1 Mutations that confer resistance to broadly-neutralizing antibodies define

2 **HIV-1** variants of transmitting mothers from that of non-transmitting

3 mothers

- 4
- 5 Amit Kumar¹, Elena E. Giorgi², Joshua J. Tu¹, David R. Martinez^{1#a}, Joshua Eudailey¹, Michael
- 6 Mengual^{3#b}, Manukumar Honnayakanahalli Marichannegowda^{3#c}, Russell Van Dyke⁴, Feng
- 7 Gao^{3#d} and Sallie R. Permar^{$1,5,\square$}
- 8
- ⁹ ¹Duke Human Vaccine Institute, Duke University Medical Centre, Durham, NC, USA
- 10 ²Los Alamos National Laboratory, Los Alamos, NM, USA
- ³Department of Medicine, Duke University Medical Centre, Durham, NC, USA
- 12 ⁴Tulane University School of Medicine, New Orleans, LA, USA
- ¹³ ⁵Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- #aDepartment of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill,
 NC, USA
- #bDepartment of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA,
 USA
- ^{#c}Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD,
 USA
- 20 ^{#d}National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin
- 21 University, Changchun, Jilin, China
- 22
- 23
- 24
- 25 Running Title: MTCT of HIV-1
- 26
- 27 ^{*}Corresponding author: Sallie R. Permar
- 28 Email: <u>sallie.permar@med.cornell.edu</u>

29 Abstract

30 Despite considerable reduction of mother-to-child transmission (MTCT) of HIV through use of 31 maternal and infant antiretroviral therapy (ART), over 150,000 infants continue to become 32 infected with HIV annually, falling far short of the World Health Organization goal of reaching 33 <20,000 annual pediatric HIV cases worldwide by 2020. Prior to the widespread use of ART in 34 the setting of pregnancy, over half of infants born to HIV-infected mothers were protected 35 against HIV acquisition. Yet, the role of maternal immune factors in this protection against 36 vertical transmission is still unclear, hampering the development of synergistic strategies to 37 further reduce MTCT. It has been established that infant transmitted/founder (T/F) viruses are 38 often resistant to maternal plasma, yet it is unknown if the neutralization resistance profile of 39 circulating viruses predicts the maternal risk of transmission to her infant. In this study, we 40 amplified HIV-1 envelope genes (env) by single genome amplification and produced 41 representative Env variants from plasma of 19 non-transmitting mothers from the U.S. Women 42 Infant Transmission Study (WITS), enrolled in the pre-ART era. Maternal HIV Env variants 43 from non-transmitting mothers had similar sensitivity to autologous plasma as observed for 44 non-transmitting variants from transmitting mothers. In contrast, infant variants were on 45 average 30% less sensitive to paired plasma neutralization compared to non-transmitted 46 maternal variants from both transmitting and non-transmitting mothers (p=0.015). Importantly, 47 a signature sequence analysis revealed that motifs enriched in *env* sequences from transmitting 48 mothers were associated with broadly neutralizing antibody (bnAb) resistance. Altogether, our 49 findings suggest that circulating maternal virus resistance to bnAb-mediated neutralization, but 50 not autologous plasma neutralization, near the time of delivery, predicts increased MTCT risk. 51 These results caution that enhancement of maternal plasma neutralization through passive or 52 active vaccination during pregnancy could drive the evolution of variants fit for vertical 53 transmission.

54 Author Summary

55 Despite widespread, effective use of ART among HIV infected pregnant women, new pediatric 56 HIV infections increase by about 150,000 every year. Thus, alternative strategies will be 57 required to reduce MTCT and eliminate pediatric HIV infections. Interestingly, in the absence 58 of ART, less than half of HIV-infected pregnant women will transmit HIV, suggesting natural 59 immune protection of infants from virus acquisition. To understand the impact of maternal 60 plasma autologous virus neutralization responses on MTCT, we compared the plasma and bnAb 61 neutralization sensitivity of the circulating viral population present at the time of delivery in 62 untreated, HIV-infected transmitting and non-transmitting mothers. While there was no 63 significant difference in the ability of transmitting and non-transmitting women to neutralize 64 their own circulating virus strains, specific genetic motifs enriched in variants from transmitting 65 mothers were associated with resistance to bnAbs, suggesting that acquired bnAb resistance is a 66 common feature of vertically-transmitted variants. This work suggests that enhancement of 67 plasma neutralization responses in HIV-infected mothers through passive or active vaccination 68 could further drive selection of variants that couldbe vertically transmitted, and cautions the use 69 of passive bnAbs for HIV-1 prophylaxis or therapy during pregnancy.

70 Introduction

71	Mother-to-child transmission (MTCT) of HIV-1 was responsible for approximately
72	160,000 new pediatric infections worldwide in 2018 [1], despite wide availability of maternal
73	antiretroviral therapy (ART), which can significantly reduce vertical transmission rates [2].
74	MTCT occurs via three distinct routes: in utero, peripartum, and postpartum through
75	breastfeeding. Among pregnant women living with HIV-1 not receiving ART, the overall rate
76	of MTCT of HIV-1 is between 30-40% [3]. However, when ART is used during pregnancy, the
77	rate of HIV-1 MTCT can be as low as <2% [4]. Despite the success of ART, factors like limited
78	access and adherence to ART, fetal toxicities [5, 6], development of drug resistant viruses, and
79	acute maternal infection during pregnancy remain to be addressed to further reduce or eliminate
80	pediatric HIV-1 infections [7]. Hence, it is clear that additional strategies will be required to
81	work synergistically with ART to eliminate MTCT of HIV-1.
82	Interestingly, in the absence of maternal or infant ART, the majority of infants exposed
83	to HIV-1 do not become infected, suggesting a role for natural immunity in protection against
84	MTCT. Yet, the role of maternal immune response in limiting HIV-1 transmission to the infant
85	is still ill-defined. Maternal neutralizing antibodies (nAbs) that are transferred through the
86	placenta to the infant circulation may contribute to this protection. Some studies have suggested
87	that non-transmitting women have higher magnitude of potentially-protective Env-specific IgG
88	responses compared to transmitting mothers [8-10] . Yet, other studies have reported higher
89	levels and breadth of nAbs in women transmitting HIV-1 compared to non-transmitting women
90	[11-14]. These discordant results could be due to small sample sizes, disparate timing of
91	maternal and infant sample collection and route of transmission, and failure to assess the impact
92	of maternal virus variants that have evolved to escape antibody recognition. A better
93	understanding of the role of maternal antibody responses in the context of viral evolution to

94 escape protective antibodies is therefore needed to inform passive or active vaccine strategies95 that can synergize with ART to eliminate MTCT.

96 As maternal IgG is transported through the placenta by an active process mediated by 97 placental Fc receptor interactions [15], MTCT constitutes an attractive model for vaccine 98 immunity to understand the role of pre-existing HIV Env-specific IgG in preventing HIV-1 99 transmission. A previous study from our group demonstrated that infant transmitted/founder 100 (T/F) viruses were significantly more neutralization resistant to paired maternal plasma when 101 compared to non-transmitted maternal plasma viruses [16], confirming the pattern suggested by 102 reports of infant transmitted viruses that are resistant to neutralization by maternal antibodies 103 [17]. To identify correlates of protection in the context of MTCT, several other studies have 104 compared the breadth and levels of nAb in sera of transmitting and non-transmitting mothers 105 using panels of heterologous primary viral isolates of different clades [18-21]. Surprisingly, one 106 recent study identified increased breadth of plasma nAb responses in transmitting versus non-107 transmitting women, indicating that the breadth of maternal neutralizing responses negatively 108 contributes to MTCT risk [22]. Moreover, we recently described that infant infection can be 109 initiated by an escape variant of broadly neutralizing antibody (bnAb) present in maternal 110 plasma, a finding that raises a potential safety concern for the use of passive bnAbs in 111 pregnancy [23]. However, few studies have been designed to understand the interplay between 112 the maternal antibodies that are transferred to the infant and neutralization sensitivity of the co-113 circulating viruses on vertical virus transmission, leaving a gap in our understanding of what 114 immune responses should be targeted for maternal immune-based strategies to further reduce 115 MTCT.

