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Abstract 1 

Background: An intensive lifestyle modification program or metformin pharmacotherapy reduced the 2 

risk of developing diabetes in patients at high risk, but are not widely used in the 88 million American 3 

adults with prediabetes. 4 

 5 

Objective: Develop an electronic health record (EHR)-based risk tool that provides point-of-care 6 

estimates of diabetes risk to support targeting interventions to patients most likely to benefit. 7 

 8 

Design: Cross-design synthesis: risk prediction model developed and validated in large observational 9 

database, treatment effect estimates from risk-based reanalysis of clinical trial data.  10 

 11 

Setting: Outpatient clinics in US. 12 

 13 

Patients: Risk model development cohort: 1.1 million patients with prediabetes from the OptumLabs 14 

Data Warehouse (OLDW); validation cohort: distinct sample of 1.1 million patients in OLDW. 15 

Randomized clinical trial cohort: 3081 people from the Diabetes Prevention Program (DPP) study.  16 

 17 

Interventions: Randomization in the DPP: 1) an intensive program of lifestyle modification; 2) standard 18 

lifestyle recommendations plus 850 mg metformin twice daily; or 3) standard lifestyle recommendations 19 

plus placebo twice daily. 20 

 21 

Results: Eleven variables reliably obtainable from the EHR were used to predict diabetes risk. This model 22 

validated well in the OLDW (c-statistic = 0.76; observed 3-year diabetes rate was 1.8% in lowest-risk 23 

quarter and 19.6% in highest-risk quarter). In the DPP, the hazard ratio for lifestyle modification was 24 

constant across all levels of risk (HR = 0.43, 95% CI 0.35 – 0.53); while the HR for metformin was highly 25 

risk-dependent (HR HR = 1.1 [95% CI: 0.61 - 2.0] in the lowest-risk quarter vs. HR=0.45 [95% CI: 0.35 - 26 

0.59] in the highest risk quarter). Fifty-three percent of the benefits of population-wide dissemination of 27 

the DPP lifestyle modification, and 76% of the benefits of population-wide metformin therapy can be 28 

obtained targeting the highest risk quarter of patients.  29 

 30 

Limitations: Differences in variable definitions and in missingness across observational and trial settings 31 

may introduce estimation error in risk-based treatment effects.  32 

 33 

Conclusion: An EHR-compatible risk model might support targeted diabetes prevention to more 34 

efficiently realize the benefits of the DPP interventions.   35 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.06.21249334doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.06.21249334
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 36 

The Diabetes Prevention Program (DPP) Study showed that either an intensive program of lifestyle 37 

modification or pharmacotherapy with metformin substantially reduced the risk of developing type 2 38 

diabetes in patients at high risk, compared to “usual care.”
1
  The findings have broad implications, as 39 

“prediabetes” affects approximately 88 million US adults in the US.
2
  40 

Strenuous calls to address the epidemic of diabetes with prevention
3,4

 have been counter-balanced 41 

by concerns about the over-medicalization of prediabetes.
5
 Almost two decades after the publication of 42 

the DPP Study, it remains unclear how best to implement these interventions in such an overwhelmingly 43 

large, and mostly undiagnosed, population. A 2015 study examining a national sample of over 17,000 44 

working-age adults with prediabetes found that only 3.7% were receiving metformin.
6
 Similarly, 45 

widespread use of the intensive lifestyle intervention remains largely unrealized despite evidence that 46 

rigorous diet and physical activity promotion reduces diabetes risk in the community setting.
7
 47 

Yet, prediabetes is itself a heterogeneous condition. We previously showed that even among 48 

patients enrolled in the DPP Study itself, the risk of developing diabetes within 3 years varies widely and 49 

is highly skewed.
8
 Some trial participants were estimated to have a 1–2% risk, others 90%. 50 

Unsurprisingly, the degree of benefit from metformin or from the lifestyle intervention was also 51 

distributed unevenly.  52 

This prior proof-of-concept work had several limitations. Notably, the risk distribution within the 53 

DPP trial participants may differ from that of patients seen in routine practice, particularly since the 54 

