interval (0, 1]. For each EIR level and 1296 
setting, the case management levels, i.e., the probability of seeking care (access to treatment) 1297 
within 5 days from the onset of fever (E5), was varied within the interval [0.04-0.5]. PCR: 1298 
polymerase chain reaction. RDT: rapid diagnostic test. 1299 
  1300 
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Table S2.1. Specifications of the optimization procedure for TPP development 1301 

Intervention Minimized 
profile 

Intervention properties 
constraints 

Specifications of 
combination therapies 

Anti-infective 
monoclonal antibody 
(Sigmoidal decay) 

Coverage Coverage Î [0-80%] 
Efficacy = 85% 
Half-life = 4 months 

Blood stage drug: 
Efficacy = 90% 
Half-life = 10 days 

Efficacy Coverage = 60% 
Efficacy Î [30%-95%] 
Half-life = 4 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life Î [2-8 months] 

Anti-infective 
vaccine 
(Biphasic decay) 

Coverage Coverage Î [0-80%] 
Efficacy = 85% 
Half-life = 7 months Blood stage drug: 

Efficacy = 90% 
Half-life = 10 days 
 

Efficacy Coverage = 60% 
Efficacy Î [30%-95%] 
Half-life = 7 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life Î [2 months-5 years] 

Transmission-
blocking vaccine 
(Biphasic decay) 

Coverage Coverage Î [0-80%] 
Efficacy = 85% 
Half-life = 7 months 

Blood stage drug: 
Efficacy = 90% 
Half-life = 10 days 
 

Efficacy Coverage = 60% 
Efficacy Î [30%-95%] 
Half-life = 7 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life Î [2 months-5 years] 

Attractive targeted 
sugar baits 
(Step decay) 

Coverage Coverage Î [0-80%] 
Efficacy = 85% 
Half-life = 4 months 

Not applicable 
Efficacy Coverage = 60% 

Efficacy Î [70%-99%] 
Half-life = 4 months 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life Î [2-8 months] 

Eave tubes 
(Sigmoidal decay) 

Coverage Coverage Î [0-80%] 
Efficacy = 85% 
Half-life = 3 years 

Not applicable 
Efficacy Coverage = 60% 

Efficacy Î [30-99%] 
Half-life = 3 years 

Half-life Coverage = 60% 
Efficacy = 85% 
Half-life Î [6 months-5 years] 

For each intervention, we successively identified the minimum profiles of the intervention 1302 
coverage, efficacy, and half-life. Precisely, we optimized each parameter separately (column 1303 
“Minimized profile”), according to its feasibility constraints while setting the two other 1304 
parameters to the specified fixed values (column “Intervention properties constraints”). When 1305 
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deployed in combination with other drugs or vaccines, the additional interventions had fixed 1306 
properties as well (column “Specifications of combination therapies”). 1307 
 1308 

2.1  Building a disease model emulator with Gaussian processes 1309 
As stated in the Methods, since it was computationally intensive and challenging to run an 1310 
exhaustive number of simulations in order to explore the entire parameter space for diverse 1311 
combinations of interventions, settings, and deployments using OpenMalaria, machine learning 1312 
techniques and kernel methods were applied. Precisely, starting from a training dataset of 1313 
simulations generated with OpenMalaria, Gaussian process (GP) models (50) were used to infer 1314 
the relationship between simulation variables (e.g., intervention coverage, half-life, efficacy, etc.) 1315 
and corresponding intervention impact (PfPR0-99 reduction). This approach allowed a fast, 1316 
simplified predictive model that could provide estimates of the disease model output for any new 1317 
inputs to be built without running new OpenMalaria model simulations.  1318 
 1319 
Gaussian process models are non-parametric models which define a prior probability distribution 1320 
over a collection of functions using a kernel, smoothing function. Precisely, given the relationship 1321 

𝑦 = 𝑓(𝒙) + 	𝜀 1322 
where y is the PfPR0-99 reduction here, and x represents the set of intervention parameters x1, …, 1323 
xn, the main assumption of a GP is that  1324 

𝑃+𝑓(𝑥!), 𝑓(𝑥"), … , 𝑓(𝑥#)/	~	𝑁(𝜇, Σ) 1325 
where  1326 

Σ$!,$" = 	𝐾+𝑥& , 𝑥'/ 1327 

is the covariance matrix of the Gaussian distribution, 𝜇 is its mean, and K is a kernel function (50). 1328 
Once data are observed, the posterior probability distribution of the functions consistent with the 1329 
observed data can be derived, which is then used to infer outcomes at unobserved locations in the 1330 
parameter space (50). The intuition behind a GP model is based on the “smoothness” relationship 1331 
between its components. Accordingly, points which are close in the input parameter space will 1332 
lead to close points in the output space. 1333 
 1334 

