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Abstract 18 

Background: Large genome-wide association studies (GWAS) and other genetic studies have 19 

revealed genetic loci that are associated with chronic obstructive pulmonary disease (COPD). 20 

However, the proteins responsible for COPD pathogenesis remain elusive. We used integrative-21 

omics by combining genetics of lung function and COPD with genetics of proteome to identify 22 

proteins underlying lung function variation and COPD risk. 23 

Methods: We used summary statistics from the GWAS of human plasma proteome from the 24 

INTERVAL cohort (n=3,301) and integrated these data with lung function GWAS results from 25 

the UK Biobank cohorts (n=400,102) and COPD GWAS results from the ICGC cohort (35,735 26 

cases and 222,076 controls). We performed in parallel: a proteome-wide Bayesian colocalization, 27 

and a proteome-wide Mendelian Randomization (MR) analyses. Next, we selected proteins that 28 

colocalized with lung function and/or COPD risk and explored their causal association with lung 29 

function and/or COPD using MR analysis (P<0.05).  30 

Results: We found 537, 607, and 250 proteins that colocalized with force expiratory volume in 31 

one second (FEV1), FEV1/forced vital capacity (FVC), or COPD risk, respectively. Of these, 32 

1,051 were unique proteins. The sRAGE protein demonstrated the strongest colocalization with 33 

FEV1/FVC and COPD risk, while QSOX2, FAM3D and F177A proteins had the strongest 34 

associations with FEV1. Of these, 37 proteins that colocalized with lung function and/or COPD, 35 

also had a significant causal association. These included proteins such as PDE4D, QSOX2 and 36 

RGAP1, amongst others. 37 

Conclusion: Integrative-omics reveals new proteins related to lung function. These proteins may 38 

play important roles in the pathogenesis of COPD. 39 

  40 
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Introduction 41 

Chronic obstructive pulmonary disease (COPD) is a persistent respiratory condition that is 42 

characterized by irreversible and progressive lung function impairment, and is responsible for 43 

over three million deaths worldwide each year (Roth et al. 2018). Large genome-wide 44 

association studies (GWAS) have revealed hundreds of genetic loci that are associated with 45 

COPD (Cho et al. 2014; Hobbs et al. 2017; Sakornsakolpat et al. 2019) and lung function more 46 

generally (Shrine et al. 2019). However, the molecular mechanisms relating these genetic 47 

associations to lung function and COPD pathogenesis remain elusive, hindering the ability to 48 

translate these findings into new therapeutic targets or biomarkers of disease. 49 

Integrative-omic methodologies may provide insights into the biological relationships 50 

between genetic variants and complex traits such as lung function and COPD (Giambartolomei 51 

et al. 2014; Gusev et al. 2016). These methods aim to establish a link between gene expression or 52 

protein levels and the trait by leveraging their respective associations with common genetic 53 

variants, which can be determined from independent cohorts. For example, the integration of 54 

COPD GWAS with transcriptomic datasets suggests that the effects of many COPD risk loci are 55 

mediated through regulation of gene expression in lung tissue (Obeidat et al. 2015; Lamontagne 56 

et al. 2018). 57 

Determining causal associations between molecular and complex traits are critical for 58 

understanding disease pathogenesis, and for translating these molecules into biomarkers or 59 

therapeutic targets. One method that has recently gained momentum in assessing causality of a 60 

complex trait-molecular phenotype relationship is Mendelian Randomization (MR). The MR 61 

framework exploits the random allocation of alleles during meiosis and relates their effects on a 62 

putative risk factor, which can be a quantified by measuring biomolecules such as a blood 63 

protein (Smith and Ebrahim 2003; Voight et al. 2012). This in turn can be related to a trait. MR 64 

analysis measures the ‘lifetime exposure’ to this risk factor in a way that is relatively resistant to 65 

confounding from environmental influences or reverse causation. This enables an unbiased 66 

assessment of causality. MR analysis has established causal associations between a number of 67 

candidate blood proteins and COPD (Milne et al. 2020). However, the application of MR 68 

analysis at a genome-wide discovery level and by coupling it with integrative omics methods 69 

will likely yield many additional novel protein associations with COPD. 70 
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In this study, we combined two approaches; MR analysis of plasma proteins and COPD 71 

risk and genome-wide Bayesian colocalization (COLOC). We used both of these approaches to 72 

integrate a large human plasma proteome dataset (Sun et al. 2018) with GWASs for lung 73 

function in a general population (Shrine et al. 2019) and for COPD risk in a large case-control 74 

dataset (Sakornsakolpat et al. 2019), to nominate promising protein targets for further 75 

exploration in mechanistic and biomarker studies. 76 
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Results 77 

Study design 78 

The overall study design is shown in Figure 1. We aimed to identify plasma proteins 79 

causally associated with the following phenotypic traits: forced expiratory volume in one sec 80 

(FEV1); FEV1 to forced vital capacity (FEV1/FVC) ratio; and the presence of COPD (henceforth 81 

referred to as ‘COPD risk’). These associations were determined by integrating a human plasma 82 

proteome GWAS (Sun et al. 2018) with the largest existing GWAS for lung function (Shrine et 83 

al. 2019) and COPD (Sakornsakolpat et al. 2019). Each of these datasets (described in detail in 84 

the Methods) summarizes the association of millions of genetic variants (single nucleotide 85 

polymorphisms [SNPs]) with their respective traits. We performed the study in two stages. Stage 86 

1 was an unbiased discovery of proteins associated with the phenotypic traits, by performing two 87 

integrative omics methods in parallel: a genome-wide COLOC analysis of each associated 88 

genetic locus, and a genome-wide MR analysis of all measured proteins. Stage 2 was a step-wise 89 

analysis, wherein we used only proteins that were significantly colocalized with one or more of 90 

the phenotypic parameters in subsequent, apply a hypothesis-driven MR threshold. From these 91 

results, we generated a list of plasma proteins that showed a causal association with COPD risk 92 

and/or lung function.  93 

 94 
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 95 
Figure 1. Study design. The diagram shows the workflow used to identify causal factors for lung96 
function and COPD risk. We selected as top plasma proteins those that showed significant colocalization97 
at PPH4 > 0.80 and causality at FDR < 0.10 or PMR < 0.05 with lung function and/or COPD risk. 98 