To determine whether the profile of autologous plasma and bnAb neutralization sensitivity of circulating viral populations predicts a mother's risk of vertical virus transmission, we investigated the autologous plasma and bnAb neutralization sensitivity of the circulating

119	viral population from 35 HIV-1 infected women (16 transmitting and 19 non-transmitting)
120	present at or near the time of delivery. Circulating envelope (Env) variants were produced from
121	each mother-infant pair and tested for autologous maternal plasma and bnAb sensitivity.
122	Additionally, we compared the paired maternal plasma sensitivity of non-transmitted HIV Env
123	variants from transmitting and non-transmitting mothers to understand the combined effects of
124	maternal plasma neutralization potency and neutralization sensitivity of circulating viruses on
125	MTCT risk. This detailed understanding of the role of natural antibody responses and potential
126	bnAb therapeutics in pregnant women, and how they could impact viruses transmitted to the
127	infant, is needed to inform the design of immune-based strategies to synergize with ART and to
128	further reduce and eliminate MTCT.
129	
130	Results
131	HIV-infected transmitting and non-transmitting mother-infant cohort
132	The U.Sbased Women and Infant Transmission Study (WITS) cohort was utilized in this study
	• • •
133	to investigate the combined role of maternal antibodies and virus antibody sensitivity on
133 134	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the
133 134 135	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk
133 134 135 136	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non-
 133 134 135 136 137 	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non- transmitting) from the WITS cohort were screened for study inclusion criteria. Selected
 133 134 135 136 137 138 	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non- transmitting) from the WITS cohort were screened for study inclusion criteria. Selected transmitting mothers met the inclusion criteria of peripartum transmission, defined as follows:
 133 134 135 136 137 138 139 	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non- transmitting) from the WITS cohort were screened for study inclusion criteria. Selected transmitting mothers met the inclusion criteria of peripartum transmission, defined as follows: infants tested negative for HIV-1 infection at birth by HIV-1 DNA PCR, yet had HIV-1
 133 134 135 136 137 138 139 140 	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non- transmitting) from the WITS cohort were screened for study inclusion criteria. Selected transmitting mothers met the inclusion criteria of peripartum transmission, defined as follows: infants tested negative for HIV-1 infection at birth by HIV-1 DNA PCR, yet had HIV-1 detectable DNA at one week of age or older [16]. In addition, these HIV-exposed infants were
 133 134 135 136 137 138 139 140 141 	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non- transmitting) from the WITS cohort were screened for study inclusion criteria. Selected transmitting mothers met the inclusion criteria of peripartum transmission, defined as follows: infants tested negative for HIV-1 infection at birth by HIV-1 DNA PCR, yet had HIV-1 detectable DNA at one week of age or older [16]. In addition, these HIV-exposed infants were not breastfed [24]. Each peripartum-transmitting mother was then matched with a non-
 133 134 135 136 137 138 139 140 141 142 	to investigate the combined role of maternal antibodies and virus antibody sensitivity on vertical virus transmission. The WITS cohort was enrolled in the early 1990's, prior to the availability of ART prophylaxis, thereby eliminating the strong impact of ART on MTCT risk and outcome. Two hundred forty-eight study enrollees (83 transmitting and 165 non- transmitting) from the WITS cohort were screened for study inclusion criteria. Selected transmitting mothers met the inclusion criteria of peripartum transmission, defined as follows: infants tested negative for HIV-1 infection at birth by HIV-1 DNA PCR, yet had HIV-1 detectable DNA at one week of age or older [16]. In addition, these HIV-exposed infants were not breastfed [24]. Each peripartum-transmitting mother was then matched with a non- transmitting woman via propensity score matching [25] based on maternal plasma viral load,

144	gestational age. We selected a total of 35 HIV-1 infected mothers (19 non-transmitting mothers
145	and 16 mother-infant transmitting pairs) with adequate plasma volume available for this study.
146	Ranges for non-transmitting women were 16,360 to 134,325 copies/ml, and 50 to 1045
147	cell/mm ³ for viral load and CD4 ⁺ T cell counts respectively (Table S1). Maternal plasma viral
148	load of the selected transmitting mothers ranged from 4,104 to 368,471 copies/ml, and
149	peripheral blood CD4 ⁺ T cell counts ranged from 107 to 760 cells/mm ³ (Table S2).
150	
151	Characterization of complete envelope (env) gene sequences from
151 152	Characterization of complete envelope (<i>env</i>) gene sequences from transmitting mother-infant pairs and non-transmitting mothers
151 152 153	Characterization of complete envelope (<i>env</i>) gene sequences from transmitting mother-infant pairs and non-transmitting mothers Single genome amplicons (SGA) for the HIV-1 <i>env</i> gene were obtained from the plasma of
151 152 153 154	Characterization of complete envelope (env) gene sequences fromtransmitting mother-infant pairs and non-transmitting mothersSingle genome amplicons (SGA) for the HIV-1 env gene were obtained from the plasma oftransmitting mother-infant pairs as described previously [16]. A total of 463 and 465 env SGAs
151 152 153 154 155	Characterization of complete envelope (env) gene sequences fromtransmitting mother-infant pairs and non-transmitting mothersSingle genome amplicons (SGA) for the HIV-1 env gene were obtained from the plasma oftransmitting mother-infant pairs as described previously [16]. A total of 463 and 465 env SGAswere obtained from the mother and infant transmitting pairs, respectively. Additionally, plasma
151 152 153 154 155 156	Characterization of complete envelope (env) gene sequences fromtransmitting mother-infant pairs and non-transmitting mothersSingle genome amplicons (SGA) for the HIV-1 env gene were obtained from the plasma oftransmitting mother-infant pairs as described previously [16]. A total of 463 and 465 env SGAswere obtained from the mother and infant transmitting pairs, respectively. Additionally, plasmafrom 19 non-transmitting mothers was used to obtain 645 env sequences (Table 1).

	Transmitting Mothers	Non-transmitting mothers
# of Samples	16	19
# of SGAs	463	645
Viral Load (copies/ml)	87,193 (4104-368471)	35,784 (16360-134725)
CD4+ T cell count (cells/mm3)	413 (107-1049)	506 (50-1045)

 Table 1: Comparison of samples from Non-transmitting and transmitting mothers.

157

Neighbor-joining phylogenetic trees were created for the *env* genes to understand the diversity of the viral population present in transmitting mother-infant pairs and non-transmitting mothers at/near time of delivery. A typical highly diverse chronic HIV-1 population was observed in each maternal sample (Fig 1&2), while paired/corresponding infant viral populations were on average less diverse due to recent infection, allowing us to identify 1 or 2 transmitted/founder

viruses (T/Fs) at most in each infant (Fig 2). To assess the autologous plasma neutralization
sensitivity of the representative *env* variant population circulating in each transmitting and nontransmitting mother, we selected a total of 134 and 146 representative *env* variants, respectively,
for Env pseudovirus preparation (5-12 per mother) using an algorithm as described previously
[16] (Figs. 1 & 2).

168

169 Neutralization sensitivity of circulating HIV-1 Env variants to autologous

170 maternal plasma from peripartum-transmitting and non-transmitting

171 **women**

172 HIV Env pseudoviruses were prepared for 280 non-transmitted maternal variants from 173 transmitting (134 viruses) and non-transmitting mothers (146 viruses), along with 19 infant 174 T/Fs to assess their Env neutralization sensitivity to autologous maternal plasma. Variable 175 levels of autologous plasma neutralization sensitivity were observed among non-transmitted env 176 variants. In order to test whether the autologous plasma neutralization sensitivity of circulating 177 viruses was significantly different between transmitting and non-transmitting mothers, we fitted 178 a random effect generalized linear model (GLM) with maternal plasma as dependent variable, 179 transmitting status as fixed effect, and maternal ID as random effect. Using the GLM fit, when a 180 predictor was found to be significant (p < 0.05) via ANOVA test between nested models, we proceeded to test the magnitude of the effect using a χ^2 test. In addition, differences in number 181 182 of neutralized viruses were tested using a 2-sided Wilcoxon test. We found no significant 183 difference between transmitting and non-transmitting mothers in the frequency of autologous 184 plasma neutralization-sensitive viruses (p=0.69 by Wilcoxon test) or the autologous plasma 185 neutralization titers against circulating Env variants (p=0.64 by ANOVA test). However, 186 autologous virus neutralization titers against all non-transmitted variants from both non-187 transmitting and transmitting mothers were on average 1.5-fold higher than infant T/F viruses

188	from transmitting mothers (p=0.005). Furthermore, non-transmitted maternal pseudoviruses
189	were on average 30% more sensitive to maternal autologous plasma than infant T/Fs and their
190	closest viruses in the transmitting mothers (p=0.015) (Fig.3).

191

192 Env variant amino acid signatures associated with maternal transmission

193 phenotype and neutralization susceptibility

194 While we found no differences in magnitude or breadth of plasma autologous virus 195 neutralization responses between transmitting and non-transmitting mothers, we sought to 196 determine if differences in the neutralization sensitivity existed at the viral Env epitope level. 197 Specifically, we looked for particular motifs in Env variants from both transmitting and non-198 transmitting mothers and infants associated with sensitivity to either autologous plasma, and/or 199 the four second generation HIV-1 bnAbs tested in this study. After excluding infant T/F viruses, 200 we also looked for specific amino acid residues and/or bnAb sensitivity enriched in either 201 transmitting mothers or non-transmitting mothers, and therefore correlated with maternal 202 transmission status. Env pseudoviruses produced from all non-transmitted maternal Env 203 variants (from both transmitting and non-transmitting mothers) and infant T/F were tested 204 against a panel of bnAbs that included PG9 (V2 glycan-specific), VRC01 (CD4bs specific), 205 DH429 (V3 glycan specific) and DH512 (MPER specific) [26-28]. Except for a few exceptions, 206 all tested maternal Env pseudovirus variants were sensitive to neutralization by these four 207 bnAbs (Fig.4). 208 Using the LANL tool GenSig 209 (https://www.hiv.lanl.gov/content/sequence/GENETICSIGNATURES/gs.html), we performed 210 a phylogenetically corrected signature analysis to identify maternal Env sequences motifs that

211 predicted bnAb sensitivity. The strongest maternal Env amino acid residue associations with

bnAb sensitivity were found with sensitivity to PG9 and VRC01. At HXB2 position 234, amino