2.2  Training data 1335 
For each intervention and setting, a training dataset was built using discrete Latin hypercube 1336 
uniform sampling (91) across the input parameter space (defined in Table 1). This sampling 1337 
scheme ensured uniform coverage of the parameter space and a representative set of points 1338 
spanning the variability of the predicted output across the entire space. Ten stochastic realizations 1339 
(replicates) of each sampled data point were considered. OpenMalaria was run on the sampled data 1340 
and PfPR0-99 was calculated for short and long follow-up. The size of the training set was varied 1341 
between 10 and 1,000 points (100-10,000 including replicates) for several simulation experiments 1342 
(Additional file 1: Fig. S4.1) and the performance of the trained GP was assessed via the Pearson 1343 
correlation coefficient r2. The minimum training set size which led to r2 > 0.95 was selected for 1344 
the remaining simulation experiments.  1345 
 1346 
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2.3  Gaussian process emulators 1347 
For each transmission setting and intervention, a GP model with a Gaussian kernel was trained for 1348 
a 5-fold cross-validation scheme using the training dataset with OpenMalaria simulations. For 1349 
training the GP, the R package HetGP version 1.1.1 was used (92, 93). HetGP is a powerful 1350 
implementation of GP models, featuring heteroskedastic GP modeling embedded in a fast and 1351 
efficient maximum-likelihood-based inference scheme.  1352 
 1353 
GP performance was assessed by calculating the correlation between true and predicted outputs 1354 
on out-of-sample test sets, as well as the mean squared error (Additional file 1: Fig. S4.2 and S4.3 1355 
and Table S4.1). Precisely, the training set was split into 5 subsets and, iteratively, 4 of these 1356 
subsets were used for training the GP, while the remaining set was used as an out-of-sample test 1357 
set during the cross-validation procedure. After assessing the prediction error obtained during the 1358 
cross-validation procedure, the GP was trained using the entire training set.  1359 
 1360 
Furthermore, since the trained GP model provides the mean and variance for each predicted output, 1361 
this probabilistic representation was used to assess the uncertainty of the trained model across the 1362 
entire parameter space and to refine the GP model through adaptive sampling (94-96). 1363 
Accordingly, new training points from high-uncertainty regions of the parameter space were 1364 
iteratively sampled and the model was updated with the new training samples. Precisely, 100,000 1365 
points were sampled using Latin hypercube sampling and the variance of the predicted output was 1366 
evaluated with the previously trained GP emulator. Samples from “rare” regions of the parameter 1367 
space containing fewer outputs were prioritized. To do so, the output PfPR0-99 range was classified 1368 
into 4 bins and the numbers of predicted outcomes corresponding to the 100,000 sampled points 1369 
that fell in each bin (output density) calculated. Of the sampled points, 30 points (300 including 1370 
replicates) were chosen proportional to the output density in each bin and with the highest 1371 
predicted variance. This procedure was repeated five times to ensure that the correlation between 1372 
true and predicted values on an out-of-sample test set had reached a plateau. Finally, a separate 1373 
out-of-sample test set was built to assess the overall performance of the GP (Additional file 1: Fig. 1374 
S4.2, S4.3, and Table S4.1). 1375 
 1376 
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3  Results: Disease model simulation 1377 

 1378 

Fig. S3.1. Examples of OpenMalaria simulation outputs.  1379 
Time series of simulated malaria PfPR0-99 in a perennial (A) and seasonal (B) setting. Both 1380 
figures display the prevalence of malaria cases, PfPR0-99, (y-axis) across time (x-axis). 1381 
Interventions targeting different stages in the malaria transmission cycle (different colors) are 1382 
applied once per year at the beginning of June (vertical dotted lines, in this example for three 1383 
years of deployment). The effect of each intervention is assessed by evaluating the PfPR0-99 1384 
reduction in all ages relative to the year prior deployment (first grey block). Two outcomes are 1385 
assessed, following an immediate and late follow-up (second and third grey blocks), depending 1386 
on whether the average prevalence is calculated across the next year after deployment, or across 1387 
the third year after deployment, respectively. 1388 
  1389 

reference
year

immediate
follow−up

late
follow−up

0.00

0.25

0.50

0.75

1.00

0 2 4 5 6 7 8 9 10 11 13 15
Time (years)

Pf
PR

0−
99

A

reference
year

immediate
follow−up

late
follow−up

0.00

0.25

0.50

0.75

1.00

0 2 4 5 6 7 8 9 10 11 13 15
Time (years)

Pf
PR

0−
99

B

Applied
interventions

Anti−infective monoclonal
Anti−infective vaccine
Transmission−blocking vaccine
Attractive targeted sugar baits
Eave tubes

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 61 

 1390 

 1391 

Fig. S3.2. Distributions of prevalence reduction following yearly deployment of single 1392 
interventions.  1393 
Prevalence reduction was calculated by comparing the initial prevalence in the year before any 1394 
interventions were deployed to the yearly prevalence obtained in the following year (short 1395 
follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of 1396 
interventions. Each individual figure corresponds to a simulated setting and presents the 1397 
distributions of PfPR0-99 reduction (shown with boxplots) at varying EIR as well as 1398 
corresponding simulated PfPR2-10 levels (x-axis). Each boxplot displays the interquartile range 1399 
(box), the median value (horizontal line), the largest and smallest values within 1.5 times the 1400 
interquartile range (whiskers), and the remaining outside values (points). The 6 represented 1401 
settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito 1402 
indoor biting behavior (low, mid, or high indoor biting). Each EIR level on the x-axis is defined 1403 
as a set of continuous input EIR values which range between the current level and the current 1404 
level-1, e.g., an input EIR level of 1 contains all EIR values in the interval (0, 1]. The definitions 1405 
and ranges of all the EIR levels is included in Table S2.1. 1406 
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 1407 

