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 2

Abstract  1 

Background: Heterogeneity among patients’ responses to treatment is prevalent in psychiatric 2 

disorders.  Personalized medicine approaches – which involve parsing patients into subgroups 3 

better indicated for a particular treatment – could therefore improve patient outcomes and 4 

serve as a powerful tool in patient selection within clinical trials.  Machine learning approaches 5 

can identify patient subgroups but are often not “explainable” due to the use of complex 6 

algorithms that do not mirror clinicians’ natural decision-making processes.   7 

Methods: Here we combine two analytical approaches – Personalized Advantage Index and 8 

Bayesian Rule Lists – to identify paliperidone-indicated schizophrenia patients in a way that 9 

emphasizes model explainability.  We apply these approaches retrospectively to randomized, 10 

placebo-controlled clinical trial data to identify a paliperidone-indicated subgroup of 11 

schizophrenia patients who demonstrate a larger treatment effect (outcome on treatment 12 

superior than on placebo) than that of the full randomized sample as assessed with Cohen’s d.  13 

For this study, the outcome corresponded to a reduction in the Positive and Negative Syndrome 14 

Scale (PANSS) total score which measures positive (e.g., hallucinations, delusions), negative 15 

(e.g., blunted affect, emotional withdrawal), and general psychopathological (e.g., disturbance 16 

of volition, uncooperativeness) symptoms in schizophrenia. 17 

Results: Using our combined explainable AI approach to identify a subgroup more responsive to 18 

paliperidone than placebo, the treatment effect increased significantly over that of the full 19 

sample (p<0.0001 for a one-sample t-test comparing the full sample Cohen’s d=0.82 and a 20 

generated distribution of subgroup Cohen’s d’s with mean d=1.22, std d=0.09). In addition, our 21 

modeling approach produces simple logical statements (if-then-else), termed a “rule list”, to 22 
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 3

ease interpretability for clinicians.  A majority of the rule lists generated from cross-validation 1 

found two general psychopathology symptoms, disturbance of volition and uncooperativeness, 2 

to predict membership in the paliperidone-indicated subgroup. 3 

Conclusions: These results help to technically validate our explainable AI approach to patient 4 

selection for a clinical trial by identifying a subgroup with an improved treatment effect. With 5 

these data, the explainable rule lists also suggest that paliperidone may provide an improved 6 

therapeutic benefit for the treatment of schizophrenia patients with either of the symptoms of 7 

high disturbance of volition or high uncooperativeness. 8 

Trial Registration: clincialtrials.gov identifier: NCT 00083668; registered May 28, 2004 9 

Keywords: machine learning, personalized medicine, explainability, patient selection, 10 

schizophrenia 11 

 12 

1. Background 13 

The primary goal in a placebo-controlled clinical trial testing the efficacy of an 14 

experimental medication is to show a treatment effect – that patients randomized to receive 15 

the medication have improved outcomes compared to those receiving placebo.  Within 16 

psychiatry, there is heterogeneity in patients’ responses, however, with some not responding 17 

well or at all [e.g., 1; 2] which can weaken the overall response of the treatment-receiving 18 

group compared to placebo.  Additionally, the placebo response is robust in psychiatric 19 

disorders [3] making assessments of treatment efficacy more difficult.  A method termed 20 

Personalized Advantage Index (PAI) has been recently developed to uncover subgroups of 21 

patients, termed “treatment-indicated,” may be more responsive to a particular treatment than 22 
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placebo and that predictive modeling could lead to personalized medicine approaches for 1 

subtyping treatment-indicated patients [4].  In particular, this could also help improve patient 2 

selection for clinical trials of that medication to enrich for patients most likely to show a 3 

treatment effect.   4 

One of the limitations in using PAI to improve patient selection for clinical trials is 5 

insufficient explainability in how the model makes its decisions, as explainability is a critical 6 

attribute for a clinician to consider using an algorithm for patient selection.  Prior work in 7 

depression has used the PAI approach to identify the most predictive variables [5], but 8 

interpretability of the models for clinicians could be further improved as they would require 9 

interpretation of regression coefficients and do not suggest clear cutoffs for predictor variables.  10 