213	acid N was found to be associated with resistance to VRC01, whereas D was associated with
214	sensitivity ($p=1.5x10^{-05}$ and $1.54x10^{-05}$ respectively, FDR q=0.00016 and $7.9x10^{-05}$ respectively;
215	Table 2). Glycosylation site N234 has been implicated as a contact and resistance site in
216	previous studies with CD4bs-specific antibodies [29-32] and with VRC01 in particular,
217	concordant with our findings. In addition, we found site N234 to be strongly associated with
218	maternal transmission status (p=0.0026, FDR =0.02; Table 2), with this PNGS enriched in Env
219	variants from transmitting mothers and the non-PNGS amino acid D enriched in non-
220	transmitting mothers (Fig. 5).
221	Overall, we found 5 Env residues associated with neutralization sensitivity to VRC01, 4
222	with PG9, and 2 with DH429 at the FDR <0.05 significance level, while no amino acid position
223	was found to be associated with DH429 sensitivity (Table 2, Fig. 5). Eight out of the 11 total
224	sites found in our signature sequence analysis confirmed associations with bnAb sensitivity
225	previously reported by Bricault et al. [31] (Table 2). Unique to our analysis were the findings
226	that amino acids I and V at positions 792 and 829, in the cytoplasmic tail of the Env variants,
227	were associated with resistance to VRC01 and DH429 respectively (Table 2), indicating a
228	conformational change mediated by these mutations that impede CD4bs bnAb recognition.
229	Also, never reported before in the literature was Env site K6, where our analysis showed that
230	mutations away from amino acid N increased resistance to PG9.
231	All together, our signature sequence analysis found five residues associations with
232	maternal transmission status at FDR <0.05 significance level, of which 3 were also strongly
233	associated with resistance to at least one tested bnAbs (sites N234, S347, and V833, see Table
234	S3) and the remaining two, sites A612 and S640, have been identified by Bricault et. al [31) to
235	be associated with increased resistance with V3 glycan-specific bnAbs. Two additional sites,
236	N386 in V4 and S440, both associated with resistance to V3-specific bnAbs [31], were also

237	found to be associated with maternal transmission status, although at a more marginal
238	significance level (FDR =0.08 and 0.07 respectively, Table S3).
239	As noted above, the amino acid N at site 234 was found to be associated with resistance
240	to VRC01 and, at the same time, a PNG at this site was found to be enriched in Env variants
241	from transmitting mothers. Similarly, at site V833, mutations away from amino acid L were
242	associated with resistance to both PG9 and VRC01 while at the same time being enriched in
243	Env variants from transmitting mothers (Fig 5). Taken together, these findings suggest that
244	acquired resistance to bnAbs may be a factor in selecting for variants that are also fit for vertical
245	transmission, and this bnAb resistance phenotype may be a more important risk factor for
246	transmission than resistance to autologous plasma neutralization.
247	
248	Role of HIV-1 Env potential N linked Glycosylation sites (PNGS) in bnAb
249	sensitivity and maternal transmission status
250	Previous studies have found a higher number of PNGS in V1 to be associated with

increased resistance to V3-directed antibodies [31]. While differences in the number of PNGS
in the variable regions of Envs from transmitting mothers compared to those from nontransmitting mothers were not large enough to achieve statistical significance in our cohort, a
signature sequence analysis identified strong correlations between the loss or acquisition of
PNGS in V4 with transmission status (Table 2). Hypervariable regions are extremely hard to
align, especially when combining sequences across different donors, which can potentially

HXB2 AA Position	Regio n	Test AA	Association	P value⊠	Q valueℤ
K6		Ν	Mutations away from N confer resistance to PG9	0.002	0.023
		E	Mutations away from E confer resistance to PG9.	0.0031	0.03
V87**		К	Mutations to K confer resistance to PG9.	0.001	0.02
		К	Mutations to K confer resistance to VRC01*.	0.013	0.14
		PNG	Loss of a PNG confers resistance to PG9.	0.00012	0.0009
N160**	V2	Ν	Mutations away from N confer resistance to PG9.	0.00012	0.0015
		К	Mutations to K confer resistance to PG9.	0.00055	0.01
N000**		К	Mutations to K confer resistance to VRC01	0.003	0.045
INZZ9		Ν	Mutations away from N confer resistance to VRC01*	0.0035	0.11
		Ν	Mutations away from N are associated with maternal non- transmitting status	0.0026	0.02
		D	Mutations to D are associated with maternal non-transmitting status.	0.0033	0.022
N234**		Ν	Mutations away from ${f N}$ are associated with sensitivity to VRC01.	1.05E- 05	0.00016
		D	Mutations to D are associated with sensitivity to VRC01.	1.54E- 05	7.90E-05
N295**	V3	Ν	Mutations away from ${\rm N}$ are associated with sensitivity to VRC01	0.00085	0.02
		K	Mutations away from K are associated with maternal transmitting status.	0.0014	0.011
S347**		Т	Mutations to T confer sensitivity to DH429*	0.0043	0.07
		Е	Mutations away from E confer resistance to DH512*	0.01	0.18
R350**		R	Mutations away from R confer resistance to PG9.	9.50E- 05	0.0015
		К	Mutations to K confer resistance to PG9.*	0.0038	0.06
A612**		А	Mutations away from A are associated with maternal non- transmitting status.	0.0014	0.011
A640**		S	Mutations to S are associated with maternal non-transmitting status.	0.002	0.015
4700		I	Mutations to I confer resistance to VRC01.	0.00101	0.02
AT9Z	LLP-3	V	Mutations away from V confer resistance to VRC01.*	0.00109	0.056
		V	Mutations to V confer resistance to DH429.	0.0004	0.0078
V829	LLP-1	V	Mutations to ${\bf V}$ confer sensitivity to autologous maternal plasma.*	0.0049	0.18
		I	Mutations away from I confer resistance to DH429.	0.00075	0.035
		L	Mutations away from L are associated with maternal transmission status.	0.0012	0.011
		L	Mutations away from L confer resistance to VRC01*	0.012	0.199
V833**		L	Mutations away from L confer resistance to PG9	0.002	0.023
		L	Mutations away from L confer sensitivity to DH429	0.0009	0.031
		V	Mutations to V confer resistance to VRC01.	0.0011	0.02

Table 2: Signature sequence analysis of HIV-1 Env sequence relationship to maternal transmission status, and bnAb sensitivity.

* Marginal association (0.05<q<0.2). ** bnAb signature site found in published literature.

P-value from phylogenetically-corrected Fisher exact test.

2 Q-value from FDR mulliple testing correction

257 affect the validity of the results. However, three of the signature sites identified in our analysis 258 as potentially distinct between transmitting and non-transmitting women, N386, N392 and 259 T394, were at the beginning of V4, proximal to the hypervariable portion of the loop (HXB2 260 positions 396-410), where it is still possible to align sequences across donors (Table 2). 261 The strongest Env PNGs site association with transmission status was at T394, where the 262 acquisition of a PNG was associated with maternal non-transmission status (p=0.0009, FDR 263 =0.0031). At N386, the loss of a PNGS was also associated with maternal non-transmission 264 status (p=0.02, FDR =0.08), whereas the loss of a PNGS at N392 was associated with increased 265 resistance to autologous maternal plasma (p=0.015, FDR =0.06) (Table 2 and S3). This site was 266 the strongest association with maternal plasma sensitivity found among Env sequences in our 267 cohort. Numerous studies have tracked changes in the Env glycan shield as a mechanism for the 268 selection of neutralization escape variants [33, 34] and many glycosylation sites in V4 in 269 particular have been implicated in changes in neutralization sensitivity to V3 and CDbs- bnAbs 270 [31, 35]. Additional studies with more maternal *env* sequences would be warranted in order to 271 establish whether variable loop mutations impacting glycan sites render the maternal viruses 272 more fit for vertical virus transmission by escaping recognition by antibodies that mediate 273 neutralization or other non-neutralizing antibody functions previously reported to be associated 274 with MTCT risk [36-39].

275

Broadly neutralizing activity of non-transmitting and transmitting maternal plasma

As our signature analysis found several bnAb resistant sites enriched in variants from transmitting mothers compared to variants from non-transmitting mothers, we wondered whether we could detect broad neutralizing activity from transmitting maternal plasma. We

281	obtained ID_{50} from 15 transmitting and 18 non-transmitting mothers (mother 100888 was
282	excluded due to high murine leukemia virus (MLV) background neutralization activity >60)
283	against a global panel of 9 viruses. We found no statistically significant difference in number of
284	neutralized viruses between the transmitting and non-transmitting mothers (p=0.12 by 2-sided
285	Wilcoxon test). While more non-transmitting mothers (8 out of 18) showed evidence of broad
286	neutralization activity (defined as neutralization of at least four viruses after MLV background
287	subtraction) than transmitting mothers (4 out of 15), this difference was not statistically
288	significant p=0.47 by Fisher exact test) (Fig. 6).
289	Since four transmitting mothers (100014, 100504, 102149, and 100307) showed bnAb activity
290	against the panel of global viruses (as defined above), we looked specifically at the infant TFs
291	from those mother-infant pairs and their respective closest maternal sequences to see whether
292	they were enriched for bNAb resistance amino acid at the significant sites found by our
293	signature analysis. These sequences were enriched for bNAb resistant amino acids at 5 out of 9
294	sites (data not shown). Of note, all sequences had a PNG at site 234, which, as previously noted,
295	is associated with resistance to VRC01. In addition, compared to the closest maternal
296	sequences, the infant TFs were enriched to the resistant-inducing AA V at both positions 829
297	and 833.
298	