American Diabetes Association (ADA) has subsequently broadened its definition of prediabetes to 55 

include a still more heterogeneous population.
9
  Further, the application of prediction methods to data 56 

routinely collected in the electronic health record (EHR) provides a promising means to overcome some 57 

of the major barriers to the use of risk models.
10,11

 For example, in addition to requiring manual 58 

ascertainment of variables, the previously reported DPP-based model required waist circumference and 59 

waist-to-hip ratio measurements that are not difficult to ascertain in routine practice.  Herein, we 60 

describe development of a clinical prediction model using a hybrid approach that makes use of routinely 61 

collected EHR data to predict the risk of diabetes onset and clinical trial data to estimate unbiased risk-62 

based effects of preventive interventions.  63 

 64 

Methods 65 

Overview 66 
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We sought to develop and validate a diabetes risk prediction model using data elements readily 67 

available in the EHR for dissemination across healthcare systems as an EHR-embedded tool, to facilitate 68 

ease of use.  The tool provides clinicians and their patients with an individualized risk of developing 69 

diabetes and the estimated benefit of applying a DPP treatment strategy—either an intensive lifestyle 70 

program or pharmacotherapy with metformin (the combination of both was not tested in the DPP 71 

Study).   72 

 73 

Data sources and Participants 74 

The model was developed and validated using EHR data from the OptumLabs Data Warehouse (OLDW). 75 

The OptumLabs EHR database is a geographically diverse sample of the US population with longitudinal 76 

clinical data on over 33 million lives with at least one clinic visit during the study period.  Using a 77 

retrospective observational cohort design, we geographically stratified the database by US Census 78 

Region into a development cohort of 1.1 million patients (North East, South, and West) and a separate 79 

validation cohort of 1.1 million patients (Midwest).  80 

Eligibility criteria included age between 25 and 75 upon an “index” office or clinic encounter (“index 81 

visit” defined by CPT/HCPCS codes, see Appendix Table 1) between January 1, 2012, and December 31, 82 

2016, at which time they met lab-based criteria for the diagnosis of prediabetes. Prediabetes was 83 

defined by current American Diabetes Association (ADA) criteria, i.e., having no diagnosis of type 1 or 84 

type 2 diabetes on the problem list and one of the following within 12 months prior to the visit: 85 

hemoglobin A1c between 5.7 and 6.4% inclusive and/or fasting glucose (FG) between 100 and 125 86 

mg/dL inclusive. Since labeling of fasting status may be incomplete, a glucose drawn at the same time as 87 

a lipid panel or triglycerides was considered as fasting.  We did not use the 2-hour post glucose load 88 

criterion as it is rarely used in clinical practice for prediabetes. Patients were excluded if they had 89 

random (non-fasting) glucose greater than or equal to 200 mg/dL on two occasions within a 3-month 90 

period prior to the index visit.  Women with documented pregnancy within 24 months of the index visit 91 

were also excluded. To ascertain development of diabetes, patients also had to have some clinical 92 

activity 3 years after the index visit. Eligibility criteria are detailed in Appendix Table 1. 93 

The DPP dataset was used to estimate treatment effect for metformin or the intensive lifestyle 94 

modification program.  The design, rationale, outcomes, and loss to follow-up of the DPP have been 95 

described in detail elsewhere
1,12

.  Briefly, inclusion criteria included a body mass index (BMI) of 24 or 96 

higher (22 or higher in Asians) and a fasting plasma glucose concentration of 95 to 125 mg/dL inclusive 97 

(impaired fasting glucose) and a concentration of 140 to 199 mg/dL inclusive two hours after a 75 g oral 98 
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glucose load (impaired glucose tolerance). We note these criteria differ from the ADA’s current 99 

diagnostic criteria for prediabetes we used for the OLDW model; the ADA definition imposes no BMI 100 

requirement.
13

 The DPP participants were randomized to: 1) standard lifestyle recommendations plus 101 

850 mg of metformin twice daily; 2) an intensive program of lifestyle modification that included 16 102 

lessons with a case manager and set goals of at least a 7 percent weight loss and at least 150 minutes of 103 

physical activity per week; or 3) standard lifestyle recommendations plus placebo twice daily. After a 104 

median follow-up period of 2.8 (range 1.8–4.6) years, progression to diabetes was reduced by 58% (95% 105 

confidence interval, 47% to 66%) in the lifestyle modification arm and 31% (17% to 43%) in the 106 

metformin arm, both compared with the placebo arm
1
. The NIDDK Data Repository, from which we 107 

obtained data, includes 3081 of the 3234 DPP participants (95% of full population), as some local 108 

institutional review boards declined to participate in data distribution. 109 

 110 

Outcome 111 

For the OLDW cohort, the time to event outcome was defined as the time to the first patient encounter 112 

after the index visit with documented evidence of type 2 diabetes by any of the following criteria:
14