 1408 

Fig. S3.3. Distributions of prevalence reduction following yearly deployment of 1409 
combinations of interventions.  1410 
Prevalence reduction was calculated by comparing the initial prevalence in the year before any 1411 
interventions were deployed to the yearly prevalence obtained in the following year (short 1412 
follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of 1413 
interventions. Each individual figure corresponds to a simulated setting and presents the 1414 
distributions of PfPR0-99 reduction (shown with boxplots) at varying EIR as well as the 1415 
corresponding simulated PfPR2-10 levels (x-axis). Each boxplot displays the interquartile range 1416 
(box), the median value (horizontal line), the largest and smallest values within 1.5 times the 1417 
interquartile range (whiskers), and the remaining outside values (points). The 6 represented 1418 
settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito 1419 
indoor biting behavior (low, mid, or high indoor biting). Each EIR level on the x-axis is defined 1420 
as a set of continuous input EIR values which range between the current level and the current 1421 
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level-1, e.g., an input EIR level of 1 contains EIR values in the interval (0, 1]. The definitions 1422 
and ranges of all the EIR levels are included in Table S2.1. MDA: mass drug administration. 1423 

 1424 

 1425 

Fig. S3.4. Distributions of prevalence reduction following deployment of single and 1426 
combinations of interventions twice per year.  1427 
Prevalence reduction was calculated by comparing the initial prevalence in the year before any 1428 
interventions were deployed to the yearly prevalence obtained in the following year (short 1429 
follow-up, panel A) and in the third year (long follow-up, panel B) after deployment of 1430 
interventions. Each individual figure corresponds to a simulated setting and presents the 1431 
distributions of PfPR0-99 reduction (shown with boxplots) at varying EIR as well as 1432 
corresponding simulated PfPR2-10 levels (x-axis). Each boxplot displays the interquartile range 1433 
(box), the median value (horizontal line), the largest and smallest values within 1.5 times the 1434 
interquartile range (whiskers), and the remaining outside values (points). The 6 represented 1435 
settings in each panel are defined by the seasonality pattern (perennial or seasonal) and mosquito 1436 
indoor biting behavior (low, mid, or high indoor biting). Each EIR level on the x-axis is defined 1437 
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as a set of continuous input EIR values which range between the current level and the current 1438 
level-1, e.g., an input EIR level of 1 contains EIR values in the interval (0, 1]. The definitions 1439 
and ranges of all the EIR levels for all simulated settings is included in Table S2.1. MDA: mass 1440 
drug administration. 1441 

 1442 

 1443 

Fig. S3.5. Simulations reaching malaria elimination before intervention deployment.  1444 
The violin plots and boxplots in each panel present the distributions of the percentage of 1445 
simulations reaching malaria elimination (PfPR0-99 = 0) before intervention deployment (this can 1446 
arrive due to case management and only occurs in seasonal settings), across all simulated 1447 
interventions and intervention combinations.  1448 
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4 Sensitivity analysis and emulator performance results 1450 
 1451 

4.1  Identifying impact determinants through sensitivity analysis 1452 
To estimate the contribution of each model input and its interactions with the other inputs to the 1453 
variance of the model outcome, a global sensitivity analysis based on variance decomposition (55) 1454 
was conducted. This analysis shows which input parameters have higher impact on the model 1455 
outcome. It relies on the decomposition of the output variance in a sum of individual input 1456 
parameter conditional variances: 1457 

Var(Y) = 	9V(
(

+	99V()
)*((

+⋯+	V!"…, 1458 

where Y is the model outcome (in this case, PfPR0-99 reduction), d is the number of model inputs, 1459 
and the conditional variances defined as: 1460 

V( = Var(E(Y|x()) 1461 

V() = Var >E+Y?x(, x)/@ − V( − V) 1462 

V()- = Var >E+Y?x(, x), x-/@ −	V() − V)- − V(- − V( − V) − V- 1463 

… 1464 
with x1, …, xn representing the model input parameters.  1465 
Based on the above decomposition of output variance, the first order sensitivity index is defined 1466 
as: 1467 

S( =
V(

Var(Y) 1468 

and corresponds to the proportion of output variance assigned to the main effect of Xi, i.e., 1469 
regardless of its interactions with other model inputs (55, 97).  1470 
To account for the contribution of each model input, as well as the variance of its interactions with 1471 
other inputs to the variability of the model output, the total effect sensitivity index is used: 1472 

T( = 1 −	
Var(E(Y|x~())

Var(Y)  1473 

where ~i stands for all indices except i (55, 97). 1474 
In the above decomposition of model output variance, by replacing the expressions of the 1475 
sensitivity indexes, the following properties can be deduced: 1476 

9S(
(

+99S() +⋯+	S!"…, = 1
)*((

 1477 

and  1478 

9T( ≥ 1
(

	. 1479 

To compute the sensitivity indexes, the function soboljansen from the R package sensitivity (98) 1480 
was used. The function estimates the sensitivity indices through MCMC sampling, using a Monte 1481 
Carlo approximation for computing conditional expectations. Within the sampling scheme, 1482 
100,000 points to estimate the sensitivity indices were sampled. 1483 
 1484 
Calculating the sensitivity indices defined above, the variance of the GP emulator output was thus 1485 
decomposed into proportions attributable to intervention characteristics, i.e., intervention efficacy, 1486 
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half-life, and deployment coverage, as well as access to care. Using the main effects, the relative 1487 
importance ri of each characteristic as a proxy for impact determinants was defined as follows: 1488 

𝑟& =	
𝑆&

∑ 𝑆𝑖/
&0!