Here, we additionally used an approach inspired by explainable artificial intelligence (XAI), the 11 

Bayesian Rule Lists algorithm (BRL) [6, 7], to both help identify the most predictive variables 12 

and explain those predictions of treatment-indicated patients from PAI with simple if-then-else 13 

statements that better mirror a clinician’s decision-making process by using Boolean criteria 14 

with clear cutoffs for predictor variables.  The combined analytical approach of PAI and BRL was 15 

previously tested in depression and found to retrospectively identify a subgroup with improved 16 

treatment effect for the novel antagonist BTRX-246040 [8].  But it has yet to be tested in other 17 

psychiatric populations. 18 

 While improving patient selection of a clinical trial is one potential use, it is important to 19 

note the constraints on this PAI and BRL approach for this goal and some additional 20 

opportunities.  This approach requires both baseline and post-treatment (or imputed post-21 

treatment since patients often do not discontinue at random) measurements of patients 22 
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receiving a particular treatment in order to learn the baseline characteristics of a treatment-1 

indicated subgroup for this treatment prior to enrollment, so it may not be appropriate for 2 

clinical trial patient selection when no similar trial has been performed.  One opportunity is 3 

thus to use it to learn the optimal subgroup from a negative clinical trial (as in [8]) and re-4 

launch a more targeted clinical trial of the same treatment using the algorithm to identify a 5 

treatment-indicated subgroup.  Enrolling this subgroup could help increase the treatment effect 6 

size of the more targeted clinical trial.  A second opportunity is in using this approach to 7 

develop a decision-making support system for clinicians to prescribe medications already on 8 

the market to a targeted subgroup likely to have increased treatment efficacy.  The data 9 

requirements of the PAI and BRL approach could be satisfied in all these scenarios. 10 

In this study, we present this combined PAI and BRL approach to patient selection for 11 

clinical trials using XAI and validation in schizophrenia patients through a retrospective analysis 12 

of a clinical trial.  By showing that baseline features alone can be used to identify a subgroup of 13 

patients who demonstrate a larger average treatment effect, this approach opens up the 14 

possibility of identifying a targeted subgroup of patient prior to randomization to an arm and 15 

improving the clinical trial outcome by using this patient subgroup in particular. 16 

 17 

2. Methods 18 

2.1 Study 19 

 We analyzed data from a 6-week randomized, double-blind, placebo-controlled study 20 

evaluating the efficacy of extended-release paliperidone in the treatment of patients with 21 

schizophrenia (clincialtrials.gov identifier: NCT 00083668).  This trial was a success, and 22 
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paliperidone currently has FDA approval in this population.  This study makes use of de-1 

identified data made available via the YODA Project (https://yoda.yale.edu/; research proposal 2 

number 2019-4080) and was exempt from ethical oversight. 3 

Patients were assessed for eligibility and phenotyped using standard clinical 4 

assessments at baseline and randomized to one of several arms.  In this analysis, we used data 5 

from the 15mg/day paliperidone arm (n=113) and the placebo arm (n=120).  We selected the 6 

15mg/day arm over arms testing lower doses (3mg or 9mg per day) as it gave the greatest 7 

efficacy effect compared to placebo.  The efficacy endpoint was the Positive and Negative 8 