 113 

diagnosis codes ICD-9 250.x0 or 250.x2 or ICD-10 E11.xx; pharmacotherapy or procedure for type 2 114 

diabetes (as detailed in Appendix Table 1); A1c greater than 6.4%; fasting glucose (or presumed fasting, 115 

as noted above) greater than 125 mg/dL; 2-hour OGTT post-load glucose greater than 199 mg/dL.  Lab-116 

based criteria required confirmation by an additional lab in the diabetes range or by another method 117 

(i.e., diagnosis or medication). Follow-up time for patients who did not meet the outcome definition was 118 

censored at the first occurrence of the last observed encounter or end of study period.  119 

 120 

Candidate predictors 121 

A priori risk model predictors were identified by a systematic review conducted by Collins et al.
15

 We 122 

selected the following 11 independent variables that were included in at least 3 prior diabetes risk 123 

models and were judged to be easily and reliably obtainable in EHR data: age, gender, race, smoking 124 

status, BMI, presence or absence of a diagnosis of hypertension, systolic blood pressure, HDL 125 

cholesterol, triglycerides, fasting glucose, hemoglobin A1c (HgbA1c).  Four variables included in 3 prior 126 

models were not considered based on the difficulty of ascertaining them in EHR data: physical activity, 127 

waist circumference, waist-to-hip ratio, and family history of diabetes.  128 

 129 

Missing data 130 
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Missing data is a common limitation when working with EHR data.
16

  While multiple imputation may 131 

improve estimates of parameter effects under a missing-at-random assumption, it does not provide a 132 

practical means to cope with missingness in actual patients for whom a prediction needs to be made. 133 

Thus, we used missing indicator variables to capture the predictive effects of missingness under the 134 

assumption that future and prior missingness are similarly informative. For each predictor, an additional 135 

dichotomous variable indicated the presence of missing values.  For continuous variables (e.g., BMI, 136 

HgbA1c), the missing value of the original variable was replaced by a fixed constant (the median) prior to 137 

model estimation, and the missing indicator variable appropriately adjusted for the “missing variable 138 

effect.”  For categorical variables (e.g., race, smoking status), an additional level was added to define the 139 

missing category.   140 

 141 

Model development 142 

We used multivariable Cox proportional hazards regression to estimate the predicted probability of 143 

developing type 2 diabetes. We included two a priori interactions, race*BMI and race*HgbA1c, based 144 

upon clinical judgment and the literature.
17,18

  Model performance was assessed for discrimination and 145 

calibration.  A bootstrap resampling procedure with 500 samples was used to internally validate the 146 

model, estimate optimism-corrected discrimination, and assess calibration.   147 

 148 

Model validation 149 

Using the equation derived in the development cohort we calculated the predicted probability of 150 

developing type 2 diabetes for patients in the validation cohort.  Model performance upon external 151 

validation was assessed for discrimination using Harrell’s measure of concordance for censored 152 

response variable and calibration.
19

  153 

 154 

Estimating risk-specific treatment effects 155 

To estimate the risk-based treatment effect for metformin pharmacotherapy or the DPP lifestyle 156 

modification, we performed a risk-based heterogeneity of treatment effect analysis on the DPP.
20

   The 157 

applicability of the OLDW model to the DPP data was anticipated to be limited by: differences between 158 

predictor variable definitions and measurement within a trial context vs. EHR data, differences in the 159 

pattern of missingness between these contexts (i.e., there was essentially no data missingness in the 160 

DPP), differences in patient enrollment in the two settings and differences in outcome definition and 161 

ascertainment.
21

 Thus, we refit the OLDW model to the DPP, using the same variables and interaction 162 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.06.21249334doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.06.21249334
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

terms. Consistent with methodological recommendations
22,23

, all 3 DPP arms were used, since research 163 

has shown that overfitting to a control arm can induce spurious heterogeneity of treatment effects.
24-26