 1489 

where d is the number of intervention characteristics and ∑ 𝑟& = 1/
&0! . 1490 

 1491 

4.2  Results: Sensitivity analysis and emulator performance 1492 
 1493 

 1494 
 1495 

Fig. S4.1. Assessment of the performance of the trained GP depending on the training set 1496 
size.  1497 
Each figure presents the Pearson correlation coefficient r2 between true and predicted values on a 1498 
broad range of out-of-sample test sets of varying length, when simulating deployment of an anti-1499 
infective monoclonal antibody deployed once per year (A) or twice per year (B) as well as in 1500 
combination with a blood-stage drug once (C) or twice per year (D). 1501 
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 1503 
Fig. S4.2. Performance of the trained GP emulators predicting immediate intervention 1504 
impact.  1505 
For a wide range of deployed interventions and transmission settings (see Methods), GP 1506 
emulators were trained to predict the immediate impact of each intervention, i.e., the resulting 1507 
average PfPR0-99 reduction in the year following deployment of the intervention. The 1508 
performance of the trained emulators was assessed by inspecting the Pearson correlation 1509 
coefficient (r2) and the mean absolute error between true and predicted values on an out-of-1510 
sample test set. Figures (A) – (K) display the true and predicted values of each trained emulator 1511 
across all deployed interventions in a seasonal transmission setting with high indoor biting. 1512 
Figure (L) summarizes r2 and the mean absolute error of all the trained emulators for all 1513 
simulated transmission settings and interventions (the simulated settings were defined by 1514 
seasonality and mosquito biting patterns, see Table S2.1 for detailed values per setting).  1515 
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 1516 
Fig. S4.3. Performance of the trained GP emulators predicting long-term intervention 1517 
impact.  1518 
For a wide range of deployed interventions and transmission settings (see Methods section), GP 1519 
emulators were trained to predict the immediate impact of each intervention, i.e., the resulting 1520 
average PfPR0-99 reduction in the third year following deployment of the intervention. The 1521 
performance of the trained emulators was assessed by inspecting the Pearson correlation 1522 
coefficient (r2) and the mean absolute error between true and predicted values on an out-of-1523 
sample test set. Figures (A) – (K) display the true and predicted values of each trained emulator 1524 
across all deployed interventions in a seasonal transmission setting with high indoor biting. 1525 
Figure (L) summarizes r2 and the mean absolute error of all the trained emulators for all 1526 
simulated transmission settings and interventions (the simulated settings were defined by 1527 
seasonality and mosquito biting patterns, see Table S2.1 for detailed values per setting).  1528 
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 1530 

Fig. S4.4. Performance of trained GP emulators predicting incidence reduction.  1531 
Plasmodium falciparum malaria incidence reduction in all ages in the first (A) and third (B) year 1532 
following deployment of a monoclonal antibody intervention. The performance of the trained 1533 
emulators was assessed by inspecting the Pearson correlation coefficient (r2) in a cross-validation 1534 
scheme (lower right boxplot displays the distribution of r2 obtained on the left-out test sets 1535 
during cross-validation) as well as on an out-of-sample test set (upper left corner). 1536 
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 1538 

Fig. S4.5. Relationships between input intervention parameters and the predicted immediate 1539 
PfPR0-99 reduction with the trained GP emulator.  1540 
Each parameter (intervention characteristic) was varied in turn across its defined range 1541 
(parameter ranges are defined in Table 1) while the remaining parameters were set to their 1542 
average values. The figures display the immediate PfPR0-99 reduction predicted with the GP 1543 
emulator. A min-max normalization was used to display the varying input values of each of the 1544 
parameters.   1545 
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 1546 

Fig. S4.6. Relationships between input intervention parameters and the predicted long-term 1547 
PfPR0-99 reduction with the trained GP emulator.  1548 
Each parameter (intervention characteristic) was varied in turn across its defined range 1549 
(parameter ranges are defined in Table 1) while the remaining parameters were set to their 1550 
average values. The figures display the long-term PfPR0-99 reduction predicted with the GP 1551 
emulator. A min-max normalization was used to display the varying input values of each of the 1552 
parameters.   1553 
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 1554 

 1555 

Fig. S4.7. Execution time of OpenMalaria simulations and GP emulator training.  1556 
(A) CPU execution time of a single OpenMalaria simulation for varying population size. The 1557 
arrow indicates the population size of 10,000 human hosts used in the present study. (B) CPU 1558 
time required for training the GP emulator using training sets of OpenMalaria simulations of 1559 
varying size. The arrow indicates the typical sample size used in the present analysis. In both 1560 
figures, execution times were estimated 5 times in each case and the resulting distribution was 1561 
displayed (boxplots). 1562 
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Table S4.1. Performance of the trained GP emulators predicting immediate and long-term 1564 
intervention impact 1565 

Intervention(s) 
(deployment) 

Training 
set size  

Test 
set size  

Cross-validation r2 and 
(mean error) 