299 **Discussion**

Maternal and infant ARV treatment has significantly reduced the rate of MTCT to low levels, but a maternal or infant vaccine is still needed to eliminate pediatric HIV-1. It has been shown in non-human primate models of sexual transmission that passive immunization of human monoclonal bnAbs that potently neutralize the challenge virus can protect against virus acquisition [40-42]. Considering the established protective role of nAbs and limited success of HIV vaccines that do not elicit bnAbs, it is likely that a vaccine would have to induce bnAbs in

306 order to be highly effective against HIV-1 acquisition [43-46]. MTCT of HIV-1 is a unique 307 setting where the infant receives maternal antibodies generated against autologous viruses to 308 which the infant is exposed from the mother *in utero* [47]. As over half of infants are naturally 309 protected against MTCT, it is believed that protective immune factors, such as maternal 310 antibodies, may prevent the transmission of viruses. Yet, extensive studies of this phenomenon 311 have not firmly established a protective role of maternal antibodies, which may be related to the 312 need to study the interplay between the maternal antibodies and autologous viruses to which the 313 infant is exposed. In this study, we compared the autologous neutralizing antibody responses 314 against the maternal viruses present near the time of delivery in peripartum transmitting and 315 non-transmitting mothers to determine if the ability of the mother to neutralize her own viruses 316 predicts her risk of vertical virus transmission. Despite infant transmitted variants consistently 317 demonstrating autologous plasma neutralization resistance, our analysis revealed no statistically 318 significant differences in the magnitude or frequency of neutralization responses against 319 circulating autologous viruses from transmitting and non-transmitting mothers. Thus, the 320 frequency and potency of maternal neutralization responses against her own circulating viruses 321 do not appear to establish the risk of vertical virus transmission.

322 We focused on peripartum-transmitting mothers from the WITS cohort who did not 323 receive ART, thereby eliminating the impact of ART on virus selection [24]. Further, to 324 eliminate the clinical factors known to be associated with risk of MTCT, propensity score 325 criteria was used to match non-transmitting mothers with peripartum transmitting mothers 326 which included the CD4+ T cell count, viral load, and mode of delivery. In total, we obtained 327 1108 Env variants (463 T and 645 NT) from 16 transmitting and 19 non-transmitting mothers. 328 With an average of 30 sequences per mother (range 20-42 sequences), we are 95% confident 329 that these Env variants represented the heterogeneity of each maternal sample present at the 330 time of delivery at a population frequency of 15% or higher. Not many prior studies of the role

331 of maternal antibodies in MTCT have included autologous maternal virus population sequences 332 or functional autologous viruses in their investigations. Other studies have used either partial 333 Env sequences to represent the maternal viral diversity or a small number of transmitting and 334 non-transmitting mother-infant pairs, which limits power to detect sequence diversity among 335 each group [48, 49]. Yet, this study is one of the first to generate autologous single genome Env 336 variants from transmitting and non-transmitting mothers to accurately assess the function of 337 maternal antibodies against co-circulating vertically transmitted and non-transmitted maternal 338 variants.

339 To investigate our hypothesis that variants from non-transmitting mothers are more 340 sensitive to autologous plasma than in transmitting mothers, Env pseudoviruses were prepared 341 using the SGA *env* sequences from the maternal plasma systematically selected as 342 representative of maternal viral population in order to cover the diversity of the HIV-1 343 population in each mother. Interestingly, we did not observe statistically significant differences 344 in neutralization sensitivity among viruses between transmitting and non-transmitting mothers. 345 There are only a couple of comparable studies where conflicting results have been observed. 346 Baan et.al [50] compared autologous plasma neutralization sensitivity of viral variants from 7 347 transmitting and 4 non-transmitting mothers and found that viruses from transmitting mothers 348 were more sensitive to maternal plasma neutralization than the variants from non-transmitting 349 mothers. However, plasma samples used in this study were not contemporaneous, further 350 complicating the analysis. On the other hand, a study by Milligan *et. al* [51] showed that there is 351 no difference in neutralization sensitivity of viral variants from transmitting and non-352 transmitting mothers as observed in this study. However, the viral variants in Milligan et.al 353 study were obtained using PBMC DNA which may not represent the circulating variants at the 354 time of transmission. Notably, in the present study, peripartum transmitting and non-355 transmitting mothers were carefully clinically matched by a propensity score and the plasma

356 employed to isolate viruses was from the delivery time point. Additionally, utilizing a pre-ART 357 era cohort, eliminated viral selection pressure due to ART and further strengthening the results. 358 When we compared infant T/Fs and their phylogenetically closely related maternal 359 variants with non-transmitted variants from both group of mothers, infant T/Fs and their closely 360 related maternal variants were significantly more resistant to paired maternal plasma. This 361 finding suggests that neutralization resistance to paired maternal plasma is a defining feature of 362 infant transmitted variants. While a few studies [17] have indicated that virus(es) transmitted to 363 infants are neutralization escape variants, other studies contradict these findings [48, 52, 53]. 364 These conflicting results could be due to difference in timing of maternal-infant sample 365 collection, small sample sizes, and undefined routes of transmission. Importantly, we used well-366 defined criteria for peripartum transmission with a large sample size, adding to the robustness 367 of results. Additionally, isolation of 20-30 SGAs per infant and maternal plasma sample and 368 neutralization testing of 5-12 viruses per mother provide considerably more functional viral 369 sequence data than many previous studies. 370 Glycosylation sites are known to be targets of numerous bnAbs and hence may have a

371 role in driving the selection of neutralization escape variants in infant infection [33]. However, 372 we did not see any significant differences in number of PNGS and variable loop lengths among 373 infant T/F and non-transmitted maternal variants. In contrast, a few studies have investigated 374 the number of PNGS and variable loop length of infant T/Fs and non-transmitted maternal 375 variants from transmitting mother-infant pairs and found that transmitting viruses had shorter 376 variable loop lengths and less PNGS [48, 49]. Several studies involving chronic HIV 377 transmission in adults where escape variants have been reported to have longer variable loop 378 lengths and more PNGS, indicating that virus escape from maternal antibodies in MTCT may 379 be distinct from that of chronic infection [54-56].

380 Previously, we found that maternal V3-specific IgG levels and weak (tier 1) 381 neutralization response predicted a reduced risk of transmission in this cohort [21]. In a follow-382 up study, we showed that infant T/Fs are escape variants of V3 region-specific antibodies [23]. 383 Moreover, it has been shown in rhesus macaque studies that passive immunization by 384 polyclonal or weakly-neutralizing nAbs can reduce vertical transmission risk [57, 58]. So far, 385 there have been two studies in humans involving maternal passive immunizations by polyclonal 386 HIVIG to prevent MTCT and both did not show any additional benefit to ART [59, 60]. These 387 results indicate that targeting specific epitopes of autologous viruses may be required for a 388 successful vaccine to prevent MTCT. Several second generation bnAbs have been isolated from 389 chronic HIV-1 infected patients in recent years and are under study as a passive immunization 390 and/or therapy [61-64]. Hence, it is important to investigate the neutralization efficacy of 391 prototype bnAbs i.e. VRC01 (CD4bs specific), PG9 (V1V2 glycan specific), DH512 (MPER 392 specific) and DH429 (V3 glycan specific) against all Env variants from transmitting and non-393 transmitting mothers and infant T/Fs to determine what the clinical impact of bnAb prophylaxis 394 and/or therapeutics may be in this setting. Almost all the Env variants tested were sensitive to 395 these bnAbs except few maternal variants. This finding supports the potential efficacy of the 396 ongoing clinical assessment of VRC01 bnAb passive immunization of high risk, HIV-exposed 397 infants as a strategy to further reduce infant HIV acquisition [65]. Also, a comprehensive recent 398 study by Bricault et al. [31] showed the advantages of epitope-based vaccine design based on 399 signature sequence analysis of bnAb-resistant and sensitive variants. Using neutralization 400 epitopes for the bnAbs used in this study were previously defined, a signature sequence analysis 401 was performed to identify amino acids associated with transmission and resistance. We found a 402 number of genetic motifs that were significantly enriched in Env variants from transmitting 403 mothers at positions that were also associated with resistance to V2-, CD4bs-, and MPER-404 specific bnAbs like PG9, VRC01, and DH512. Interestingly, 3 out of 5 motifs identified in our

405	signature analysis to be significantly associated with maternal transmission status at the FDR
406	<0.05 level, were also associated with increased resistance to either VRC01 or PG9 (Table 2).
407	Importantly, a signature sequence analysis of viral variants from transmitting and non-
408	transmitting mothers demonstrated that certain V1 and V4 loop region amino acids associated
409	with maternal transmission potential, but not necessarily neutralizing sensitivity, which may
410	suggest escape from other maternal antibody functions, such as ADCC, can define the
411	transmission potential of HIV Env variants. Many amino acid positions from region C1, V1V2,
412	C4 and cytoplasmic tail were also associated with viral resistance to the autologous plasma, yet
413	not viral transmission potential. Further, we found 2 glycosylation sites in V4 that associated
414	with neutralization sensitivity, one associated with maternal transmission status and one with
415	resistance to autologous maternal plasma. Interestingly, at the FDR <0.1 significance level, we
416	found 7 signature sites associated with maternal transmission status, of which 3 were also
417	associated with neutralizations sensitivity to PG9, VRC01, and/or DH429, and the remaining
418	four were all sites previously found to be associated with neutralization sensitivity to V3-
419	specific bnAbs [31], suggesting that bnAb-mediated immune pressure may be a major force
420	driving selection of resistant variants in transmitting mothers that are also fit for MTCT
421	transmission.