Stage 1: a genome-wide discovery of plasma proteins associated with lung function and COPD99 

risk 100 

In Stage 1, we used two integrative omics methods. We first performed a COLOC101 

analysis across the 2,995 proteins, which were measured in the plasma proteome dataset. For this102 

analysis, we included genetic loci associated with each of the clinical parameters (lung function103 

traits and COPD) at a PGWAS < 5×10-07 and set the significance of colocalization at PPH4 > 0.80. 104 

In total, 1,048 unique proteins were colocalized with at least one of the COPD105 

phenotypes. Of these, 447 protein colocalized at PPH4 > 0.90. For the lung function traits, 537106 

proteins colocalized with FEV1; proteins with the highest PPH4 were sulfhydryl oxidase 2107 

(QSOX2) (PPH4 = 0.99), protein FAM3D (FAM3D) (PPH4 = 0.99) and FAM177A1 (F177A)108 

(PPH4 = 0.99) (Figure 2). Likewise, 607 proteins colocalized with FEV1/FVC; those with the109 
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highest PPH4 included the advanced glycosylation end product-specific receptor (sRAGE) (PPH4 110 

= 0.99), stromelysin-2 (MMP-10) (PPH4 = 0.99) and collagen alpha-3(VI) (PPH4 = 0.99) 111 

(Figure 2). We found that 200 unique proteins overlapped with both traits (Supplemental Table 112 

1). For COPD risk, there were 250 colocalized proteins. Based on PPH4, the top three colocalized 113 

proteins were sRAGE (PPH4 = 0.99), C-C motif chemokine 14 (HCC-1) (PPH4 = 0.99), and AT-114 

rich interactive domain-containing protein 3A (ARI3A) (PPH4=0.99) (Figure 2). Approximately 115 

half of proteins that were colocalized with COPD risk were also colocalized with FEV1 (94/250) 116 

or FEV1/FVC (126/250) (Supplemental Table 1). 117 
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 118 
Figure 2. Bayesian colocalization (COLOC) analyses of the plasma proteome related to lung119 
function (a and b) traits and chronic obstructive pulmonary disease (COPD) risk (c). The horizontal120 
axis in each plot represents the chromosomal position of the plasma protein coding genes and the vertical121 
axis shows the posterior probability of the two phenotypes (protein level and clinical trait) sharing a122 
common genetic variant (PPH4). Significant colocalization is defined as PPH4 >0.80 (red dashed line).123 
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Each purple or grey dot represents a plasma protein. Labelled colocalized proteins are those with 124 
significant causal associations with the phenotypic trait at P<0.05. Note: Plasma proteins are labelled 125 
based on their protein coding gene names. 126 
 127 

We next performed MR analyses for each of the 2,995 proteins present in the plasma 128 

proteome dataset (Sun et al. 2018). MR analysis uses genetic variants as instrumental variables to 129 

relate their per-allele effects on a risk factor to their per-allele effects on a phenotypic trait. MR 130 

therefore estimates the ‘causal’ effect of the risk factor on the phenotypic trait. For these 131 

analyses, we used a two-sample multivariable inverse variance weighted MR model (IVW-MR), 132 

and tested various MR assumptions (see Methods). Since this was a hypothesis-free analysis, we 133 

set a false discovery rate (FDR) of <0.1 to control for multiple comparisons. 134 

For the lung function traits, three proteins – QSOX2, Rac GTPase-activating protein 1 135 

(RGAP1) and NAD(P)H quinone dehydrogenase 1 (NQO1) – showed causal associations with 136 

FEV1 at FDR < 0.1 (Table 1). Testing of the MR assumptions showed no significant 137 

heterogeneity based on a Cochran’s Q test (P > 0.05), or pleiotropy (Egger-MR intercept P > 138 

0.05) for either protein. Based on the direction of the MR estimate, we inferred that increased 139 

plasma levels of QSOX2 and RGAP1 were associated with decreased FEV1 (Table 1 and 140 

Figure 3), while increased plasma level of NQO1 was associated with increased FEV1 (Table 1). 141 

None of the analysed proteins showed a significant causal association with FEV1/FVC at FDR < 142 

0.1. MHC class I polypeptide-related sequence B (MICB) showed a significant causal 143 

association with COPD risk (Table 1) with no evidence of heterogeneity (P > 0.05) or 144 

pleiotropy (Egger MR Intercept P > 0.05). The direction of effect was such that increased 145 

plasma MICB level was associated with reduced COPD risk (Table 1 and Figure 3). None of 146 

the proteins was causally associated with more than one COPD phenotype. 147 

When we compared the results of the COLOC and hypothesis-free MR, we found that 148 

three proteins (QSOX2, RGAP1 and MICB) were identified by both methods at FDR < 0.1.  149 

 150 

Table 1. Causal association of plasma proteins with lung function and/or COPD risk from 151 
hypothesis-free MR analysis 152 

Protein Trait Beta SE P-value Het P-value 
NQO1 FEV1 0.02 0.004 2.88×10-08 0.44 

RGAP1 FEV1 -0.04 0.005 6.49×10-15 0.20 
QSOX2 FEV1 -0.02 0.003 5.85×10-11 0.44 

MICB COPD risk -0.15 0.018 9.98×10-17 0.16 
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Plasma protein with significant Mendelian randomization (MR) (FDR<0.10) for lung function and 153 
chronic obstructive pulmonary disease (COPD) risk. From left to right columns shows 1) the name of the 154 
protein; 2) trait used for the MR, 3) inverse variance weighting (IVW)-MR estimated effect; 4) IVW-MR 155 
standard error of the effect; 5) IVW-MR  P-value; 6) Heterogeneity (Het) P-value of the SNPs used for 156 
the MR (Cochran’s Q test), 7) trait that colocalized (COLOC) with plasma protein levels (posterior 157 
probability (PPH4) of colocalization > 0.80). FEV1: Forced expiratory volume in one second. ns: not 158 
significant. 159 
 160 