Test set r2 and (mean 
error) 

Anti-infective 
monoclonal antibody 

(once/year) 
10000 5000 Immediate: 0.99 (1.02%) 

Long: 0.96 (1.15%) 
Immediate: 0.99 (0.63%) 
Long: 0.97 (0.68%) 

Anti-infective 
monoclonal antibody 

(twice/year) 
5000 2500 Immediate: 0.99 (1.11%) 

Long: 0.97 (1.32%) 
Immediate: 0.99 (0.91%) 
Long: 0.99 (0.83%) 

Anti-infective 
monoclonal antibody + 

Blood stage drug 
(once/year) 

10000 5000 Immediate: 0.99 (1.34%) 
Long: 0.96 (1.74%) 

Immediate: 0.99 (1.18%) 
Long: 0.98 (1.05%) 

Anti-infective 
monoclonal antibody + 

Blood stage drug 
(twice/year) 

5000 2500 Immediate: 0.99 (1.26%) 
Long: 0.97 (1.98%) 

Immediate: 0.99 (0.98%) 
Long: 0.99 (1.12%) 

Anti-infective vaccine 
(once/year) 10000 5000 Immediate: 0.99 (1.08%) 

Long: 0.99 (1.3%) 
Immediate: 0.99 (0.99%) 
Long: 0.99 (1.16%) 

Anti-infective vaccine 
+ Blood stage drug 

(once/year) 
5000 2500 Immediate: 0.99 (1.18%) 

Long: 0.99 (1.63%) 
Immediate: 0.99 (1.57%) 
Long: 0.99 (2.25%) 

Transmission-blocking 
vaccine (once/year) 10000 5000 Immediate: 0.99 (1.13) 

Long: 0.99 (1.25%) 
Immediate: 0.99 (0.89%) 
Long: 0.99 (1.07%) 

Transmission-blocking 
vaccine + Blood stage 

drug (once/year) 
5000 2500 Immediate: 0.99 (1.25%) 

Long: 0.99 (1.53%) 
Immediate: 0.99 (1.68%) 
Long: 0.99 (2.23 %) 

Attractive targeted 
sugar baits (once/year) 5000 2500 Immediate: 0.99 (1.26%) 

Long: 0.98 (1.71%) 
Immediate: 0.99 (1.98%) 
Long: 0.99 (1.19%) 

Attractive targeted 
sugar baits (twice/year) 5000 2500 Immediate: 0.99 (1.09%) 

Long: 0.99 (1.98%) 
Immediate: 0.99 (1.03%) 
Long: 0.99 (1.29%) 

Eave tubes (once/year) 10000 5000 Immediate: 0.99 (1.11%) 
Long: 0.99 (1.3%) 

Immediate: 0.99 (0.89%) 
Long: 0.99 (1.26%) 

For each modelled transmission setting defined by case management level and mosquito biting 1566 
patterns and for each intervention (Table S2.1), a comprehensive set of simulation scenarios was 1567 
built by sampling uniformly the parameter space (defined in Table S2.1) and simulation with 1568 
OpenMalaria. In this manner, a training and a test set were constructed. The training set was used 1569 
to train, for each setting and intervention, a Heteroskedastic GP model in a 5-fold cross-1570 
validation procedure. The performance of the trained GP was assessed by computing the Pearson 1571 
correlation coefficient r2 as well as the mean error between the true and predicted outcomes on 1572 
both out-of-sample cross-validation and test sets. For each intervention and follow-up 1573 
(immediate or long-term), the average r2 and mean error for all the GP models trained across 6 1574 
settings (seasonal or perennial, high, medium, or low mosquito indoor biting) are reported. 1575 
  1576 
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5  Finding minimal intervention properties and results for key determinants of impact 1577 

5.1  Finding minimal intervention properties 1578 
As summarized in the above and in the Methods, the trained GP models for each transmission 1579 
setting and intervention were used within a general-purpose optimization scheme to identify 1580 
minimum intervention properties that reach a defined PfPR0-99 reduction goal given operational 1581 
and intervention constraints.  1582 

Let  1583 
𝑔(𝒙) = 𝑔(𝑥!, 𝑥", 𝑥1, 𝑥2) 1584 

denote the GP model predicting the mean prevalence reduction obtained after deploying an 1585 
intervention with given characteristics in a transmission setting, with 1586 

𝑥! = 𝑡𝑜𝑜𝑙	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	1587 
𝑥" = 𝑡𝑜𝑜𝑙	ℎ𝑎𝑙𝑓 − 𝑙𝑖𝑓𝑒	1588 
𝑥1 = 𝑡𝑜𝑜𝑙	𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦	1589 
𝑥2 = 𝑎𝑐𝑐𝑒𝑠𝑠	𝑡𝑜	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡. 1590 