422 Since some studies have shown association of nAbs presence or titers against 423 heterologous HIV-1 strains as risk factor for MTCT [11, 12], we also investigated the bnAb activity of the plasma from transmitting and non-transmitting mothers against a reference panel 424 425 of 9 diverse global HIV-1 viruses. While we did see a trend towards more transmitting than 426 non-transmitting women with pre-defined plasma bnAb activity, defined as neutralization of at 427 least 4 of 9 tier 2 heterologous viruses on the global panel, we did not observe statistically 428 significant difference in the breadth of neutralization activity in the plasma of 16 transmitting 429 and 18 non-transmitting maternal plasma. Our results are in contrast to a study of breast-feeding

430 HIV-1 transmission pairs [22] where transmitting mother showed higher breadth of

431 heterologous virus neutralizing activity compared to non-transmitting mothers. However,

432 different mode of transmission could have led to this difference in results. Also, we did observe

433 higher MLV neutralizing activity among the non-transmitting mothers in this study, potentially

434 indicating distinct sample handling or exposure to ART. Previously, we had shown that infant

435 T/Fs are the escape variants of maternal plasma [16]. Our results along with previous studies

436 indicate that passive or active vaccines inducing bnAb response in pregnant women will need to

437 be used with caution to prevent MTCT.

438 Overall, this is the largest study comparing plasma neutralization responses against

439 autologous viruses in HIV-infected transmitting and non-transmitting mothers. This unique

440 study design revealed that while infant T/Fs are more likely to be escape variants from maternal

441 neutralization responses when compared with the non-transmitted maternal variants, the

442 mother's natural ability to neutralize her own circulating viruses does not define a mother's

443 MTCT risk. Concerningly, we identified that maternal transmission status was tied to Env

444 amino acid signatures that confer resistance to bnAbs, including those being used in clinical

trials for HIV-1 prevention and therapy [66, 67]

(https://clinicaltrials.gov/ct2/show/NCT03571204). These results caution the use of passive or
active vaccine strategies targeting plasma bnAb activity in pregnant women and indicate that
more work will need to address the risks of bnAb escape variants that are fit for virus
transmission. Moreover, they suggest that there are functional antibody responses other than

450 nAbs, such as ADCC, that may be more important protective factors that define transmitting

451 mothers from non-transmitting mothers. Thus, maternal vaccine strategies to further reduce

452 pediatric HIV infections should be designed to induce multispecific neutralization responses

and potentially other non-neutralizing antibody functions that provide potent protection when

454	transferred to the infant, but also eliminate the risk of selecting viruses that can escape maternal
455	antibody functions and become vertically-transmitted variants.

456

457 Acknowledgements

- 458 We acknowledge Youyi Fong in selecting samples from the WITS cohort, Bette Korber and
- 459 Kshitij Wagh for useful discussions on the signature analysis. We would also like to
- 460 acknowledge the support of Pediatric HIV/AIDS Cohort Study (PHACS) team for their
- 461 management of the Women and Infant Transmission Study cohort repository samples,
- 462 supported by the *Eunice Kennedy Shriver* National Institute of Child Health and Human
- 463 Development (HD052102 and HD052104). This work was financially supported by National
- 464 Institute of Health (NIH) with the RO1 grant number AI122909.

465

466 Materials and Methods

467 Study subjects and sample collection

- 468 A total of 35 HIV-1 infected women living with HIV-1 (16 transmitting and 19 non-
- 469 transmitting mothers) were selected from the WITS (Women Infant Transmission Study) cohort
- 470 based on propensity score and adequate plasma volume (2.0 ml). The WITS cohort was enrolled
- 471 in the pre-ART era during 1993/1994 in US, consisting of HIV-1 subtype B infections.
- 472 Propensity score based on established risk factors for MTCT, including maternal CD4⁺ count,
- 473 plasma viral load, and mode of delivery was used to match non-transmitting women to
- 474 peripartum-transmitting women [68].

475 **Ethics statement**

- 476 Samples used in this study were obtained with informed consent from participants of the
- 477 Women Infant Transmission Study (WITS) [24]. WITS repository cohort samples were
- 478 received as de-identified material and were deemed as research not involving human subjects
- 479 by Duke University Institutional Review Board (IRB). The reference number for that protocol
- 480 and determination is Pro00016627.

481 Viral RNA extraction and SGA analysis

482 Viral RNA extractions and SGA analyses were done as described previously [16]. Briefly, viral

- 483 RNA was purified from the plasma sample from each patient by the Qiagen QiaAmp viral RNA
- 484 mini kit and subjected to cDNA synthesis using 1X reaction buffer, 0.5 mM of each
- 485 deoxynucleoside triphosphate (dNTP), 5 mM DTT, 2 U/mL RNaseOUT, 10 U/mL of
- 486 SuperScript III reverse transcription mix (Invitrogen), and 0.25 mM antisense primer 1.R3.B3R
- 487 (5'-ACTACTTGAAGCACTCAAGGCAAGCT TTATTG-3'). The resulting cDNA was PCR
- 488 amplified using Platinum Taq DNA polymerase High Fidelity (Invitrogen) so that < 30% of
- 489 reactions were positive in order to maximize the likelihood of amplification from a single

- 490 genome. A second round of PCR amplification was conducted using 2µl of the first round
- 491 products as template. Round 1 amplification conditions were 1 cycle of 94°C for 2 minutes, 35
- 492 cycles of 94°C for 15 seconds, 58°C for 30 seconds, and 68°C for 4 minutes, followed by 1
- 493 cycle of 68°C for 10 minutes. Round 2 conditions were one cycle of 94°C for 2 minutes, 45
- 494 cycles of 94°C for 15 seconds, 58°C for 30 seconds, and 68°C for 4 minutes, followed by 1
- 495 cycle of 68°C for 10 minutes. Round 2 PCR amplicons were visualized by agarose gel
- 496 electrophoresis and sequenced for envelope gene using an ABI3730xl genetic analyzer (Applied
- 497 Biosystems). Partially overlapping sequences from each amplicon were assembled and edited
- 498 using Sequencher (Gene Codes, Inc).

499 Sequence alignment

- 500 All maternal and infant envelope sequences were aligned using the Gene Cutter tool available at
- 501 the Los Alamos National Laboratory (LANL) website
- 502 (http://www.hiv.lanl.gov/content/sequence/GENE_CUTTER/cutter.html) and then refined
- 503 manually. Full-length envelope sequences were manually edited in Seaview [69].

504 **Pseudovirus preparation**

505 CMV promoter was added to maternal envelope SGAs using the overlapping PCR method

and used to prepare pseudoviruses [70]. Briefly, pseudoviruses were prepared by transfection in

- 507 HEK293T (ATCC, Manassas, VA) cells with 4µg of CMV-env PCR product and 4µg of env-
- 508 deficient HIV plasmid DNA using the FuGene 6 transfection reagent (Promega) in a T75 flask.
- 509 Two days after transfection, the culture supernatant containing pseudoviruses was harvested,
- 510 filtered, aliquoted, and stored at -80°C. An aliquot of frozen pseudovirus was used to measure
- 511 the infectivity in TZM-bl cells. 20µl of pseudovirus was distributed in duplicate to 96-well flat
- 512 bottom plates (Co-star). Then, freshly trypsinized TZM-bl cells were added (10,000 cells/well
- 513 in Dulbecco's modified Eagle's medium (DMEM)-10% fetal bovine serum (FBS) containing

HEPES and 10µg/ml of DEAE-dextran). After 48 h of incubation at 37°C, 100µl of medium
was removed from the wells. 100µl of luciferase reagent was added to each well and incubated
at room temperature for 2 min. 100µl of the lysate was transferred to a 96-well black solid plate
(Costar), and the luminescence was measured using the Bright-GloTM luminescence reporter
gene assay system (Promega).

519 Neutralization assays

520 Neutralizing antibody activity was measured in 96-well culture plates by using Tat-regulated

- 521 luciferase (Luc) reporter gene expression to quantify reductions in virus infection in TZM-bl
- 522 cells. TZM-bl cells were obtained from the NIH AIDS Research and Reference Reagent
- 523 Program, as contributed by John Kappes and Xiaoyun Wu. Assays were performed with HIV-1
- 524 Env-pseudotyped viruses as described previously [71, 72]. Viruses (~50,000 relative light unit
- 525 equivalents) were pre-incubated with plasma (starting dilution 1:20) or Mab (starting
- 526 concentration 25ug/ml) serially diluted 3-fold in a 96 well plate for 1 hr at 37°C before addition
- 527 of TZM-bl cells. Following a 48-hr incubation, cells were lysed and Luc activity determined
- 528 using a microtiter plate luminometer and Briteglo (Promega). Neutralization titers are the
- 529 sample dilution (for serum/plasma) or antibody concentration (monoclonal antibodies) at which
- relative luminescence units (RLU) were reduced by 50% compared to RLU in virus control
- 531 wells after subtraction of background RLU in cell control wells. Serum/plasma samples were
- 532 heat-inactivated at 56°C for 1 hr prior to assay.