Stage 2: a step-wise discovery of plasma proteins that were causally associated with lung 161 

function and/or COPD risk 162 

In Stage 2, we extracted the MR results for proteins showing significant colocalization 163 

(PPH4 >0.8) with at least one of the phenotypes (537, 607, and 250 plasma proteins that 164 

colocalized with FEV1, FEV1/FVC, and COPD risk, respectively). In this stage we considered 165 

the MR result as a complement to the COLOC results; we therefore set the significance threshold 166 

of the MR model at PMR <0.05. In total, 37 unique proteins showed a causal association with at 167 

least one of the three phenotypic traits. These included 20 proteins associated with FEV1, 12 168 

proteins associated with FEV1/FVC, and 9 proteins associated with COPD (Table 2). None of 169 

the significant results showed heterogeneity (P > 0.05) or pleiotropy (Egger MR Intercept P > 170 

0.05). 171 

For FEV1, the most significantly associated candidate protein was RGAP1 whose plasma 172 

levels increased with decreasing FEV1 (Figure 3). For FEV1/FVC, the most significantly 173 

associated protein was cAMP-specific 3', 5'-cyclic phosphodiesterase 4D (PDE4D), whose 174 

plasma levels increased with increasing FEV1/FVC (Figure 3). For COPD risk, the most 175 

significantly associated protein was MICB, whose plasma levels increased with decreasing 176 

COPD risk (Figure 3). RGAP1 and MICB, but not PDE4D, were also identified with the 177 

hypothesis-free MR approach (stage 1) with the same direction of effect for their respective 178 

phenotypic traits. 179 

There was some overlap between the proteins associated with each of the COPD 180 

phenotypes. For example, increased plasma QSOX2 was associated with increased COPD risk 181 

and decreased FEV1 (Table 2). Increased plasma contactin-2 (CNTN2) was causally associated 182 

with decreased FEV1/FVC and increased COPD risk. None of the proteins tested were found to 183 

have a causal association with all three phenotypic traits.184 
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Highlighting potential candidate proteins  185 

We nominated colocalized proteins having strong support for a causal association with lung 186 

function and/or COPD as candidate proteins. This list included proteins showing a significant 187 

MR estimate in Stage 2; for example, Figure 3 shows the MR results for PDE4D, MICB and 188 

RGAP1; by nature of the step-wise analysis, these proteins were also significantly colocalized 189 

with one or more of the COPD traits. The full MR results for these proteins are provided in 190 

Supplemental Table 2. 191 

  192 
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Table 2. Potential plasma protein targets associated with lung function and COPD 193 
 Causal association 

(Mendelian randomization) 
Colocalization 

Protein COPD Risk 
β (PMR) 

FEV1 

β (PMR) 
FEV1/FVC 

β (PMR) 
COPD risk 

PPH4 
FEV1 
PPH4 

FEV1/FVC 
PPH4 

PDE4D -0.18 
(3.61×10-16) 

- 0.08 
(1.47×10-60) 

0.83 0.91 0.84 

QSOX2 0.05  
(4.78×10-05) 

-0.02 
(5.85×10-11) 

- - 0.99 - 

VEGF sR3 -0.09 
(1.23×10-05) 

-0.01 
(1.45×10-03) 

- - 0.97 - 

CNTN2 0.06 
(9.14×10-04) 

 -0.03 
(5.46×10-11) 

0.95 - - 

MICB -0.15 
(9.98×10-17) 

- - - - 0.80 

IL3-RA -0.06 
(3.21×10-05) 

- - - 0.98 0.82 

CF126 0.129307 
(2.47×10-03) 

- - - 0.88 - 

NPC2 -0.03176 
(8.69×10-03) 

- - - - 0.87 

SURF -0.05146 
(3.85×10-02) 

- - 0.85 - - 

KI2S2 - -0.05 
(3.01×10-23) 

- 0.88 - - 

RGAP1 - -0.04 
(6.49×10-15) 

- 0.97 - - 

GP116 - 0.02 
(4.42×10-11) 

- 0.92 0.98 - 

sE-
Selectin 

- 0.02 
(2.51×10-10) 

- - 0.98 - 

VEGF 
sR2 

- 0.03 
(2.58×10-10) 

- - 0.98 0.89 

C4 - -0.02 
(1.82×10-04) 

- - 0.92 0.84 

TIMP-4 - 0.02 
(2.24×10-04) 

- - - 0.94 

Cathepsin 
S 

- 0.01 
(3.54×10-04) 

- - 0.93 - 

LYZL2 - -0.03 
(4.82×10-04) 

- 0.88 - - 

ITI heavy 
chain H1 

- -0.01 
(6.58×10-04) 

-  0.92 - 

VSIG2 - -0.02 
(7.01×10-04) 

- 0.86 0.91 0.90 

BATF3 - 0.02 
(7.78×10-04) 

- 0.90 0.87 0.92 

sRAGE - -0.02 
(9.64×10-04) 

- 0.99 - 0.99 

INSL3 - -0.03 
(1.15×10-03) 

-  - 0.90 

C1GLC - -0.01 
(1.49×10-03) 

- 0.92 0.98 - 

ESAM - 0.02 - - 0.81 - 
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(3.70×10-03)  
TM157 - -0.03 

(5.47×10-03) 
- - 0.83 - 

PPT1 - -0.01 
(8.25×10-03) 

- - - 0.88 

AREG - - -0.02 
(1.05×10-02) 

0.91 - - 

RELB - - -0.01 
(1.36×10-02) 

- - 0.85 

PSD1 - - 0.01 
(1.59×10-02) 

- - 0.88 

FCRL3 - - 0.01 
(1.59×10-02) 

0.87 - - 

KI3L2 - - -0.02 
(1.93×10-02) 

- 0.81 - 

TECK - - 0.01 
(2.36×10-02) 