 164 

The treatment effect was then estimated by incorporating this linear predictor into a Cox proportional 165 

hazards model with the following terms: treatment (metformin or DPP lifestyle modification), the linear 166 

predictor of risk from the refitted model, and (potentially) an interaction between these to account for 167 

important changes in relative risk reduction across different levels of baseline risk. Based on a previous 168 

analysis,
8
 we anticipated a risk-by-treatment interaction with metformin pharmacotherapy and a 169 

consistent relative effect with the DPP lifestyle modification, but we examined interactions for both 170 

treatment arms. We also performed a sensitivity analysis, examining the risk-by-treatment interactions, 171 

stratifying the DPP by the OLDW model without any refitting, and examining the distribution of 172 

predicted effects using this model. 173 

 174 

Incorporation of Decision Support in Electronic Health Record 175 

In order to facilitate use in clinical decision making, based on patient and provider focus groups and 176 

interviews, we implemented the model in two different ways: 1) a hard coded calculation in an Allscripts 177 

EHR; 2) a cloud-hosted SMART on FHIR
27

 app that can be incorporated into any EHR, leveraging 178 

interoperability standards recently promulgated by the US office of the National Coordinator of Health 179 

Information (ONC).  180 

 181 

Role of the Funding Source 182 

This study was funded by a Patient-Centered Outcomes Research Institute (PCORI), who had no role in 183 

the conduct of this research or the decision to publish the results.  184 

 185 

IRB Approval 186 

This study was reviewed and approved by the Tufts Health Sciences Institutional Review Board prior to 187 

accessing the deidentified data from the DPP and OLDW datasets. 188 

 189 

Results 190 

Figure 1 shows the development of the derivation and validation OLDW datasets. Approximately 1.1 191 

million people with prediabetes from the Northeast, South and West were included in the derivation 192 

cohort, and a similar number from the Midwest were included in the validation cohort. Characteristics 193 

of these cohorts are shown in Table 1.  194 
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 195 

Model development and validation: Risk stratification 196 

The coefficients for each of the variable and interaction terms included in the model are shown in Table 197 

2.  The optimism-corrected c-statistic on the derivation sample was 0.73. When the model was tested on 198 

the validation cohort, the c-statistic was slightly higher, 0.76. Calibration on the validation cohort was 199 

very good (Figure 2). Among the 268,959 patients in the lowest-risk quartile, the predicted diabetes rate 200 

was 3.1% (95% confidence interval, 3.0 to 3.2%), while the observed rate was 1.8% (1.7 to 1.9%); among 201 

the 268,958 patients in highest-risk quartile, the predicted diabetes rate was 19.2% (18.6 to 19.9%), 202 

while the observed rate was 19.6% (19.4 to 19.8%). 203 

 204 

Calculation of relative treatment effects in the DPP Study 205 

Prior work demonstrated a consistent relative treatment effect across risk groups with the DPP lifestyle 206 

modification and an increasing relative effect with progressively higher risk for metformin 207 

pharmacotherapy.
8
  Using the OLDW model refit to the DPP data (Appendix Table 2; c-statistic 0.719), 208 

we confirmed the absence of a treatment-by-risk interaction for lifestyle modification (p for interaction 209 

= 0.68); thus, we applied a constant relative risk reduction in the prediction model (HR = 0.43; 95% CI: 210 

0.35 – 0.53) to estimate the diabetes outcome with lifestyle modification.  We also confirmed the 211 

presence of a treatment-by-risk interaction with metformin pharmacotherapy (p for interaction= 0.003; 212 

using the continuous risk on the logit scale): low-risk patients had outcomes with metformin that were 213 

similar to usual care (in lowest risk quarter, observed HR = 1.1; 95% CI: 0.61 to 2.0), and high-risk 214 

patients have outcomes with metformin that were similar to the DPP lifestyle modification (in highest 215 

risk quarter, observed HR = 0.45; 95% CI: 0.35 to 0.59).  Figure 3 shows observed and predicted benefits 216 

across quartiles for the DPP, for both lifestyle and metformin.  A look-up table showing the relative risk 217 

reduction with metformin for each level of risk is shown in Appendix Table 3, truncated at a low value of 218 

0% (no harm or benefit) and a high value of 60%. 219 

 220 

Distribution of risks and benefits in OLDW 221 

The overall average 3-year predicted risk of developing diabetes for patients in the validation OLDW 222 

cohort was 9.0%, 3.9%, and 6.0%, with usual care, the DPP lifestyle diabetes and metformin respectively. 223 

Predictions for the median patient in each quartile using the final model are shown in Table 2.  For 224 

lifestyle modification, 53% of the total preventable cases of diabetes could be prevented by treating the 225 