533 Statistical analyses

534 Infant T/Fs were identified for each sample as described previously [16, 73]. Briefly, infant

- 535 envelope sequences were aligned using Seaview and consensus sequence was generated. SGA
- 536 similar to consensus sequence was used as infant T/F. To select maternal non-transmitted
- 537 variants and capture the most divergent sequences from the infant T/F, we devised an algorithm

538 as previously described [16]. The algorithm finds the most variable positions in the amino acid 539 alignment and ranks all sequences with respect to the frequencies at these positions. Sequences 540 are then selected starting from the most divergent based on motif coverage as observed in the 541 alignment and in the phylogenetic tree (in other words, if a group of diverging sequences all 542 share the same motif, only one in the group and/or tree node is selected). Differences in number 543 of neutralized viruses were tested using a 2-sided Wilcoxon test. Magnitude of maternal plasma 544 from transmitting and non-transmitting mothers, and between transmitted and non-transmitted 545 variants, were compared using a random-effect generalized linear model (GLM) using maternal 546 plasma as dependent variable, transmitting status as fixed effect, and maternal ID as random 547 effect. Using the GLM fit, when a predictor was found to be significant via ANOVA test between nested models, we proceeded to test the magnitude of the effect using a χ^2 test. All 548 549 tests were conducted on the R platform [74] [http://www.R-project.org]. The GLM was 550 implemented using the lme4 package [75]. 551 Plasma neutralization titers were treated as positive if above the 1:60 dilution threshold. MLV 552 background was subtracted when detected, else a nominal threshold of 60 was subtracted 553 instead. Breadth was measured as number of positive titers after subtracting background as 554 described, and groups were compared using a 2-sided Wilcoxon test (implemented in R).

555 Genetic signature analysis

556 We performed phylogenetically corrected signature analyses to identify amino acid and

557 glycosylation sites associated with transmitting vs. non-transmitting status, maternal plasma,

and sensitivity to bNAbs PG9, DH512, DH429 and VRC01. This was done using the LANL

559 tool GenSig [https://www.hiv.lanl.gov/content/sequence/GENETICSIGNATURES/gs.html],

560 which identifies sites of interest using a phylogenetically corrected approach to minimize false

561 positives due to lineage effects [31, 76, 77]. Briefly, at each site, GenSig performs a Fisher

562	exact test of a 2x2 matrix where the rows represent the two states of a feature (i.e. transmitting
563	vs. non-transmitting, or above or below threshold for neutralization sensitivity data), and the
564	columns represent the two possible ancestral states in the phylogenetic tree. For example, if A is
565	the amino acid being tested, then GenSig performs two tests, one where "A" is the ancestral
566	state, and one where "!A" is the ancestral state. For the former, the columns in the Fisher exact
567	matrix will be the counts of how many leaves came from an A->!A transition and how many
568	from A->A respectively, whereas for the latter the counts will be for !A->A and !A->!A
569	respectively. For more details see the GenSig tool explanation
570	(https://www.hiv.lanl.gov/content/sequence/GENETICSIGNATURES/help.html). Because our
571	data consists of multiple sequences from each mother-infant pair, ignoring this phylogenetic
572	correction could potentially yield to spurious associations driven by within-subject correlations.
573	For this analysis, maternal plasma neutralization sensitivity (above or below
574	neutralization threshold of 1:50) and transmission status were treated as dichotomous variables,
575	whereas PG9, DH429, DH512 and VRC01 IC50s were considered multiple ways (upper
576	quartile vs. lower three, lower quartile vs. upper three, and above/below threshold). For
577	robustness, we deemed as viable results only sites that were confirmed with at least two
578	approaches across all considered phenotypes or that had previously been found to be associated
579	with sensitivity in the literature. For multiple testing correction we used a false discovery rate
580	(FDR) of $q < 0.2$ [78] to screen the results, and then tiered the strength of the associations by
581	q < 0.05, $q < 0.1$ and $q < 0.2$ significance levels, the latter being the most marginal findings.
582	Logo plots were created using the LANL tool AnalyzeAlign
583	(https://www.hiv.lanl.gov/content/sequence/ANALYZEALIGN/analyze_align.html).
584	bnAb Activity analysis of plasma from transmitting and non-transmitting mothers
585	Neutralization of 10 viruses incorporating a reference Env from the global panel was tested

against a 1:60 plasma dilution from non-transmitting mothers as described previously [79-81].

- 587 Pseudovirus prepared with Env glycoprotein from Murine Leukemia Virus (SVA.MLV) was
- 588 used as a negative control.

589

590 **References**

- 591 1. Global HIV & AIDS statistics 2020 fact sheet. 2020.
- 592 2. Fowler MG, Qin M, Fiscus SA, Currier JS, Flynn PM, Chipato T, et al. Benefits and Risks of
- 593 Antiretroviral Therapy for Perinatal HIV Prevention. N Engl J Med. 2016;375(18):1726-37.
- 594 3. Wolinsky SM, Wike CM, Korber BT, Hutto C, Parks WP, Rosenblum LL, et al. Selective
- transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science.
- 596 1992;255(5048):1134-7.
- 597 4. Mugwaneza P, Lyambabaje A, Umubyeyi A, Humuza J, Tsague L, Mwanyumba F, et al.
- 598 Impact of maternal ART on mother-to-child transmission (MTCT) of HIV at six weeks
- 599 postpartum in Rwanda. BMC Public Health. 2018;18(1):1248.
- 5. Chen JY, Ribaudo HJ, Souda S, Parekh N, Ogwu A, Lockman S, et al. Highly active
- 601 antiretroviral therapy and adverse birth outcomes among HIV-infected women in Botswana. J
- 602 Infect Dis. 2012;206(11):1695-705.
- 603 6. Coelho AV, Tricarico PM, Celsi F, Crovella S. Antiretroviral Treatment in HIV-1-Positive
- 604 Mothers: Neurological Implications in Virus-Free Children. Int J Mol Sci. 2017;18(2).
- 605 7. Yeganeh N, Kerin T, Ank B, Watts DH, Camarca M, Joao EC, et al. Human
- 606 Immunodeficiency Virus Antiretroviral Resistance and Transmission in Mother-Infant Pairs
- 607 Enrolled in a Large Perinatal Study. Clin Infect Dis. 2018;66(11):1770-7.
- 8. Bongertz V, Costa CI, Veloso VG, Grinsztejn B, Filho EC, Calvet G, et al. Neutralization
- titres and vertical HIV-1 transmission. Scand J Immunol. 2002;56(6):642-4.
- 610 9. Bongertz V, Costa CI, Veloso VG, Grinsztejn B, Joao Filho EC, Calvet G, et al. Vertical
- 611 HIV-1 transmission: importance of neutralizing antibody titer and specificity. Scand J Immunol.
- 612 2001;53(3):302-9.

- 613 10. Scarlatti G, Albert J, Rossi P, Hodara V, Biraghi P, Muggiasca L, et al. Mother-to-child
- 614 transmission of human immunodeficiency virus type 1: correlation with neutralizing antibodies
- 615 against primary isolates. J Infect Dis. 1993;168(1):207-10.
- 616 11. Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection:
- 617 what can we learn from the mother-to-child transmission context? Retrovirology. 2013;10:103.
- 618 12. Blish CA, Blay WM, Haigwood NL, Overbaugh J. Transmission of HIV-1 in the face of
- 619 neutralizing antibodies. Curr HIV Res. 2007;5(6):578-87.
- 620 13. Mutucumarana CP, Eudailey J, McGuire EP, Vandergrift N, Tegha G, Chasela C, et al.
- 621 Maternal Humoral Immune Correlates of Peripartum Transmission of Clade C HIV-1 in the
- 622 Setting of Peripartum Antiretrovirals. Clin Vaccine Immunol. 2017;24(8).
- 623 14. Overbaugh J. Mother-infant HIV transmission: do maternal HIV-specific antibodies protect
- 624 the infant? PLoS Pathog. 2014;10(8):e1004283.
- 625 15. Martinez DR, Fong Y, Li SH, Yang F, Jennewein MF, Weiner JA, et al. Fc Characteristics
- 626 Mediate Selective Placental Transfer of IgG in HIV-Infected Women. Cell. 2019;178(1):190-
- 627 201 e11.
- 628 16. Kumar A, Smith CEP, Giorgi EE, Eudailey J, Martinez DR, Yusim K, et al. Infant
- 629 transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to
- 630 paired maternal plasma. PLoS Pathog. 2018;14(4):e1006944.
- 631 17. Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, Mbori-Ngacha D, et al.
- 632 Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from
- 633 mother to infant. J Virol. 2006;80(2):835-44.
- 634 18. Barin F, Jourdain G, Brunet S, Ngo-Giang-Huong N, Weerawatgoompa S, Karnchanamayul
- 635 W, et al. Revisiting the role of neutralizing antibodies in mother-to-child transmission of HIV-1.
- 636 J Infect Dis. 2006;193(11):1504-11.