- 0.99 - 

FAM3D -  - -0.01 
(2.37×10-02) 

 - 0.99 0.82 

BPI -  - -0.01 
(3.03×10-02) 

0.98 -  - 

CATZ -  - -0.01 
(3.31×10-02) 

- 0.88  - 

PH -  - 0.02 
(4.08×10-02) 

0.92 -  - 

The table shows the proteins that were selected as potential candidates. From left to right column: 1) 194 
Protein symbol; 2) effect of plasma protein on Chronic Obstructive Pulmonary Disease (COPD) risk and 195 
IVW-MR P-value; 3) effect of plasma protein on and forced expiratory volume in one second (FEV1) and 196 
IVW-MR P-value; 4) effect of plasma protein on FEV1/FVC and IVW-MR P-value; 5) posterior 197 
probability of colocalization (PPH4) between plasma protein levels and COPD risk; 6) PPH4 between 198 
plasma protein levels and FEV1; 7) PPH4 between plasma protein levels and FEV1/FVC.  199 
 200 
 201 

 202 

 203 

 204 
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 205 
Figure 3. Mendelian Randomization (MR) of protein biomarkers for lung function and Chronic206 
Obstructive Pulmonary Disease (COPD) risk. Inverse variance weighting (IVW) MR (IVW-MR) of207 
three plasma proteins on lung function and/or COPD risk. The figure shows the IVW-MR plot for PDE4D208 
(a and b), MICB (c) and RGAP1 (d). Dots represent the effect of the SNPs used for the IVW-MR on the209 
plasma protein levels (horizontal axis) and lung function traits or COPD risk (vertical axis). Estimates210 
were derived from 1) a plasma genome-wide association study (GWAS) for each protein, 2) GWAS of211 
the International COPD Genetics Consortium (ICGC) for COPD risk and 3) a Spirometry GWAS meta-212 
analysis (UK biobank and SpiroMeta cohorts) for the forced expiratory volume in one second (FEV1) and213 
FEV1/Forced vital capacity (FVC). Error bars for each SNP represents the 95% confidence intervals. The214 
slope of the red line is the instrumental variable regression estimate of the effect of protein on the lung215 
function traits and/or COPD risk. IVW-MR P-value is shown at the top left corner of each MR plot. 216 

217 
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Discussion 218 

Translating COPD genetics findings into actionable biomarkers and therapeutic targets 219 

requires understanding of the genes and proteins underlying the genetic associations. To our 220 

knowledge, this is the largest integrative proteomics and GWAS for lung function and COPD to 221 

date. The key findings were that: 1) the genetic loci associated with plasma levels of 1,048 and 222 

250 unique proteins colocalized with lung function and COPD risk, respectively; 2) using an 223 

standard MR approach, we identified 4 unique plasma proteins causally associated with lung 224 

function and/or COPD risk; and 3) using an step-wise approach (COLOC coupled with MR) we 225 

identified 37 candidates proteins for lung function and/or COPD. 226 

By integrating lung function and COPD genetics and blood proteomics, we identified 227 

537, 607, and 250 unique proteins, whose plasma levels significantly associated with FEV1, 228 

FEV1/FVC, or COPD risk, respectively. Of these, 74 were common to all three traits. This is a 229 

substantial increase in the number of peripheral proteins associated with COPD phenotypes when 230 

compared to previous reports, which had focused on candidate genes (Obeidat et al. 2017; Milne 231 

et al. 2020). Our findings suggest that the expression levels of plasma proteins are associated 232 

with lung function and COPD risk, supporting the notion that GWAS variants (even when 233 

located within non-coding regions) have potential biological consequences that ultimately 234 

contribute to the phenotypic variation of a complex trait or disease. Our findings could be used 235 

as a starting point to support future biomarker and/or drug developmental studies. This is 236 

particular true since targets with genetic support are more likely to be successful in drug 237 

development (Nelson et al. 2015). 238 

Of the proteins we identified in this study, there are several with known, biologically-239 

plausible links to lung physiology and lung disease. For example, PDE4D is an isoenzyme that is 240 

part of the phosphodiesterase subfamily 4 (PDE4 A-D), a group of proteins that are involved in 241 

the pathogenesis of multiple inflammatory diseases, including but not limited to asthma and 242 

COPD. Inhibition of PDE4 increases cAMP, which appears to have a positive effect in asthma 243 

and COPD by decreasing lung inflammation (Huang and Mancini 2006) and inducing airway 244 

smooth muscle relaxation (Méhats et al. 2003). PDE4 isoforms have different physiological roles 245 

(Manning et al. 1999), and the specific role of the PDE4D isoform in lung pathology is not fully 246 

understood. Importantly, pathological contribution may be tissue specific. For example, cigarette 247 
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exposure has opposite effects on PDE4D expression in alveolar compared to airway epithelial 248 

tissue (Zuo et al. 2019) . In our study, PDE4D was measured in the plasma compartment, and the 249 

direction of the MR estimate suggested that increased PDE4D plasma levels were causally 250 

associated with increased lung function and reduced the risk of COPD. It is therefore plausible 251 

that a soluble form of PDE4D has different effects that the intracellular form or ones that are 252 

expressed in the local lung or immune cells. Further research is needed to understand the role of 253 

the soluble PDE4D in the pathophysiology of COPD. 254 

Another interesting candidate we found was IL3-RA. Our results suggested that this 255 

protein shares causal loci with lung function, and that increased plasma levels of IL3-RΑ are 256 

associated with decreased risk of COPD. IL3-RA is one of the two subunits of the interleukin-3 257 

(IL3) receptor, a cytokine produced mostly by T-cells and involved in several 258 

immunopathologies (Hercus et al. 2013). IL3 signalling may be important for surfactant 259 

homeostasis (Campo et al. 2012), alveolar macrophage function (Notarangelo and Pessach 260 

2008), and activation and recruitment of eosinophils (George and Brightling 2016) (Davoine and 261 