For various levels of PfPR0-99 denoted with pk, each intervention characteristic was optimized 1591 
separately, keeping the remaining characteristics as well as the level of case management fixed to 1592 
pre-set levels. Precisely, the optimization procedure searches for 1593 

min(𝑥&)|	𝑥~& 1594 
such as  1595 

𝑔(𝒙) ≥ 𝑝3 1596 
with the constraints: 1597 

𝑙& ≤	𝑥& ≤	𝑢& ,	 1598 
where li and ui are the lower and upper bounds of xi, respectively and the notation ~i is used to 1599 
represent all the intervention characteristics except i. A detailed description of the parameter 1600 
specifications during optimization for each intervention is provided in Additional file 1: Table 1601 
S2.1. 1602 
 1603 
To solve the above optimization problem, a general nonlinear augmented Lagrange multiplier 1604 
method (99, 100) implemented in the R package Rsolnp (101) was used. To ensure optimality of 1605 
the obtained solutions and to avoid local minima, 10 random restarts were chosen among 1,000 1606 
uniformly sampled input parameter sets and the optimization procedure was run separately for 1607 
each restart (implemented in function gosolnp in the same R package). To capture the variance of 1608 
the optimal intervention profile, since the output of a GP model is a distribution, the above 1609 
optimization problem was solved for several cases, and the distribution of the obtained minima are 1610 
reported when:  1611 

(𝑖)			𝑔(𝒙) = 	𝜇	1615 
(𝑖𝑖)		𝑔(𝒙) = 	𝜇 ± 	𝜎	1616 
(𝑖𝑖𝑖)	𝑔(𝒙) = 	𝜇 ± 	2𝜎	1617 

where 𝜇  is the predicted mean of the GP model and 𝜎  is the standard deviation. Where the 1612 
nonlinear optimization algorithm did not find any solutions, an additional fine grid search of 1613 
10,000 uniformly sampled data points was performed. 1614 
 1618 
Under the simulated levels of case management, before intervention deployment, in seasonal 1619 
settings, at low-transmission (simulated EIR < 2, corresponding simulated true PfPR2-10 < 1620 
11.7%), over 75% of simulations reached malaria elimination (PfPR0-99 = 0) (Additional file 1: 1621 
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Fig. S3.5). For this reason, the space of obtained prevalence reductions following intervention 1622 
deployment was rather sparse and the obtained optima were not reliable and often did not 1623 
converge. Therefore, it was chosen to report minimum intervention profiles for settings with true 1624 
PfPR2-10 >= 11.7% (with RDTs this yields a patent PfPR2-10 >= 5.8%).  1625 

1626 
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5.2  Results: Key determinants of impact 1627 
 1628 

 1629 
Fig. S5.1. Key drivers of impact for immunological malaria interventions across different 1630 
transmission settings.  1631 
Results of sensitivity analysis identifying the determinants of intervention impact on PfPR0-99 1632 
reduction for anti-infective monoclonal antibodies (A, B), anti-infective vaccines (C, D) and 1633 
transmission-blocking vaccines (E, F). The distinct colors represent proportions of the GP 1634 
emulator output variance (relative importance) attributable to intervention efficacy, half-life, 1635 
deployment coverage, as well as health system access. Determinants of impact are shown for 1636 
both immediate and late follow-up when interventions are applied once per year for three years 1637 
in different transmission settings (see full intervention specifications in the Additional file 1: 1638 
section 1.2.3). The transmission settings are defined by two seasonal settings (seasonal and 1639 
perennial) and three types of mosquito biting patterns (low, medium. and high indoor biting). 1640 
The mosquito biting patterns had little to no effect on the results of the sensitivity analysis for 1641 

Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 43 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Low indoor biting

0.00

0.25

0.50

0.75

1.00

8 34 44 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 59 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Low indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7433
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Anti−infective monoclonal, immediate follow−upA
Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 43 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Low indoor biting

0.00

0.25

0.50

0.75

1.00

8 34 44 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 59 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Low indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7433
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Anti−infective monoclonal, late follow−upB

Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Anti−infective vaccine, immediate follow−upC
Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e
Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Anti−infective vaccine, late follow−upD

Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Transmission−blocking vaccine, immediate follow−upE
Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Transmission−blocking vaccine, late follow−upF

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 77 

these immunological interventions (see results for all settings for monoclonal antibodies in 1642 
figures A and B). Therefore, only the results for seasonal and perennial settings with high indoor 1643 
mosquito biting are displayed for the vaccine interventions. 1644 
 1645 

 1646 

Fig. S5.2. Key drivers of impact for vector control malaria interventions across different 1647 
transmission settings.  1648 
Results of sensitivity analysis identifying the determinants of intervention impact on PfPR0-99 1649 
reduction for attractive targeted sugar baits (A, B) and eave tubes (C, D). The distinct colors 1650 
represent proportions of the GP emulator output variance (relative importance) attributable to 1651 
intervention efficacy, half-life, deployment coverage, as well as health system access. 1652 
Determinants of impact are shown for both immediate and late follow-up when interventions are 1653 
applied once per year for three years in different transmission settings (see full intervention 1654 
specifications in the Additional file 1: section 1.2.3). The transmission settings are defined by 1655 
two seasonal settings (seasonal and perennial) and three types of mosquito biting patterns (low, 1656 
medium, and high indoor biting). Like for the immunological interventions in the previous 1657 
figure, we see limited difference between key drivers for attractive targeted sugar baits in 1658 
different biting settings as mosquitoes sugar feed before indoor or outdoor biting. In contrast, we 1659 
observe that intervention properties of eave tubes rather than health system access to treatment 1660 

Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 43 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Low indoor biting

0.00

0.25

0.50

0.75

1.00

8 34 44 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e
Seasonal
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 59 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Low indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7433
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e
Perennial
High indoor biting