- 637 19. Chaillon A, Wack T, Braibant M, Mandelbrot L, Blanche S, Warszawski J, et al. The breadth
- and titer of maternal HIV-1-specific heterologous neutralizing antibodies are not associated with
- a lower rate of mother-to-child transmission of HIV-1. J Virol. 2012;86(19):10540-6.
- 640 20. Samleerat T, Thenin S, Jourdain G, Ngo-Giang-Huong N, Moreau A, Leechanachai P, et al.
- 641 Maternal neutralizing antibodies against a CRF01_AE primary isolate are associated with a low
- rate of intrapartum HIV-1 transmission. Virology. 2009;387(2):388-94.
- 643 21. Permar SR, Fong Y, Vandergrift N, Fouda GG, Gilbert P, Parks R, et al. Maternal HIV-1
- 644 envelope-specific antibody responses and reduced risk of perinatal transmission. J Clin Invest.
- 645 2015;125(7):2702-6.
- 646 22. Ghulam-Smith M, Olson A, White LF, Chasela CS, Ellington SR, Kourtis AP, et al.
- 647 Maternal but Not Infant Anti-HIV-1 Neutralizing Antibody Response Associates with Enhanced
- 648 Transmission and Infant Morbidity. mBio. 2017;8(5).
- 649 23. Martinez DR, Tu JJ, Kumar A, Mangold JF, Mangan RJ, Goswami R, et al. Maternal
- 650 Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-
- 651 Transmitted/Founder HIV Variants. mBio. 2020;11(2).
- 652 24. Rich KC, Fowler MG, Mofenson LM, Abboud R, Pitt J, Diaz C, et al. Maternal and infant
- 653 factors predicting disease progression in human immunodeficiency virus type 1-infected infants.
- Women and Infants Transmission Study Group. Pediatrics. 2000;105(1):e8.
- 655 25. JJ H. Sample selection bias as a specification error. Econometrica. 1979;47(1):153-61.
- 656 26. Pegu A, Hessell AJ, Mascola JR, Haigwood NL. Use of broadly neutralizing antibodies for
- 657 HIV-1 prevention. Immunol Rev. 2017;275(1):296-312.
- 658 27. Cohen YZ, Caskey M. Broadly neutralizing antibodies for treatment and prevention of HIV-
- 659 1 infection. Curr Opin HIV AIDS. 2018;13(4):366-73.
- 660 28. Barin F, Braibant M. HIV-1 antibodies in prevention of transmission. Curr Opin HIV AIDS.
- 661 2019;14(4):273-8.

- 662 29. Zhou T, Lynch RM, Chen L, Acharya P, Wu X, Doria-Rose NA, et al. Structural Repertoire
- of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell.
- 664 2015;161(6):1280-92.
- 665 30. Moody MA, Gao F, Gurley TC, Amos JD, Kumar A, Hora B, et al. Strain-Specific V3 and
- 666 CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant
- 667 Viruses. Cell Host Microbe. 2015;18(3):354-62.
- 668 31. Bricault CA, Yusim K, Seaman MS, Yoon H, Theiler J, Giorgi EE, et al. HIV-1 Neutralizing
- 669 Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe.
- 670 2019;26(2):296.
- 671 32. West AP, Jr., Scharf L, Horwitz J, Klein F, Nussenzweig MC, Bjorkman PJ. Computational
- analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope
- 673 residues. Proc Natl Acad Sci U S A. 2013;110(26):10598-603.
- 674 33. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and
- 675 escape by HIV-1. Nature. 2003;422(6929):307-12.
- 676 34. Wagh K, Kreider EF, Li Y, Barbian HJ, Learn GH, Giorgi E, et al. Completeness of HIV-1
- 677 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Rep.
- 678 2018;25(4):893-908 e7.
- 679 35. Alam SM, Aussedat B, Vohra Y, Meyerhoff RR, Cale EM, Walkowicz WE, et al. Mimicry
- 680 of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Sci Transl Med.
- 681 2017;9(381).
- 682 36. Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific antibodies
- 683 capable of ADCC are common in breastmilk and are associated with reduced risk of
- transmission in women with high viral loads. PLoS Pathog. 2012;8(6):e1002739.

- 686 Maternal humoral factors associated with perinatal human immunodeficiency virus type-1
- transmission in a cohort from Kigali, Rwanda, 1988-1994. J Infect. 1999;39(3):213-20.
- 688 38. Ljunggren K, Moschese V, Broliden PA, Giaquinto C, Quinti I, Fenyo EM, et al. Antibodies
- 689 mediating cellular cytotoxicity and neutralization correlate with a better clinical stage in children
- born to human immunodeficiency virus-infected mothers. J Infect Dis. 1990;161(2):198-202.
- 691 39. Broliden K, Sievers E, Tovo PA, Moschese V, Scarlatti G, Broliden PA, et al. Antibody-
- 692 dependent cellular cytotoxicity and neutralizing activity in sera of HIV-1-infected mothers and
- 693 their children. Clin Exp Immunol. 1993;93(1):56-64.
- 694 40. Van Rompay KK, Berardi CJ, Dillard-Telm S, Tarara RP, Canfield DR, Valverde CR, et al.
- 695 Passive immunization of newborn rhesus macaques prevents oral simian immunodeficiency
- 696 virus infection. J Infect Dis. 1998;177(5):1247-59.
- 41. Foresman L, Jia F, Li Z, Wang C, Stephens EB, Sahni M, et al. Neutralizing antibodies
- administered before, but not after, virulent SHIV prevent infection in macaques. AIDS Res Hum
- 699 Retroviruses. 1998;14(12):1035-43.
- 42. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D, et al. Protection of
- 701 Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer
- 702 of neutralizing antibodies. J Virol. 1999;73(5):4009-18.
- 43. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al.
- 704 Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J
- 705 Med. 2009;361(23):2209-20.
- 44. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al.
- 707 Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med.
- 708 2012;366(14):1275-86.

^{685 37.} Tranchat C, Van de Perre P, Simonon-Sorel A, Karita E, Benchaib M, Lepage P, et al.

- 45. Burton DR. Advancing an HIV vaccine; advancing vaccinology. Nat Rev Immunol.
- 710 2019;19(2):77-8.
- 711 46. Cohen KW, Frahm N. Current views on the potential for development of a HIV vaccine.
- 712 Expert Opin Biol Ther. 2017;17(3):295-303.
- 713 47. Lehman DA, Farquhar C. Biological mechanisms of vertical human immunodeficiency virus
- 714 (HIV-1) transmission. Rev Med Virol. 2007;17(6):381-403.
- 48. Russell ES, Kwiek JJ, Keys J, Barton K, Mwapasa V, Montefiori DC, et al. The genetic
- 716 bottleneck in vertical transmission of subtype C HIV-1 is not driven by selection of especially
- neutralization-resistant virus from the maternal viral population. J Virol. 2011;85(16):8253-62.
- 49. Kishko M, Somasundaran M, Brewster F, Sullivan JL, Clapham PR, Luzuriaga K. Genotypic
- and functional properties of early infant HIV-1 envelopes. Retrovirology. 2011;8:67.
- 50. Baan E, de Ronde A, Stax M, Sanders RW, Luchters S, Vyankandondera J, et al. HIV-1
- autologous antibody neutralization associates with mother to child transmission. PLoS One.

722 2013;8(7):e69274.

- 51. Milligan C, Omenda MM, Chohan V, Odem-Davis K, Richardson BA, Nduati R, et al.
- 724 Maternal Neutralization-Resistant Virus Variants Do Not Predict Infant HIV Infection Risk.
- 725 mBio. 2016;7(1):e02221-15.
- 52. Fouda GG, Mahlokozera T, Salazar-Gonzalez JF, Salazar MG, Learn G, Kumar SB, et al.
- 727 Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and
- function to that of nontransmitted breast milk variants. Retrovirology. 2013;10:3.
- 53. Thenin S, Samleerat T, Tavernier E, Ngo-Giang-Huong N, Jourdain G, Lallemant M, et al.
- 730 Envelope glycoproteins of human immunodeficiency virus type 1 variants issued from mother-
- infant pairs display a wide spectrum of biological properties. Virology. 2012;426(1):12-21.
- 732 54. van Gils MJ, Bunnik EM, Boeser-Nunnink BD, Burger JA, Terlouw-Klein M, Verwer N, et
- al. Longer V1V2 region with increased number of potential N-linked glycosylation sites in the

- 734 HIV-1 envelope glycoprotein protects against HIV-specific neutralizing antibodies. J Virol.
- 735 2011;85(14):6986-95.
- 55. Rong R, Li B, Lynch RM, Haaland RE, Murphy MK, Mulenga J, et al. Escape from
- autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple
- 738 pathways. PLoS Pathog. 2009;5(9):e1000594.
- 56. Gray ES, Moore PL, Choge IA, Decker JM, Bibollet-Ruche F, Li H, et al. Neutralizing
- antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J Virol.
- 741 2007;81(12):6187-96.
- 57. Ng CT, Jaworski JP, Jayaraman P, Sutton WF, Delio P, Kuller L, et al. Passive neutralizing
- antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat Med.

744 2010;16(10):1117-9.