Lacy 2014). Surfactant homeostasis appears to be a contributing factor in obstructive lung 262 

diseases, including asthma, COPD and cystic fibrosis (Devendra and Spragg 2002). Although 263 

this concept has not been fully validated by experimental studies, it is plausible that soluble IL3-264 

RA in plasma may disrupt IL3 signalling via competitive binding inhibition. This potential 265 

function of IL3-RA in plasma may warrant further investigation especially in the context of 266 

COPD.  267 

We found that increased sRAGE plasma protein levels were causally associated with 268 

decreased lung function. sRAGE is the soluble isoform of the receptor for advanced glycation 269 

end-products (RAGE). Under normal conditions this receptor is mainly expressed in lung tissue, 270 

particularly in type I alveolar epithelial cells, and mediates proinflammatory responses (Buckley 271 

and Ehrhardt 2010). sRAGE acts as a decoy for RAGE since it is capable of binding to RAGE 272 

ligands, therefore inhibiting RAGE (Demling et al. 2006). Dysregulation of sRAGE has been 273 

linked to COPD and lung function. Healthy individuals have been reported to have higher levels 274 

of sRAGE compared to COPD patients (Gopal et al. 2012). In contrast, our results suggest that in 275 

a general population increased sRAGE is linked to decreased lung function. This is in agreement 276 

with a study of current smokers, where a missense variant in the gene encoding for RAGE was 277 

associated with lower serum sRAGE levels and increased lung function (Miller et al. 2016). 278 
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Differential effects of sRAGE may therefore depend on an individual’s genotype. To fully 279 

understand these conflicting results it is crucial to study RAGE regulation in COPD and in 280 

normal healthy individuals. 281 

We also found that increased MICB levels were associated with decreased COPD risk. 282 

Variants within the MICB gene have previously been associated with lung function (Soler 283 

Artigas et al. 2011). MICB belongs to a major histocompatibility complex class I chain-related 284 

(MIC) gene family (Bahram 2000). MICB is a cellular stress-induced molecule that contributes 285 

to the innate and adaptive immune responses (Jamieson et al. 2002; Carapito and Bahram 2015). 286 

Soluble MICB is decreased or undetectable in bronchial washes of smokers with normal lung 287 

function and COPD patients compared to those of never-smokers (Roos-Engstrand et al. 2010). 288 

This is in agreement with the direction of the MICB effect suggested by our study, and may 289 

therefore be an interesting plasma protein candidate for further studies.   290 

Our study has a number of limitations. First, the cohorts used for our analysis only 291 

included white-European individuals; therefore the conclusions based on our results may not be 292 

generalisable to populations of different ancestry. Second, our study was limited to the blood 293 

plasma proteome. Since COPD is a systemic disease, studying the proteome of other tissues and 294 

cell types may further elucidate the mechanisms underlying the GWAS associations. Third, the 295 

2,995 proteins found in the INTERVAL Study data set represent ~15% of the whole human 296 

proteome. It is probable that proteins not measured on this platform may contribute to the 297 

phenotypic variability of the traits; these proteins remain undiscovered. Furthermore, it is likely 298 

that other mechanisms that we did not explore (e.g. epigenetics and gene expression) could 299 

contribute to COPD risk. Fourth, our integrative-omics approach only explored cis regions, 300 

therefore future research should also evaluate the trans or distal regions associated with the traits. 301 

Lastly, although our approach allowed us to prioritize a manageable set of proteins, further 302 

efforts are necessary to validate the role of these peripheral proteins and their relationship to lung 303 

function and COPD. 304 

In summary, our integrative-omics approach revealed several novel plasma proteins that 305 

were significantly linked with COPD risk and/or lung function. Using a MR framework, we 306 

provide evidence suggesting that the plasma levels of multiple proteins have causal effects on 307 

these phenotypic traits. These proteins represent promising candidates for future development of 308 
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biomarkers and/or therapeutic targets in COPD and other lung pathologies associated with 309 

reduced lung function. 310 

Materials and methods 311 

Datasets analysed for the current study 312 

INTERVAL study 313 

We analysed plasma protein quantitative trait loci (pQTL) obtained from the INTERVAL 314 

study. The INTERVAL study was a randomized trial of blood donation intervals that comprises 315 

around 45,000 participants that were recruited between June 11, 2012, and June 15, 2014 (Di 316 

Angelantonio et al. 2017; Sun et al. 2018). The full details on the criteria for participants’ 317 

recruitment, informed consent, description of the cohort, sample collection, INTERVAL study 318 

design, and objectives have been previously published (Di Angelantonio et al. 2017; Sun et al. 319 

2018). Briefly, participants from the INTERVAL study were aged 18 years and older, in general 320 

good health (based on blood donation criteria), and were recruited at 25 static donor centres of 321 

NHS Blood and Transplant (NHSBT). Blood collection was performed using standard 322 

venepuncture. Participants were genotyped for about 830,000 genetic variants using the 323 

Affymetrix Axiom UK Biobank genotyping array and imputed to the 1000 Genome phase 3 324 

UK10K reference panel. Genetic variants with imputation score (r2) >0.7, Hardy-Weinberg 325 

Equilibrium (HWE) P>5×10-06 and minor allele count of > 8 were retained (10,572,788 genetic 326 

variants). A full description of the genotyping protocol and quality control has been previously 327 

described (Astle et al. 2016). 328 

After filtering out participants who failed to pass the genetic quality controls (HWE, 329 

minor allele count, r2), a randomly-selected subset of 3,301 participants was used for the plasma 330 

pQTL analyses of 2,995 plasma proteins levels. The protein levels were log-transformed and 331 

adjusted for age, sex, waiting period between blood collection and processing and the first three 332 

genetic principal components. The protein residuals then were extracted and rank-inverse 333 

normalized. Later these residuals were used for genome-wide associations study (GWAS). The 334 

genetic associations were tested with linear regression using an additive genetic model and the 335 

results from each cohort were combined using a fixed-effect inverse-variance meta-analysis. 336 
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Significant associations were defined at P<1.5×10−11. We used the totality of the pQTL results 337 

(summary statistics) for the subsequent analyses described later in this section. 338 