25% of patients at highest risk; 76% by treating the 50% at highest risk and 91% by treating the 75% at 226 
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highest risk. For metformin therapy, 73% of the total preventable cases could be prevented by treating 227 

the 25% of patients at highest risk; 93% by treating the 50% at highest risk, and 100% by treating the 228 

75% at highest risk. 229 

 230 

Sensitivity analysis 231 

Direct application of the OLDW model (not refit) on the DPP showed a moderately diminished 232 

discrimination (c-statistic = 0.68). There was no risk-by treatment interaction with lifestyle (p = 0.69). 233 

The risk-by-treatment interaction with metformin was qualitatively similar to that with the refit model 234 

(p = 0.08), and the distribution of predicted benefits with this model was also similar. For lifestyle 235 

modification, 53% of the total cases of preventable diabetes could be prevented by treating the 25% of 236 

patients at highest risk; 76% by treating the 50% at highest risk. For metformin therapy, 65% of the total 237 

cases of preventable diabetes could be prevented by treating the 25% of patients at highest risk; 86% by 238 

treating the 50% at highest risk.  239 

 240 

Implementation of the final model 241 

Figure 4 shows the user interface of the SMART app in an EHR. Predictions are generated automatically 242 

based on the data available and retrieved from the patient’s record, using appropriate indicators in the 243 

model for missingness where necessary.  244 

 245 

Discussion 246 

We present an EHR-compatible model to predict diabetes onset, using 11 variables routinely 247 

collected in clinical practice. A major strength of the risk model is that it was derived on the OLDW, 248 

which reflects people with prediabetes defined by the most commonly used ADA criteria, from 249 

heterogeneous EHRs and more than 30 US healthcare systems. The risk model derived in 3 US Census 250 

regions performed very well in a geographically distinct cohort. Compatible risk-specific estimates of 251 

treatment effect were then obtained directly from the DPP. By prioritizing care based on the risk of 252 

diabetes, this “hybrid” model might help optimize the efficiency of diabetes prevention: Treating just 253 

the highest-risk half of people with prediabetes would capture 77% of the benefit of population-wide 254 

lifestyle modification or 93% of the benefit of population-wide metformin pharmacotherapy. This is 255 

important because lifestyle programs are resource-intensive and require a high level of commitment 256 

from the patient. Pharmacotherapy is not without adverse effects, and over-treatment should be 257 

avoided, especially in low-risk patients who do not appear to benefit.  258 
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The issue of how to address prediabetes has grown in importance as broader diabetes screening 259 

has been recommended and promoted.
13,28

 For every patient with diabetes identified, screening 260 

identifies 6 patients with prediabetes; health systems are thus confronted with a growing number of 261 

patients who have prediabetes, without the capacity to treat everybody, reserving limited resources to 262 

improving cardiometabolic control for patients with diabetes. While the ADA has lowered the A1c and 263 

FG thresholds to define prediabetes,
9,29

 some have argued that the value of medicalizing prediabetes 264 

and defining an ever-growing proportion of the population as diseased is of dubious value.
5
 Most 265 

patients who are classified as prediabetic do not develop diabetes even in a decade, and risks of 266 

developing end organ damage are low for those developing diabetes later in life.
30

 Risk stratification 267 

offers an approach that promises more focused resources specifically on those who are likely to benefit. 268 

While our prior research results provided proof-of-concept that risk stratification could support 269 

providers and health systems prioritize these patients,
8
 the present EHR-compatible model is designed 270 

to be used at point of care, and it has been incorporated into the EHRs at several locations in the US.  271 

A longstanding concern regarding limitations of randomized clinical trial results is that they 272 

might not be applicable when there is non-random selection into the trial and when treatment effects 273 

are heterogeneous
31

. Here, for example, we found that the “real world” at-risk population was at 274 

substantially lower overall risk than patients included in the DPP, and that treatment effects were risk-275 

dependent. The lower overall risk in the OLDW cohort is the result of multiple factors, including: 1) 276 

different inclusion criteria for the DPP (including a high BMI and elevated 2-hour glucose after a 75-gram 277 

glucose load); 2) differences in the distribution of risk variables; 3) different outcome ascertainment, 278 

which is substantially more rigorous in the trial setting. Cross-design synthesis has been proposed as a 279 

means of addressing the potential problems of external validity of trial evidence by combining the 280 

strengths of both designs—observational designs to capture the full range of patients and randomized 281 

trials for unbiased treatment effects
32,33

.   282 

While several different methods for cross-design synthesis have been proposed
34,35