Syndrome Scale (PANSS), a set of 30 questions administered by a trained clinician and scored on 9 

a 1-7 ordinal scale (7 is most severe).  The PANSS was administered weekly.  After dropping 10 

patients with missing baseline values used as features in the modeling (see below), 95 patients 11 

remained in the treatment arm and 102 in the placebo arm. 12 

 13 

2.2 Modeling 14 

Our approach to identify treatment-indicated patients and improve the explainability of 15 

the machine learning algorithm output classifying these patients involved combining two 16 

approaches.  First, we used the Personalized Advantage Index (PAI) algorithm [4] to create an 17 

index/score that is then used to label a patient as treatment-indicated or rest-indicated (the 18 

rest of the subjects who are not treatment-indicated).  This machine learning approach relies 19 

on multiple linear regression which provides some level of explainability through the 20 

coefficients of the predictors but is likely more complex than clinicians’ decision making 21 

processes which are closer in form to decision trees or lists.  Thus, in a second step, we used the 22 
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Bayesian Rule Lists classifier [6, 7] along with the predicted treatment- and rest-indicated labels 1 

from PAI to create a more explainable classifier using decision lists.  The overview of the 2 

workflow is presented in Figure 1. 3 

 4 

2.2.1 Personalized Advantage Index Modeling and Labeling 5 

In our modeling approach, the PAI algorithm was first used to identify treatment-6 

indicated patients.  The PAI approach predicts actual and counterfactual outcomes (i.e., a 7 

patient’s outcome for their assigned arm, drug or placebo, and the non-assigned arm) and 8 

calculates the difference between these two scores (as previously described in [4, 5]).   9 

Briefly, we used an Elastic Net regressor (implemented in the python package scikit-10 

learn), with a grid search for hyperparameter optimization across the range of alpha = [0.001, 11 

0.01, 0.1, 1, 10] and l1_ratio = [0.1, 0.5, 0.9].  The input features are listed in Table 1 where 12 

“baseline” refers to week 0 of the trial, which precedes treatment arm randomization. The 13 

outcome modeled was the 6-week post-treatment total PANSS score. Scores from patients 14 

missing this 6-week score were replaced with their last observation (n = 80 patients) which was 15 

consistent with the approach used in the original clinical trial analysis.  This multiple regression 16 

model then predicts the actual post-treatment PANSS score (on the patient’s randomized arm) 17 

and the hypothetical counterfactual score (by substituting the other arm in the regression 18 

equation). PAI then returns a quantitative score for each patient that indicates the difference 19 

between these predicted drug and placebo outcomes with better performance on drug 20 

corresponding to a negative PAI score. A subsequent threshold then creates the two classes of 21 

treatment-indicated and rest-indicated with possible thresholds examined in descending steps 22 
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of 0.5 (0, -0.5, -1, -1.5,…).  We selected the threshold that allocates ~50% of the sample to 1 

treatment-indicated class to maintain a balanced data set for the BRL classifier.  Please note 2 

that selecting a PAI score threshold is a matter of balancing algorithmic needs (two-class 3 

classifiers work best with balanced data), and clinical needs (clinicians may consider a specific 4 

percent decrease in symptoms, such as at least 30%, a clinically-meaningful decrease), and 5 

researchers who use this method in the future may need to reassess whether the 50% criteria 6 

used here will work in their scenario.  As PAI was responsible for generating the best possible 7 

indication labels for BRL to train on (i.e., generating “ground truth” labels for BRL), the PAI 8 

regression model was trained on all the data.  Please note that these are relative ground-truth 9 

labels – the best labels we can come up with but not perfect since the real ground-truth of 10 

counterfactual predictions will never be known.  Thus these labels function as ground-truth for 11 

training BRL, as true ground-truth labels cannot be known with this clinical trial design.  The grid 12 

search of hyperparameters showed that alpha = 0.1, l1_ratio = 0.1 minimized the R
2
.   13 

 14 

Model Input Features PAI Model Output BRL Model Output 

Demographics 

• Age 

• Sex 

Symptom scales  

• 30 Baseline individual 

item PANSS scores 

• Baseline total PANSS 

score 

• Baseline daytime 

drowsiness and quality 

of sleep scores from the 

Sleep Visual Analog 

Scale (VAS) 