 339 

International COPD Genetics Consortium (ICGC) study 340 

We determined the relationship between plasma proteins and COPD risk using the ICGC 341 

dataset. The ICGC study is one of the largest COPD GWASs that has been conducted to date. 342 

Briefly, this cohort included over 200,000 participants (35,735 cases and 222,076 controls) from 343 

individual COPD GWASs (Sakornsakolpat et al. 2019). Each individual study obtained informed 344 

consent from individual participants, and approval from the local human research 345 

ethics/regulatory bodies (Cho et al. 2014; Hobbs et al. 2017; Sakornsakolpat et al. 2019). COPD 346 

cases were defined based on pre-bronchodilator spirometry, with FEV1 < 80% predicted and 347 

FEV1 to FVC ratio of < 0.70. Controls were defined as FEV1 > 80% predicted and FEV1/FVC > 348 

0.70. Each COPD GWAS was evaluated using logistic regression, which adjusted for age, sex, 349 

pack-year of smoking, ever smoking status, current smoking status, and genetic ancestry 350 

(principal component, as required for each study). The GWAS results were combined using a 351 

fixed-effects meta-analysis. A full description of the cohort and study methods have been 352 

previously published (Cho et al. 2014; Hobbs et al. 2017; Sakornsakolpat et al. 2019). 353 

 354 

UK biobank and SpiroMeta lung function meta-analysis 355 

We used genome-wide associations with lung function (FEV1 and FEV1/FVC) from a 356 

previously-published meta-analysis of the UK Biobank and SpiroMeta datasets (Shrine et al. 357 

2019). This meta-analysis included 321,047 and 79,055 white European participants from the 358 

UK Biobank project (Bycroft et al. 2018) and the SpiroMeta consortium, respectively. 359 

In the UK Biobank, phenotypic information was collected in 22 recruitment centres 360 

across the United Kingdom (Bycroft et al. 2018). Human research ethics approval for the UK 361 

Biobank project was granted by the North West Multi-centre Research Ethics Committee 362 

(MREC). Participants were genotyped with the Affymetrix Axiom UK BiLEVE and UK biobank 363 

array (Wain et al. 2015) and imputed to the Haplotype Reference Consortium panel; genotypes 364 

were retained if the minor allele count was ≥ 3 and imputation r2>0.5 (Bycroft et al. 2018). 365 
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Association testing was conducted between genome-wide-significant genotypes and lung 366 

function traits (FEV1 and FEV1/FVC) using a linear mixed model (LMM), assuming  additive 367 

genetic effects (Loh et al. 2015). The LMM was adjusted for confounders (age, age2, sex, height, 368 

smoking status, and genotyping array) (Shrine et al. 2019). 369 

The SpiroMeta consortium includes participants from 22 individual studies, which have 370 

been previously described (Shrine et al. 2019). Approval was granted for each individual study 371 

from their respective local human research ethics committees. Participants were genotyped 372 

according to the protocol described in each of the studies; 13 studies were imputed to the 1000 373 

Genomes Project Phase 1 panel (1000 Genomes Project Consortium et al. 2010) and nine to the 374 

Haplotype Reference Consortium panel (McCarthy et al. 2016). Genotypes with imputation 375 

r2<0.30 were excluded from further analysis (Shrine et al. 2019). For each individual study, 376 

genetic associations with FEV1 and FEV1/FVC were determined using a linear regression model 377 

adjusted for age, age2, sex and height. Genetic principal components were included as covariates 378 

in studies of unrelated participants, while LMM were used in studies of related participants to 379 

account for kinship and population structure. The results across all studies in the SpiroMeta 380 

consortium were combined using an inverse-variance weighted meta-analysis. Shrine and 381 

colleagues (Shrine et al. 2019) then combined the UK Biobank and SpiroMeta GWAS results 382 

using an inverse-variance-weighted fixed-effects meta-analysis. In total, 19,819,130 genetic 383 

variants (imputed or genotyped) in both cohorts (UK biobank and SpiroMeta consortium) were 384 

used for the meta-analysis. The LD regression score intercept was close to 1(Shrine et al. 2019), 385 

therefore no genomic control was applied. 386 

 387 

Integrative -omics methods 388 

Bayesian colocalization (COLOC). 389 

We used COLOC to determine whether the associations between lung function traits 390 

(FEV1, FEV1/FVC, and COPD risk) and plasma protein levels were consistent with a causal 391 

variant (colocalization). We performed the analysis using the coloc package (Giambartolomei et 392 

al. 2014) implemented in R (R Core Team 2018). We evaluated the summary statistics for 3,248 393 

plasma pQTLs (Sun et al. 2018) from the INTERVAL study. We included all SNPs associated 394 

with lung function (FEV1 or FEV1/FVC) in the UK Biobank/SpiroMeta GWAS meta-analysis 395 
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(19,819,130) (Shrine et al. 2019) and all SNPs associated with COPD risk in the ICGC dataset 396 

(6,224,355) . In order to maximise the number of variants tested per genomic locus, which 397 

overlapped across these studies, we did not set an a priori p value threshold for inclusion. 398 

The COLOC method used for our research calculates the posterior probability (PP) of 399 

colocalization of lung function (or COPD risk) and plasma protein-associated variants within a 400 

defined genomic region. In summary, a large PP is supportive evidence of a single shared causal 401 

variant for the two traits. For this test we applied the following parameters: 1) a prior probability 402 

of a SNP being associated with the lung function trait or plasma protein level to 1×10-04; and 2) a 403 

prior probability of a SNP being associated with the lung function trait and plasma protein level 404 

to 1×10-06. All SNPs across the genome were assumed to have equal prior probabilities (as set 405 

before). In addition, we defined loci to be tested as genomic regions ± 0.5 Mb windows 406 

surrounding the top lung function-associated (or COPD risk-associated) variants. As a result, we 407 

applied COLOC to 988,183 loci for FEV1, 1,109,654 for FEV1/FVC and 282,338 for COPD risk. 408 