, all 283 

approaches depend on the ability to adjust results based on patient characteristics across designs. A 284 

seldom-discussed barrier is that variable definitions and ascertainment can differ considerably between 285 

clinical trial data and routinely collected observational data. Our approach was designed to address 286 

these barriers in a pragmatic way, by estimating risk-specific treatment effects in the clinical trial using 287 

the same set of variables as used in the observational risk model. This approach was driven in part by 288 

our novel aim, to predict effects in patients in clinical care, based on individual patient characteristics, 289 

rather than estimating average treatment effects in broad target populations.  290 
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A related issue that has received limited attention is how to deploy clinical prediction models in 291 

an EHR. There is a proliferation of clinical prediction models; use of routinely collected EHR data to 292 

automatically generate individual patient predictions is an appealing approach to disseminate these into 293 

the clinic. However, most published clinical prediction models are developed on research cohorts or 294 

clinical trials. Predictor variables collected in a trial are not consistently and rigorously captured in the 295 

EHR. Recent work has highlighted that heterogeneity in predictor measurement across different settings 296 

can substantially degrade model performance.
21,36

 Finally, use of trial or registry data cannot yield a 297 

model robust to missing values in the EHR database used for clinical prediction, since the pattern of 298 

missingness present across research and EHR environments is expected to differ. The usual approaches 299 

addressing potential bias arising from missingness (e.g., multiple imputation) are not designed to cope 300 

with missingness in variables used to generate predictions. These issues guided our decision to derive 301 

separate models in the EHR and trial setting, using a common set of variables that were well ascertained 302 

in both settings. 303 

 304 

Limitations 305 

 The methods we used for “cross-walking” between the two very different types of data (trial 306 

and EHR real world data) potentially introduce estimation error. Ideally, individualized treatment effects 307 

would be estimated on databases that combine the advantages of these different data sources: 308 

unbiased effect estimates through randomization; meticulous outcome ascertainment; consistency of 309 

predictors across derivation and implementation populations, and large, heterogeneous populations. 310 

Improving the quality of data collection in routine care and integrating randomized trials into routine 311 

care
37-39

  may narrow the gap between trial and “real-world” data. Despite these limitations, we 312 

obtained qualitatively consistent risk-stratified results in the DPP regardless of which risk model was 313 

used: consistency of relative treatment effects of lifestyle modification across all levels of risk and 314 

heterogeneous relative treatment effects with metformin, with much stronger relative effects in higher-315 

risk patients. 316 

 317 

Conclusion 318 

While the number of people in the US who have prediabetes and qualify for diabetes prevention 319 

programs could potentially overwhelm health care systems, these patients have substantial variation in 320 

their risk of developing diabetes and in their likelihood of benefiting from prevention therapies. 321 

Incorporation of a tool into the EHR to support automated risk stratification of patients in routine 322 
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clinical care—by predicting individualized benefits—can support shared decision-making and prioritize 323 

those patients who are most likely to benefit, where capacity might be limited. 324 
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Figure 1. CONSORT Diagram for OLDW derivation and validation cohort 
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Figure 2. Calibration Curves 

The figure on the left depicts the observed versus the predicted 3-year rate of developing diabetes in 

the 1.1 million patients in the derivation cohort (the Northeast, South and West regions) divided into 

equal sized tenths. The figure on the risk depicts the observed versus the predicted 3-year rate of 

developing diabetes in the 1.1 million patients in the validation cohort (the Midwest). 

 

4 
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Figure 3. Observed and predicted treatment effects in the DPP Study Across Risk Groups 

Black dot and bar is observed treatment effect. Red dot and bar is predicted treatment effect.  

 

Figure 3 depicts the observed treatment effects (black dots) in patients in the DPP Study when patients 

are stratified into quarters based on their predicted risk for the DPP lifestyle modification intervention 

(left) and for metformin (right). Predicted effects across risk groups are shown in red. The top set of 

graphs displays relative effects and shows a consistency of effects across risk groups for lifestyle 

modification but heterogeneous treatment effects for metformin (p=0.003). The bottom graphs show 

effects on the absolute risk difference scale, which shows increasing benefits for higher risk patients for 

both interventions.  
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Figure 4. User interface for decision support tool 
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Table 1. Cohort Characteristics 

 

 

 

 

 

 

 

 

 

              OLDW cohort DPP 
Overall Development Validation 

 
 