Attractive targeted sugar baits, immediate follow−upA
Coverage Efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 43 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Low indoor biting

0.00

0.25

0.50

0.75

1.00

8 34 44 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 59 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Low indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7433
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Attractive targeted sugar baits, late follow−upB

Coverage Preprandial efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 43 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Low indoor biting

0.00

0.25

0.50

0.75

1.00

8 34 44 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 59 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Low indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7433
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Eave tubes, immediate follow−upC
Coverage Preprandial efficacy Half−life Access

0.00

0.25

0.50

0.75

1.00

7 34 43 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Low indoor biting

0.00

0.25

0.50

0.75

1.00

8 34 44 56 5822
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

7 34 44 56 5922
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Seasonal
High indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 59 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Low indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7433
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
Mid indoor biting

0.00

0.25

0.50

0.75

1.00

9 48 60 72 7434
Median PfPR2−10 (%)

R
el

at
ive

 im
po

rta
nc

e

Perennial
High indoor biting

Eave tubes, late follow−upD

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 78 

are larger drivers of impact in indoor biting settings, as mosquitoes in those settings will be more 1661 
likely to contact the eave tube. 1662 

 1663 

6  Results: Feasible landscapes of optimal, constrained intervention profiles 1664 

 1665 

 1666 
Fig. S6.1. Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an 1667 
anti-infective monoclonal antibody deployed once per year.  1668 
The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1669 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1670 
by minimal reduction in PfPR0-99, y-axis) across different simulated true PfPR2-10 settings 1671 
(rounded values, x-axis) with seasonal transmission and high indoor mosquito biting. Each 1672 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1673 

0 25 50 75 100
Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90
Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

0 2 4 6 8
Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

Anti−infective monoclonal (once per year), immediate follow−upA

0 25 50 75 100
Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90
Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

0 2 4 6 8
Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

Anti−infective monoclonal (once per year), late follow−upB

0 25 50 75 100
Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90
Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

0 2 4 6 8
Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

Anti−infective monoclonal + blood stage drug (once per year), immediate follow−upC

0 25 50 75 100
Minimum
Coverage (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

30 40 50 60 70 80 90
Minimum
Efficacy (%) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

0 2 4 6 8
Minimum
half−life (months) 

40

60

80

100

34 40 4412 25
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Seasonal, 
high indoor biting

40

60

80

100

48 56 6018 37
Median PfPR2−10 (%)

M
in

im
um

 re
du

ct
io

n 
(%

)

Perennial, 
high indoor biting

Anti−infective monoclonal + blood stage drug (once per year), late follow−upD

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2021.01.05.21249283doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.05.21249283
http://creativecommons.org/licenses/by-nc/4.0/


 79 

(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1674 
an anti-infective monoclonal antibody delivered alone and assessing immediate (A) and late (B) 1675 
follow up, as well as when delivered in combination with a blood stage drug assessing immediate 1676 
(C) and late (D) follow-up. The simulated case management level (E5) for all the displayed 1677 
optimization analyses was assumed 25%. 1678 
 1679 

  1680 
Fig. S6.2. Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an 1681 
anti-infective monoclonal antibody deployed twice per year.  1682 
The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1683 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1684 
by minimal reduction in PfPR0-99, y-axis) across different simulated true PfPR2-10 settings 1685 
(rounded values, x-axis) with seasonal transmission and high indoor mosquito biting. Each 1686 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1687 
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(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1688 
an anti-infective monoclonal antibody delivered alone and assessing immediate (A) and late (B) 1689 
follow up, as well as when delivered in combination with a blood stage drug assessing immediate 1690 
(C) and late (D) follow-up. The simulated case management level (E5) for all the displayed 1691 
optimization analyses was assumed 25%.  1692 
 1693 

 1694 
Fig. S6.3. Feasible landscapes of optimal, constrained intervention profiles (TPPs) for an 1695 
anti-infective vaccine deployed once per year.  1696 
The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1697 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1698 
by minimal reduction in PfPR0-99, y-axis) across different simulated true PfPR2-10 settings 1699 
(rounded values, x-axis) with seasonal transmission and high indoor mosquito biting. Each 1700 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1701 
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(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1702 
an anti-infective vaccine delivered alone and assessing immediate (A) and late (B) follow up, as 1703 
well as when delivered in combination with a blood stage drug assessing immediate (C) and late 1704 
(D) follow-up. The simulated case management level (E5) for all the displayed optimization 1705 
analyses was assumed 25%.  1706 
 1707 

 1708 

Fig. S6.4. Feasible landscapes of optimal, constrained intervention profiles (TPPs) for a 1709 
transmission-blocking vaccine deployed once per year.  1710 
The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1711 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1712 
by minimal reduction in PfPR0-99, y-axis) across different simulated true PfPR2-10 settings 1713 
(rounded values, x-axis) with seasonal transmission and high indoor mosquito biting. Each 1714 
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intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1715 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1716 
a transmission-blocking vaccine delivered alone and assessing immediate (A) and late (B) follow 1717 
up, as well as when delivered in combination with a blood stage drug assessing immediate (C) 1718 
and late (D) follow-up. The simulated case management level (E5) for all the displayed 1719 
optimization analyses was assumed 25%.  1720 
 1721 