We placed the significance threshold of the COLOC analysis to be PPH4>0.80. 409 

Mendelian Randomization 410 

We used a MR approach to identify causal relationships between plasma proteins 411 

(“exposure”) and the three traits (FEV1, FEV1/FVC, and COPD risk; “traits”). We first identified 412 

pQTLs for each of the selected proteins in the INTERNAL study by extracting the effect size 413 

(Beta) and standard error (SE) of each variant that at least reached the arbitrary threshold of P< 414 

5×10-06 and excluded the variants that were found within a 2Mb window(± 1Mb) to avoid 415 

linkage. Next, we examined the complex trait associations in the UK Biobank/SpiroMeta meta-416 

analysis (FEV1, FEV1/FVC) and ICGC (COPD risk) for these variants and, if present, extracted 417 

the Beta value and SE for each. We then used these genetic variants as instrumental variables 418 

(IVs) in a MR analysis. The fundamental assumptions of MR analysis are: 1) that the IVs are 419 

associated with the exposure; 2) that the selected IVs only affect an outcome via the exposure; 420 

and 3) that the IVs are independent of confounders. Using two MR methods, inverse variance 421 

weighting (IVW) MR (IVW-MR) and Egger-MR we aimed to identify causal risk factors. For 422 

each exposure-outcome pairing, we used an inverse variance weighted linear regression model 423 

(IVW-MR) to relate the per-allele SNP association with the exposure to its association with the 424 

trait. IVW-MR assumes no directional pleiotropy (i.e. genetic variant associated with multiple 425 
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unrelated phenotypes)  by constraining the intercept to zero, and accounts for linkage 426 

disequilibrium (LD) between genetic variants,  heterogeneity was assessed based on the 427 

Cochran’s Q test (P<0.05) that is part of the IVW-MR outcome (Burgess et al. 2016). We also 428 

performed Egger-MR, which accounts for directional pleiotropy by un-constraining the intercept 429 

(Bowden et al. 2015). 430 

Based on this workflow, we identified a protein as having a causal association with the 431 

complex trait if the IVW-MR estimate was significant FDR < 0.1 and the Egger-MR intercept 432 

was not different from zero (P > 0.05). In addition, using an a priori hypothesis that the 433 

colocalized proteins were causally related to lung function traits and/or COPD, we determined 434 

their significant causal associations based on the IVW-MR threshold of PMR <0.05 and Egger-435 

MR intercept P > 0.05. 436 

 437 

Potential Biomarkers 438 

Using the workflow described in Figure 1, we aimed to develop a list of potential 439 

candidate proteins that warrant further investigation for their role in lung function and/or COPD 440 

pathogenesis. We selected as top plasma proteins those that showed both significant 441 

colocalization at PPH4 > 0.80 and PMR < 0.05 with lung function and/or COPD risk. 442 

Article information 443 

 444 

Data availability: All data used for these analyses are publicly available at: 445 

http://www.phpc.cam.ac.uk/ceu/proteins/; https://www.ebi.ac.uk/gwas/publications/30804560; 446 
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 448 

Conflict of Interest: 449 

D.D.S. has received research funding from AstraZeneca for an investigator-initiated research 450 

project and received honoraria for speaking engagements from Boehringer Ingelheim and 451 

AstraZeneca over the past 36 months. S.M. reports personal fees from Novartis and Boehringer-452 

Ingelheim, outside the submitted work. 453 

 454 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.11.21249617doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249617
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

Funding:  455 

A.I.H.C. and S.M. are supported by MITACS accelerate and Providence Airway Centre 456 

 457 

Acknowledgement: 458 

Compute Canada computer cluster was used to conduct the data analyses.  459 

 460 

References 461 

1000 Genomes Project Consortium, Abecasis GR, Altshuler D, et al (2010) A map of human 462 
genome variation from population-scale sequencing. Nature 467:1061–1073. 463 
https://doi.org/10.1038/nature09534 464 

Astle WJ, Elding H, Jiang T, et al (2016) The Allelic Landscape of Human Blood Cell Trait 465 
Variation and Links to Common Complex Disease. Cell 167:1415-1429.e19. 466 
https://doi.org/10.1016/j.cell.2016.10.042 467 

Bahram S (2000) MIC genes: from genetics to biology. Adv Immunol 76:1–60. 468 
https://doi.org/10.1016/s0065-2776(01)76018-x 469 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: 470 
effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–471 
525. https://doi.org/10.1093/ije/dyv080 472 

Buckley ST, Ehrhardt C (2010) The receptor for advanced glycation end products (RAGE) and 473 
the lung. J Biomed Biotechnol 2010:917108. https://doi.org/10.1155/2010/917108 474 

Burgess S, Dudbridge F, Thompson SG (2016) Combining information on multiple instrumental 475 
variables in Mendelian randomization: comparison of allele score and summarized data 476 
methods. Stat Med 35:1880–1906. https://doi.org/10.1002/sim.6835 477 

Bycroft C, Freeman C, Petkova D, et al (2018) The UK Biobank resource with deep phenotyping 478 
and genomic data. Nature 562:203–209. https://doi.org/10.1038/s41586-018-0579-z 479 

Campo I, Kadija Z, Mariani F, et al (2012) Pulmonary alveolar proteinosis: diagnostic and 480 
therapeutic challenges. Multidisciplinary Respiratory Medicine 7:4. 481 
https://doi.org/10.1186/2049-6958-7-4 482 

Carapito R, Bahram S (2015) Genetics, genomics, and evolutionary biology of NKG2D ligands. 483 
Immunol Rev 267:88–116. https://doi.org/10.1111/imr.12328 484 

Cho MH, McDonald M-LN, Zhou X, et al (2014) Risk loci for chronic obstructive pulmonary 485 
disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2:214–486 
225. https://doi.org/10.1016/S2213-2600(14)70002-5 487 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.11.21249617doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249617
http://creativecommons.org/licenses/by-nd/4.0/


24 

 

Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines, and growth factors: emerging roles 488 
in immunity. Front Immunol 5:570. https://doi.org/10.3389/fimmu.2014.00570 489 