• Baseline Personal and 

• Predicted actual and 

counterfactual week 

6 PANSS scores 

• Numerical PAI score 

(predicted outcome 

on treatment – 

predicted outcome on 

placebo) 

• Labels: treatment-

indicated, rest-

indicated created 

from thresholded PAI 

score 

• Labels: treatment-

indicated and rest-

indicated  
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 9

Social Performance 

Scale score  

• Baseline total 

Schizophrenia Quality of 

Life Scale score 

Others 

• Randomized arm 

(treatment or placebo; 

PAI only) 

• Interactions of 

randomized arm with 

the other features (PAI 

only).    

Table 1:  Model inputs and outputs.  Several sequential outputs are generated during PAI 1 

modeling and are listed in order of generation. 2 

 3 

2.2.2 BRL Modeling and Labeling for Additional Explainability 4 

The BRL algorithm was used to create a more explainable model from the initial PAI 5 

treatment-indicated and rest-indicated results.  BRL uses sequenced logical rules and Bayesian 6 

inference to make classifications [6, 7].  Here, we took in the same baseline features other than 7 

the randomized arm and interactions (Table 1) and classified patients as treatment- or rest-8 

indicated using the BRL-generated if-then-else statements.  A Bayesian rule list is composed of 9 

Boolean statements that evaluate if features fit certain criteria such as “If depression symptom 10 

score > 10” and the subsequent classification if the statement is true – “then, patient is 11 

treatment-indicated.”  These statements are closer to a physician’s decision-making process 12 

than are the PAI regression outputs (feature coefficients without clear cutoffs for feature 13 

values). Hyperparameters were set at 3 for the max rule length (number of Boolean statements 14 

combined in an individual rule), 2 for the Bayesian prior hyperparameters of expected 15 
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individual rule length and 2 for the expected rule list length (excluding the final base case).  We 1 

used a 5-fold cross-validation framework that generated a model (a rules list) on the 80% of 2 

training data and used it to classify the patients in the remaining 20% of test data as treatment- 3 

or rest-indicated. Thus five rules lists were generated from the five folds of cross-validation. As 4 

an additional output of this study, we generated a “final” BRL model by training the model on 5 

the full data set.  While we have not tested this final BRL patient selection tool here on an 6 

external data set, others could use it if they have the appropriate data. 7 

 8 

2.2.3 Comparing Treatment Effects 9 

After classifying each patient as treatment- and rest-indicated labels using BRL, we 10 

assessed if treatment-indicated patients showed an improved treatment effect compared with 11 

the full sample.  It is important to note that as the treatment-indicated patients were 12 

randomized to both drug and placebo arms, we were able to evaluate their actual post-13 

treatment outcomes and to calculate their group-level treatment effect.  Here, the treatment 14 

effect was assessed on the actual week 6 PANSS total scores of individual patients grouped by 15 

their treatment arm (using Cohen’s d as a measure of treatment effect size).  After determining 16 

the labels from the BRL outputs, the actual week 6 PANSS total scores for the treatment-17 

indicated patient subgroup were used to calculate the treatment effect for that subgroup.  18 

Then the treatment effect of the treatment-indicated subgroup was compared with the 19 

treatment effect of the full randomized sample.  Our null hypothesis is that patient selection 20 

with BRL provides no improvement of the treatment effect, while our alternative hypothesis is 21 

that BRL does improve the treatment effect relative to that of the full sample. Thus to test this 22 
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statistically, we generated a distribution treatment effects by performing BRL 100 times and 1 

calculating the Cohen’s d for each BRL-labeled treatment-indicated subgroup.  We then 2 

compared this distribution of 100 Cohen’s d’s with the Cohen’s d of the full sample using a two-3 

sided, 1-sample t-test.  Additionally, we assessed the consistency of classification for each 4 

subject across the five rule lists generated from the five folds of cross-validation. 5 