      Missing n= 2,152,816 n= 1,076,983 n= 1,075,833 n= 3081 

Age, years, mean (SD) 0.0% 54.9 (11.7) 55.1 (11.9) 55 (11.5) 50.6 (9.0) 

Female, % 0.1% 50.3 51.3 49.1 66.6 

Race, % 
   

    White 8.2% 86.5 84.3 88.9 57.4 

    Black 8.2% 10.2 10.8 9.1 20.9 

    Other nonwhite race (Optum = Asian) 8.2% 3.4 4.9 1.9 5.2 

Smoking status, % 15.6% 
  

   Current smoker 
 

23.3 20 26.4 9.0 

   Never smoked 
 

48 53.2 42.9 35.2 

   Former smoker 
 

28.8 26.8 30.7 55.8 

Height, cm, mean (SD) 15.9% 170.1 (10.1) 169.5 (10.1) 170.7 (10) 166.8 (9.2) 

Body mass index, mean (SD) 12.2% 31.1 (7) 30.8 (6.7) 31.8 (6.9) 33.5 (5.8) 

Diagnosis of hypertension, n (%) NA 44.5 44.4 45 27.1 

Systolic blood pressure, mmHg, mean (SD)  9.0% 127.4 (14.9) 127.6 (15.2) 127.3 (14.7) 124.2 (14.7) 

HDL cholesterol, mg/dl, mean (SD) 12.3% 50.9 (14.7) 51.3 (14.9) 50.6 (14.5) 45.6 (11.8) 

Triglycerides, mg/dl, mean (SD) 12.6% 138.3 (72.8) 136.9 (72.8) 139.7 (72.7) 162.9 (93.5) 

Hemoglobin A1c, %, mean (SD) 54.7% 5.8 (0.3) 5.8 (0.3) 5.8 (0.3) 5.9 (0.5) 

Fasting plasma glucose, mg/dl, mean (SD) 3.8% 103.7 (10.8) 103 (11.1) 104.5 (10.4) 107.2 (7.7) 

   FPG (fasting), mg/dL 86.3% 103.3 (9.2) 101.3 (10.5) 105.3 (7.3) 

 
   FPG (random), mg/dL 13.0% 103.7 (11.4) 103.1 (11.4) 104.4 (11.2)  
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Table 2. Final model for incident diabetes 

HR Lower Upper 
 

HR Lower Upper 

Age, per 10 years 1.08 1.08 1.08 adjustments for missing data 

Female 1.21 1.19 1.23 Race(missing) vs White 0.16 0.07 0.38 

Black vs white 2.73 1.32 5.64 Smoking(missing) vs never 1.08 1.06 1.11 

Asian vs white 0.01 0.00 0.02 A1c(missing) 0.75 0.74 0.77 

Current smoker vs never 1.22 1.19 1.24 FPG(missing) 1.03 0.99 1.07 

Former smoker vs never 1.11 1.09 1.13 Triglycerides(missing) 1.08 1.03 1.12 

HTN 1.23 1.21 1.25 BMI(missing) 1.22 1.18 1.26 

A1c, per 0.1% 1.24 1.18 1.29 SBP(missing) 1.22 1.17 1.26 

FPG, per 10 mg/dL 1.29 1.29 1.29 HDL(missing) 1.23 1.17 1.28 

Triglycerides, per 10 mg/dL 1.01 1.01 1.02 AA*BMI(missing) 0.97 0.91 1.03 

BMI, per 5 units 1.24 1.24 1.24 AA*A1c(missing) 1.56 1.48 1.64 

SBP, per 20 mmHG 1.05 1.05 1.05 Asian*BMI(missing) 0.77 0.70 0.84 

HDL, per 10 mg/dL 0.85 0.85 0.85 Asian*A1c(missing) 2.03 1.85 2.23 

Black *BMI 0.98 0.98 0.99 Race(missing)*BMI 0.99 0.99 1.00 

Black *A1c 0.95 0.84 1.07 Race(missing)*BMI(missing) 0.82 0.77 0.87 

Asian*BMI 1.00 0.99 1.01 Race(missing)*A1c 1.40 1.22 1.61 

Asian*A1c 2.32 1.91 2.83 Race(missing)*A1c(missing) 1.46 1.37 1.55 

 

Baseline hazard at S years (S0):  

 1 year   = 0.02470 

 2 years = 0.04757 

3 years = 0.07044 
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