 1722 
Fig. S6.5. Feasible landscapes of optimal, constrained intervention profiles (TPPs) for 1723 
attractive targeted sugar baits deployed once or twice per year.  1724 
The heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1725 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1726 
by minimal reduction in PfPR0-99, y-axis) across different simulated true PfPR2-10 settings 1727 
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(rounded values, x-axis) with seasonal transmission and high indoor mosquito biting. Each 1728 
intervention characteristic was minimized in turn, while keeping the other characteristics fixed 1729 
(fixed parameter values for each optimization are specified in Table S2.2). Results are shown for 1730 
attractive targeted sugar baits delivered alone once per year and assessing immediate (A) and late 1731 
(B) follow up, as well as when delivered twice per year assessing immediate (C) and late (D) 1732 
follow-up. The simulated case management level (E5) for all the displayed optimization analyses 1733 
was assumed 25%.  1734 
 1735 

 1736 

Fig. S6.6. Feasible landscapes of optimal, constrained intervention profiles (TPPs) for eave 1737 
tubes deployed once per year.  1738 
Heatmaps represent landscapes of optimal, constrained intervention characteristic profiles 1739 
(minimum coverage, efficacy, and half-life) required to achieve various health goals (quantified 1740 
by minimal reduction in PfPR0-99, y-axis) across different simulated true PfPR2-10 settings 1741 
(rounded values, x-axis) with seasonal or perennial transmission and high indoor mosquito biting 1742 
(results for other biting patterns not shown as they are similar). Each intervention characteristic 1743 
was minimized in turn, while keeping the other characteristics fixed (fixed parameter values for 1744 
each optimization are specified in Table S2.2). Results are shown for eave tubes delivered alone 1745 
and assessing immediate (A) and late (B) follow up. The simulated case management level (E5) 1746 
for all the displayed optimization analyses was assumed 25%.  1747 
  1748 
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7  Results: Optimal intervention profiles 1749 
 1750 

 1751 

Fig. S7.1. Optimal intervention profiles (TPPs) for anti-infective monoclonal antibodies 1752 
under various deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1753 
Each figure displays minimum, constrained intervention characteristic profiles (minimum 1754 
coverage, efficacy, and half-life, y-axis) required to achieve a minimal reduction in PfPR0-99 of 1755 
70% across different simulated true PfPR2-10 settings (rounded values, x-axis) with seasonal 1756 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1757 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1758 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1759 
(A-C) and late (D-F) follow up. The simulated case management level (E5) for all the displayed 1760 
optimization analyses was assumed 25%.  1761 
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 1763 

Fig. S7.2. Optimal intervention profiles (TPPs) for anti-infective vaccines under various 1764 
deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1765 
Each figure displays minimum, constrained intervention characteristic profiles (minimum 1766 
coverage, efficacy, and half-life, y-axis) required to achieve a minimal reduction in PfPR0-99 of 1767 
70% across different simulated true PfPR2-10 settings (rounded values, x-axis) with seasonal 1768 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1769 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1770 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1771 
(A-C) and late (D-F) follow up. The simulated case management level (E5) for all the displayed 1772 
optimization analyses was assumed 25%.  1773 
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 1775 

Fig. S7.3. Optimal intervention profiles (TPPs) for transmission-blocking vaccines under 1776 
various deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1777 
Each figure displays minimum, constrained intervention characteristic profiles (minimum 1778 
coverage, efficacy, and half-life, y-axis) required to achieve a minimal reduction in PfPR0-99 of 1779 
70% across different simulated true PfPR2-10 settings (rounded values, x-axis) with seasonal 1780 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1781 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1782 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1783 
(A-C) and late (D-F) follow up. The simulated case management level (E5) for all the displayed 1784 
optimization analyses was assumed 25%.   1785 
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 1786 

Fig. S7.4. Optimal intervention profiles (TPPs) for attractive targeted sugar baits under 1787 
various deployment regimes to achieve a PfPR0-99 reduction of at least 70%.  1788 
Each figure displays minimum, constrained intervention characteristic profiles (minimum 1789 
coverage, efficacy, and half-life, y-axis) required to achieve a minimal reduction in PfPR0-99 of 1790 
70% across different simulated true PfPR2-10 settings (rounded values, x-axis) with seasonal 1791 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1792 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1793 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1794 
(A-C) and late (D-F) follow up. The simulated case management level (E5) for all the displayed 1795 
optimization analyses was assumed 25%.  1796 
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 1798 

Fig. S7.5. Optimal intervention profiles (TPPs) for eave tubes to achieve a PfPR0-99 1799 
reduction of at least 70%.  1800 
Each figure displays minimum, constrained intervention characteristic profiles (minimum 1801 
coverage, efficacy, and half-life, y-axis) required to achieve a minimal reduction in PfPR0-99 of 1802 
70% across different simulated true PfPR2-10 settings (rounded values, x-axis) with seasonal 1803 
transmission and high indoor mosquito biting. Each intervention characteristic was minimized in 1804 
turn, while keeping the other characteristics fixed (fixed parameter values for each optimization 1805 
are specified in Table S2.2). Results are shown when assessing PfPR0-99 reduction at immediate 1806 
(A-C) and late (D-F) follow up. The simulated case management level (E5) for all the displayed 1807 
optimization analyses was assumed 25%.  1808 
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