 6 

3. Results 7 

Our approach to identify treatment-indicated patients and improve the explainability of 8 

the machine learning algorithm output classifying these patients involved combining two 9 

approaches – PAI and BRL.  While the final output and results are the treatment-labeled patient 10 

subgroup and the if-then-else rules list from the BRL model, the initial modeling with the PAI 11 

algorithm produced some interim results that we first examined.  The PAI regression equation 12 

modeled actual week 6 PANSS scores using actual treatment arm assignment and several 13 

demographic and baseline symptom severity predictor variables (see Table 1).  Figure 2 shows 14 

the comparison of measured week 6 PANSS scores with predicted scores (a perfect model 15 

would show all samples sitting on the x=y line).  The R
2
 of the model shows it explained 58% of 16 

the variance (adjusted R
2
 = 0.32).  Then, by substituting in the counterfactual randomization 17 

arm, the regression equation was used to make predictions of the week 6 PANSS scores if 18 

patients were receiving the counterfactual treatment.  The difference between actual and 19 

counterfactual predictions were used to calculate the PAI scores (predicted score on treatment 20 

– predicted score on placebo) and determine the indication labels to be used by BRL.  The 21 

distribution of PAI scores are shown in Figure 3, and a threshold of -9.5 generated two balanced 22 
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classes: treatment-indicated (n=100) and rest-indicated (n=97).  For the treatment-indicated 1 

subgroup, this PAI threshold corresponded to a 30% reduction in average post-treatment 2 

PANSS scores for patients in the treatment arm relative to the scores of patients in the placebo 3 

arm and an improved treatment effect size (Cohen’s d = 1.51 relative to the full sample d = 4 

0.82).  Note that this treatment effect size is just an intermediate calculation as PAI is not the 5 

only step in our approach given that it does not provide the level of explainability that BRL 6 

does.  An evaluation of only the PAI step’s out of sample generalization and cross-validated 7 

treatment effect improvement is provided in the Supplementary Materials under the PAI 8 

Validation section. 9 

After determining the indication labels from the thresholded PAI scores, we trained the 10 

BRL classifier on these labels using 5-fold cross-validation.  For the training data, the BRL 11 

classifier had an average accuracy of 77.9% (standard deviation = 2.0%), an average Area Under 12 

the ROC Curve (AUC) of 0.83 (std = 0.02), and an average F1 score of 0.77 (std = 0.02) across the 13 

five folds.  For the test data, the BRL classifier had an average accuracy of 74.1% (standard 14 

deviation = 5.1%) an average AUC of 0.76 (std = 0.04), and an average F1 score of 0.73 (std = 15 

0.04) across the five folds.  Of the 197 patients from the full randomized sample, 87 were 16 

labeled treatment-indicated by the BRL algorithm, and the full confusion matrix of cross-17 

validated labels are shown in Figure 4.  On the full cross-validated test results, the overall 18 

accuracy was 74.1%, the AUC score = 0.74, and the F1 score = 0.73.  19 

Comparison of the two arms (treatment, placebo) for the full sample v. the treatment-20 

indicated group shows an increase in the Cohen’s d between arms from 0.82 to 1.24 (Figure 5).  21 

We also assessed if this large increase in effect size was consistent for the BRL-classified 22 
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treatment-indicated subgroup and if it was significantly greater than the full sample effect size.  1 

We generated a distribution of Cohen’s d’s by performing the same BRL process 100 times and 2 

calculating the treatment effect for the treatment-indicated subgroup each time.  We found 3 

that the treatment effects from these 100 iterations of subgrouping were statistically greater 4 

than the full sample treatment effect (BRL-classified treatment-indicated subgroup Cohen’s d’s 5 

mean = 1.22, std = 0.09; two-sided, 1-sample t-test: t=43.2, p<0.0001). 6 

The five rule lists returned by the BRL classifier differ slightly across the five folds but did 7 

identify high disturbance of volition and high uncooperativeness as commonly identifying 8 

baseline features of patients who were more likely to respond on treatment than on placebo.  9 