- 58. Himes JE, Goswami R, Mangan RJ, Kumar A, Jeffries TL, Jr., Eudailey JA, et al. Polyclonal
- 746 HIV envelope-specific breast milk antibodies limit founder SHIV acquisition and cell-associated
- virus loads in infant rhesus monkeys. Mucosal Immunol. 2018;11(6):1716-26.
- 59. Stiehm ER, Lambert JS, Mofenson LM, Bethel J, Whitehouse J, Nugent R, et al. Efficacy of
- 749 zidovudine and human immunodeficiency virus (HIV) hyperimmune immunoglobulin for
- reducing perinatal HIV transmission from HIV-infected women with advanced disease: results
- 751 of Pediatric AIDS Clinical Trials Group protocol 185. J Infect Dis. 1999;179(3):567-75.
- 752 60. Onyango-Makumbi C, Omer SB, Mubiru M, Moulton LH, Nakabiito C, Musoke P, et al.
- 753 Safety and efficacy of HIV hyperimmune globulin for prevention of mother-to-child HIV
- transmission in HIV-1-infected pregnant women and their infants in Kampala, Uganda
- 755 (HIVIGLOB/NVP STUDY). J Acquir Immune Defic Syndr. 2011;58(4):399-407.
- 756 61. Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, et al. Antibody 10-
- 1074 suppresses viremia in HIV-1-infected individuals. Nat Med. 2017;23(2):185-91.

- 758 62. Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, et al.
- 759 Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human
- 760 monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol. 2015;182(3):289-301.
- 761 63. Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, et al. Virologic effects of
- 762 broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl
- 763 Med. 2015;7(319):319ra206.
- 764 64. Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP, Jr., Buckley N, et al. Viraemia
- suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature.
- 766 2015;522(7557):487-91.
- 767 65. Cunningham CK, McFarland EJ, Morrison RL, Capparelli EV, Safrit JT, Mofenson LM, et
- al. Safety, Tolerability, and Pharmacokinetics of the Broadly Neutralizing Human
- 769 Immunodeficiency Virus (HIV)-1 Monoclonal Antibody VRC01 in HIV-Exposed Newborn
- 770 Infants. J Infect Dis. 2020;222(4):628-36.
- 66. Gruell H, Klein F. Antibody-mediated prevention and treatment of HIV-1 infection.
- 772 Retrovirology. 2018;15(1):73.
- 773 67. Mahomed S, Garrett N, Baxter C, Abdool Karim Q, Abdool Karim SS. Clinical trials of
- broadly neutralizing monoclonal antibodies for HIV prevention: a review. The Journal of
- 775 Infectious Diseases.
- 68. Heckman JJ. Sample Selection Bias as a Specification Error. Econometrica. 1979;47(1):153-
- 777 61.
- 69. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user
- interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221-
- 780 4.

- 781 70. Kirchherr JL, Lu X, Kasongo W, Chalwe V, Mwananyanda L, Musonda RM, et al. High
- throughput functional analysis of HIV-1 env genes without cloning. J Virol Methods.
- 783 2007;143(1):104-11.
- 784 71. Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods
- 785 Mol Biol. 2009;485:395-405.
- 786 72. Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, et al. Human
- 787 immunodeficiency virus type 1 env clones from acute and early subtype B infections for
- standardized assessments of vaccine-elicited neutralizing antibodies. J Virol.
- 789 2005;79(16):10108-25.
- 790 73. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al.
- 791 Identification and characterization of transmitted and early founder virus envelopes in primary
- 792 HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105(21):7552-7.
- 793 74. Dessau RB, Pipper CB. ["R"--project for statistical computing]. Ugeskr Laeger.
- 794 2008;170(5):328-30.
- 795 75. Douglas Bates MM, Ben Bolker, Steve Walker Fitting Linear Mixed-Effects Models Using
- 196 lme4. Journal of Statistical Software. 2015;67(1):1-48.
- 797 76. Gnanakaran S, Daniels MG, Bhattacharya T, Lapedes AS, Sethi A, Li M, et al. Genetic
- signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing
- 799 antibodies. PLoS Comput Biol. 2010;6(10):e1000955.
- 800 77. Bhattacharya T, Daniels M, Heckerman D, Foley B, Frahm N, Kadie C, et al. Founder
- 801 effects in the assessment of HIV polymorphisms and HLA allele associations. Science.
- 802 2007;315(5818):1583-6.
- 803 78. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci
- 804 U S A. 2003;100(16):9440-5.

- 805 79. deCamp A, Hraber P, Bailer RT, Seaman MS, Ochsenbauer C, Kappes J, et al. Global panel
- 806 of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing
- 807 antibodies. J Virol. 2014;88(5):2489-507.
- 808 80. Hraber P, Korber B, Wagh K, Montefiori D, Roederer M. A single, continuous metric to
- 809 define tiered serum neutralization potency against HIV. Elife. 2018;7.
- 810 81. Seaman MS, Janes H, Hawkins N, Grandpre LE, Devoy C, Giri A, et al. Tiered
- 811 categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing
- 812 antibodies. J Virol. 2010;84(3):1439-52.
- 813

814 Supporting information

- 815 S1 Table. Clinical characteristics and number of single genome amplified (SGA) plasma HIV
- 816 env sequences isolated for non-transmitting mothers.
- 817 **S2 Table.** Clinical characteristics for transmitting mothers and their infants.
- 818 **S3 Table.** Signature Sequence analysis of the envelope gene and association of amino acid sites
- 819 with transmission.

820 Figure legends

821 Fig.1 Phylogenetic tree analysis of env SGA from non-transmitting mothers. Neighbor 822 joining phylogenetic tree were prepared using the Kimura 2 parameter method. Each colored 823 dot represents an *env* amplicon, while red dots represent the amplicons selected for Env 824 pseudovirus preparation. 825 Figure 2: Phylogenetic tree analysis of *env* SGA from transmitting mother-infant pairs. 826 Neighbor joining phylogenetic tree was prepared using the Kimura 2 parameter method. Each 827 infant and mother env amplicons were shown as black and blue dots. Red dots represent the 828 maternal amplicons selected for pseudovirus preparation while infant T/F viruses are shown by 829 red arrow. 830 Figure 3: Similar neutralization sensitivity of non-transmitted maternal variants from 831 transmitting and non-transmitting mothers to paired maternal plasma, while infant T/F 832 variants are more resistant to paired plasma than all maternal variants. Maternal plasma 833 potency (ID50) against viruses from non-transmitting mothers (A) and transmitting mothers (B) 834 and infant T/Fs (C, red) and their paired closest maternal sequences (C, magenta). Boxes denote

835 interquartile distributions. Bottom panels: geometric mean ID₅₀ of non-transmitted variants

836 from each non-transmitting mothers (light blue) and transmitting mothers (dark blue) compared

to geometric mean of autologous ID50 of infant T/Fs (red) and closest maternal sequences

838 (magenta). P-values were obtained from fitting a random-effect GLM model. Panel D shows the

839 comparison between all non-transmitted variants and infant T/Fs considered together with the

840 closest maternal sequences. Panel E shows the comparison all non-transmitted variants and the

841 infant T/Fs alone. Panel F shows the comparison between the non-transmitted variants from the

842 transmitting mothers and their paired infant T/Fs.

843 Figure 4: Neutralization sensitivity of infant and maternal Env variants against a panel of

844 **bnAbs.** Heatmap of bnAbs VRC01, PG9, DH512 and DH429 IC50 against non-transmitting,

845 transmitting, and infant T/F variants, generated using the Heatmap tool on the Los Alamos HIV 846 Database. Rows represent viruses and columns represent bnAbs. The darker hues indicate more 847 potent neutralization, and aquamarine indicates IC50s above threshold, unable to reach this 848 level of neutralization at the highest concentration of bnAb tested. Top rows (indicated by the 849 light blue column to the left) are the variants from the non-transmitting mothers, below (dark 850 blue on the left) are the non-transmitted variants from transmitting mothers, followed by infant 851 T/Fs (red) and transmitting mother variants closest to the infant T/Fs (magenta, bottom). 852 853 Figure 5: Logo plots of identified signature sequence sites of maternal HIV-1 Env variants 854 that associate with bnAb sensitivity and/or maternal transmission status. Logo plots are 855 shown for each residue that was found to be associated with one of the tested features (see 856 Material and Methods) at the FDR q<0.05 significance level, grouped by transmitting mothers 857 (top) and non-transmitting mothers (bottom). Each amino acid logo is proportional in size to its 858 relative frequency in the alignment. The letter "O" is used to designate N-linked glycosylation 859 sites. Logos colored in red represent mutated amino acids that conferred resistance to one of the 860 bnAbs tested (shown at the bottom), while logos in light blue represent mutations that conferred 861 sensitivity. Orange denotes amino acids associated with transmission status. Notice that while 862 the logo plots represent the frequency of each amino acid, this doesn't always reflect the counts 863 of ancestral mutations, which is what is tested in the phylogenetically-corrected signature 864 analysis. 865 Figure 6: Neutralization sensitivity of global panel of heterologous tier 2 viruses to plasma 866 from transmitting and non-transmitting mothers. Rows represent viruses and columns

867 represent plasma from the transmitting and non-transmitting mothers. The darker hues indicate

868 more potent neutralization, and aquamarine indicates $ID_{50}s$ below threshold, unable to reach this

869 level of neutralization at the lowest dilution. Top rows (indicated by the dark blue column to the

- 870 left) are the plasma from the transmitting mothers, below (light blue on the left) are plasmas
- 871 from transmitting mothers.

Fig. 1

Fig. 4

Transmitters

- Amino acid associated with resistance
- Amino acid associated with sensitivity
- Amino acid associated with transmission

NonTransmitters

Fig. 5

Fig. 6