Table 2 displays the five rule lists. 10 

< PLACE TABLE 2 APPROXIMATELY HERE >  11 

Though the rule lists show some differences across folds, we found that they still 12 

classified patients similarly when applied to the whole data set (not just the test set).  To 13 

quantitatively assess the consistency of rule list classification, we classified each patient five 14 

times with the five rule lists.  This gave us five labels (either treatment-indicated or rest-15 

indicated) for each patient from which we can calculate the number of times that a patient is 16 

classified as treatment-indicated (max possible is five times).  Figure 6 shows a histogram of the 17 

number of times that patients were labeled treatment-indicated.  For consistent classifiers, 18 

most patients should be labeled treatment-indicated either five times or zero times (which 19 

corresponds to a patient labeled rest-indicated five times), and the labeling reflects this well 20 

according to our histogram.  Additionally, most patients labeled by the BRL algorithm 21 

treatment-indicated four or five times were treatment-indicated according to the “ground 22 
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truth” PAI labels.  As expected, this was reversed with most patients labeled by the BRL 1 

algorithm treatment-indicated zero times were rest-indicated according to the “ground truth” 2 

PAI labels.  Thus, the five rule lists mostly subtype patients similarly though their wording can 3 

differ. 4 

We additionally generated a final BRL model that could be validated on external data 5 

sets (Figure 7).  This model generated a single rule list as it is trained on the full data set as 6 

opposed to the cross-validation approach which generated five rules lists across the five folds.  7 

High baseline uncooperativeness and high baseline disturbance of volition each remain 8 

predictive of treatment-indicated subgroup membership.  For training and testing on the full 9 

data set, accuracy was 76%, AUC was 0.81, and the F1 score was 0.75. 10 

 11 

4. Discussion 12 

 With this retrospective analysis, we have technically-validated an approach of using a 13 

combination of machine learning methods to identify clinically-explainable rules that effectively 14 

subtype paliperidone-indicated schizophrenia patients who show an improved treatment effect 15 

over the full randomized sample.  This extends the prior validation that demonstrated the 16 

method’s effectiveness in a clinical trial of a novel depression treatment [8]. 17 

While this validation was performed on a successful trial where the full sample already 18 

displayed the success of the experimental drug, we demonstrated than the treatment effect 19 

can be further improved with a patient selection approach.  Statistically speaking, increasing 20 

the effect size can help decrease the enrollment numbers for patients, thereby possibly 21 

decreasing the cost and time of a new clinical trial (for example when running a more targeted 22 
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confirmatory target phase two trial after gathering data in a traditional phase two trial).  Thus, 1 

in addition to patient selection that improves the treatment effect for unsuccessful trials [5, 8], 2 

our results suggest that patient selection could help clinical development even for treatments 3 

with stronger effects.   4 

While the primary goal in this study was to validate a patient selection approach, the 5 

methodology also allows us to better understand a potential paliperidone-responsive subtype 6 

of schizophrenia.  A majority of the rule lists generated from the cross-validation framework 7 

found two general psychopathology symptoms, disturbance of volition and uncooperativeness, 8 

to be predictive of membership in the paliperidone-indicated subgroup suggesting that 9 

paliperidone may be indicated for the treatment of patients with either of these symptoms. 10 

While subtyping schizophrenia is an active area of research [e.g., 2, 9], the higher severity of 11 

uncooperativeness and disturbance of volition seen in this paliperidone-indicated subgroup has 12 

not been previously described and should be externally validated.  For this reason, we have 13 

included a single BRL rule list as a “final” model which could be tested by others interested in a 14 

paliperidone-indicated subgroup. 15 

This approach is particularly useful in the context of selecting patients for clinical trial 16 

enrollment as the clinical trial outcome is dependent on large effects that are seen for patients 17 

in the treatment arm but not placebo arm.  However, the proposed approach with the 18 

additional clinician-friendly explainability of BRL could make it more broadly useable as a 19 

clinical decision support system which are not commonly incorporating machine learning yet 20 

[10, 11].  The framework could be extended to accommodate multiple classes for indications of 21 
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multiple treatments.  With the proper validation, this could provide clinicians with a tool to 1 

match the best of several possible treatments to a particular patient. 2 

Some limitations with this approach remain.  The PAI model does have some bias in its 3 

predictions as shown by the greater differences in measured and predicted week 6 PANSS 4 

scores in the larger and smaller ranges.  This reflects a model that is underfit and could be due 5 

to missing predictor variables or due to using a linear rather than non-linear model.  Future 6 

iterations of this approach could test using a non-linear approach such as generalized random 7 

forest [12] to improve predictions in this first step.  As the shortcomings of the PAI step can 8 

affect model accuracy of the BRL step, there is additional incentive to improve predictions from 9 

the PAI step.  Even with this weakness, the PAI model still provided adequate predictions to 10 

allow the BRL model to find a treatment-indicated subgroup with improved treatment effect 11 

size.  Another limitation is the testing only within a single data set.  A more robust approach 12 

would be to test the BRL model in a separate data set to assess generalization of the model and 13 

the proposed paliperidone-indicated schizophrenia phenotype.  Some may question using the 14 

baseline total PANSS score as a predictor variable either due to its possible collinearity with 15 

other PANSS item scores or that the resulting use of lower PANSS scores to classify rest-16 

indicated patients (therefore higher PANSS score is indirectly predictive of treatment-indicated 17 

patients) may be reflecting an effect of regression to the mean for the treatment-indicated 18 

patients. Unpublished analyses in our lab did not find major differences in performance or 19 

predictive features whether including or not including this variable.  Additionally, the critical 20 

result is not that PANSS scores are reduced for the treatment-indicated patients, but that they 21 

are reduced much more on treatment than on placebo.  Thus selecting patients as rest-22 
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indicated based on the baseline total PANSS score and the implications that has for selecting 1 

treatment-indicated patients does not have any bearing on the improved difference seen 2 

between arms of the treatment-indicated patients.  And finally, this modeling approach cannot 3 

currently handle longitudinal independent or dependent variables, but extending the 4 

framework of this method to more data types could expand its useability. 5 

 6 

5. Conclusions 7 

These results help to technically validate our explainable AI approach to patient selection for a 8 

clinical trial by identifying a subgroup of schizophrenia with an improved treatment effect. 9 

Importantly, this approach opens up the possibility of identifying a targeted subgroup of patient 10 

prior to randomization to an arm and improving the clinical trial outcome by using this patient 11 

subgroup in particular. 12 

 13 

 14 
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Figure Legends 15 

 16 

Figure 1:  Overview of PAI and BRL modeling workflow.  A) The first step is PAI regression 17 

modeling which takes in data listed in Table 1 and trains on the whole data set to predict both 18 

actual and counterfactual post-treatment scores for individual patients (actual scores can be 19 

compared with predicted actual scores and resulted in an R
2 

= 0.58 as shown in Figure 2).  B) The 20 

PAI Thresholding step thresholds the difference between actual and counterfactuals to create 21 

indication labels for each patient.  A treatment-indicated subgroup had a treatment effect size 22 
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of Cohen’s d= 1.51 as an intermediate assessment, but explainability of model decisions needs 1 

improvement, so the BRL step addresses this need.  C) The BRL modeling uses 5-fold cross-2 

validation to assess generalization ability to unseen samples.  The predictions generated for test 3 

samples over all folds had an accuracy of 74.1% and an AUC of 0.74 for this classifier.  4 

Importantly, it emits an explainable rule list for each fold.  D) The final step is assessing the 5 

treatment effect of the treatment-indicated subgroup identified by BRL (Cohen’s d = 1.24 as 6 

seen in Figure 5).   7 

 8 

Figure 2:  Individual PAI prediction results for actual randomized arms.  The plot shows the 9 

measured total PANSS score at week 6 vs. the averaged predicted total PANSS score at week 6 10 

from the Elastic Net regression model (each dot is an individual patient, n=197).  Patients are 11 

colored by their actual randomized arm (paliperidone treatment in blue, placebo in orange), and 12 

as expected the week 6 scores are generally higher for patients receiving placebo.  The dashed 13 

line is y=x.  Variance explained by the model is 58%.  Note that these are not the counterfactual 14 

predictions. 15 

 16 

Figure 3:  PAI score thresholded graph.  A threshold of -9.5 was chosen to create roughly 17 

balanced classes and indicates that membership in the treatment-indicated subgroup required a 18 

predicted treatment arm PANSS score that is 9.5 points less than the predicted placebo arm 19 

PANSS score. 20 
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Figure 4: Confusion matrix for cross-validated BRL labels.  Actual labels are PAI-derived labels, 1 

and predicted labels are BRL-derived labels. 2 

 3 

Figure 5:  Comparison of actual post-treatment PANSS scores for the full sample and the 4 

treatment-indicated subgroup.  Bars display treatment (TRT) and placebo (PBO) arms for the full 5 

randomized sample (left graph, TRT n=95, PBO n=102) with an illustrative instance of the BRL-6 

classified treatment-indicated (TRT-indicated) subgroup (right graph, TRT n=41, PBO n=46).  At a 7 

Cohen’s d of 1.24, the effect size between arms for the treatment-indicated subgroup is 8 

increased more than 50% over the effect size of the full sample (d = 0.82).  Error bars are 95% 9 

confidence intervals on the mean.  10 

 11 

Figure 6:  The treatment-indicated (TRT-ind) labeling consistency is seen with a histogram of 12 

BRL-labeled treatment-indicated counts.  It reflects the number of times (count) that a patient 13 

was classified as treatment-indicated across all five rule lists from the 5-fold BRL cross-14 

validation.  Most patients are either classified five times or zero times which indicates a higher 15 

level of consistency in patient subtyping across the different rule lists. Additionally, most patients 16 

in the 5-count column were also labeled as TRT-ind by the PAI algorithm (orange portion of the 17 

bar) while most patients in the zero-count column were labeled as Rest-ind by PAI (blue portion 18 

of the bar).  Patient numbers corresponding to the orange and blue portions are shown in the 19 

table below the histogram. 20 
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Figure 7: “Final” rule list created by the BRL model when trained on the full data set.  The two 1 

individual item scores for Disturbance of Volition and Uncooperativeness again appear to 2 

classify the treatment-indicated (TRT-ind) subgroup. 3 

 4 

Table 2: List of the five rule lists created by the BRL model across the five folds.   5 

Fold Rule List 

 

 

1 

 

 

 

2 

 

 

 

3 
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5 

 

Table 2 Legend: The probability shown in parentheses after each rule is estimated from the 1 

percent of patients who satisfy that rule and were labeled with the given label for the rule by 2 

the PAI “ground-truth” labels, and the confidence intervals were estimated with bootstrapping. 3 

The alphanumeric symbol before each symptom (e.g., P02, G08) refers to the question number 4 

from the PANSS scale.  Two individual item scores from the PANSS scale repeatedly were 5 

involved in subtyping the treatment-indicated patients.  Both Disturbance of Volition >= 3 and 6 

Uncooperativeness >= 3 appear in multiple rule lists for the treatment-indicated (TRT-ind) 7 

subgroup and are categorized as General Psychopathology symptoms. 8 

 9 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.01.11.20248788doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.20248788
http://creativecommons.org/licenses/by-nc-nd/4.0/