Demling N, Ehrhardt C, Kasper M, et al (2006) Promotion of cell adherence and spreading: a 490 
novel function of RAGE, the highly selective differentiation marker of human alveolar 491 
epithelial type I cells. Cell Tissue Res 323:475–488. https://doi.org/10.1007/s00441-005-492 
0069-0 493 

Devendra G, Spragg RG (2002) Lung surfactant in subacute pulmonary disease. Respiratory 494 
Research 3:11. https://doi.org/10.1186/rr168 495 

Di Angelantonio E, Thompson SG, Kaptoge S, et al (2017) Efficiency and safety of varying the 496 
frequency of whole blood donation (INTERVAL): a randomised trial of 45�000 donors. 497 
Lancet 390:2360–2371. https://doi.org/10.1016/S0140-6736(17)31928-1 498 

George L, Brightling CE (2016) Eosinophilic airway inflammation: role in asthma and chronic 499 
obstructive pulmonary disease. Ther Adv Chronic Dis 7:34–51. 500 
https://doi.org/10.1177/2040622315609251 501 

Giambartolomei C, Vukcevic D, Schadt EE, et al (2014) Bayesian test for colocalisation between 502 
pairs of genetic association studies using summary statistics. PLoS Genet 10:e1004383. 503 
https://doi.org/10.1371/journal.pgen.1004383 504 

Gopal P, Rutten EPA, Dentener MA, et al (2012) Decreased plasma sRAGE levels in COPD: 505 
influence of oxygen therapy. Eur J Clin Invest 42:807–814. 506 
https://doi.org/10.1111/j.1365-2362.2012.02646.x 507 

Gusev A, Ko A, Shi H, et al (2016) Integrative approaches for large-scale transcriptome-wide 508 
association studies. Nature Genetics 48:245–252. https://doi.org/10.1038/ng.3506 509 

Hercus TR, Dhagat U, Kan WLT, et al (2013) Signalling by the βc family of cytokines. Cytokine 510 
Growth Factor Rev 24:189–201. https://doi.org/10.1016/j.cytogfr.2013.03.002 511 

Hobbs BD, de Jong K, Lamontagne M, et al (2017) Genetic loci associated with chronic 512 
obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. 513 
Nat Genet 49:426–432. https://doi.org/10.1038/ng.3752 514 

Huang Z, Mancini JA (2006) Phosphodiesterase 4 inhibitors for the treatment of asthma and 515 
COPD. Curr Med Chem 13:3253–3262. https://doi.org/10.2174/092986706778773040 516 

Jamieson AM, Diefenbach A, McMahon CW, et al (2002) The role of the NKG2D 517 
immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29. 518 
https://doi.org/10.1016/s1074-7613(02)00333-3 519 

Lamontagne M, Bérubé J-C, Obeidat M, et al (2018) Leveraging lung tissue transcriptome to 520 
uncover candidate causal genes in COPD genetic associations. Hum Mol Genet 27:1819–521 
1829. https://doi.org/10.1093/hmg/ddy091 522 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.11.21249617doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249617
http://creativecommons.org/licenses/by-nd/4.0/


25 

 

Loh P-R, Tucker G, Bulik-Sullivan BK, et al (2015) Efficient Bayesian mixed-model analysis 523 
increases association power in large cohorts. Nat Genet 47:284–290. 524 
https://doi.org/10.1038/ng.3190 525 

Manning CD, Burman M, Christensen SB, et al (1999) Suppression of human inflammatory cell 526 
function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and 527 
PDE4B. Br J Pharmacol 128:1393–1398. https://doi.org/10.1038/sj.bjp.0702911 528 

McCarthy S, Das S, Kretzschmar W, et al (2016) A reference panel of 64,976 haplotypes for 529 
genotype imputation. Nat Genet 48:1279–1283. https://doi.org/10.1038/ng.3643 530 

Méhats C, Jin S-LC, Wahlstrom J, et al (2003) PDE4D plays a critical role in the control of 531 
airway smooth muscle contraction. FASEB J 17:1831–1841. 532 
https://doi.org/10.1096/fj.03-0274com 533 

Miller S, Henry AP, Hodge E, et al (2016) The Ser82 RAGE Variant Affects Lung Function and 534 
Serum RAGE in Smokers and sRAGE Production In Vitro. PLoS One 11:. 535 
https://doi.org/10.1371/journal.pone.0164041 536 

Milne S, Li X, Cordero AIH, et al (2020) Protective effect of club cell secretory protein (CC-16) 537 
on COPD risk and progression: a Mendelian randomisation study. Thorax 75:934–943. 538 
https://doi.org/10.1136/thoraxjnl-2019-214487 539 

Nelson MR, Tipney H, Painter JL, et al (2015) The support of human genetic evidence for 540 
approved drug indications. Nature Genetics 47:856–860. https://doi.org/10.1038/ng.3314 541 

Notarangelo LD, Pessach I (2008) Out of breath: GM-CSFRα mutations disrupt surfactant 542 
homeostasis. Journal of Experimental Medicine 205:2693–2697. 543 
https://doi.org/10.1084/jem.20082378 544 

Obeidat M, Hao K, Bossé Y, et al (2015) Molecular mechanisms underlying variations in lung 545 
function: a systems genetics analysis. Lancet Respir Med 3:782–795. 546 
https://doi.org/10.1016/S2213-2600(15)00380-X 547 

Obeidat M, Li X, Burgess S, et al (2017) Surfactant protein D is a causal risk factor for COPD: 548 
results of Mendelian randomisation. European Respiratory Journal 50:. 549 
https://doi.org/10.1183/13993003.00657-2017 550 

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for 551 
Statistical Computing. https://www.r-project.org/. Accessed 5 Sep 2019 552 

Roos-Engstrand E, Pourazar J, Behndig AF, et al (2010) Cytotoxic T cells expressing the co-553 
stimulatory receptor NKG2 D are increased in cigarette smoking and COPD. Respiratory 554 
Research 11:128. https://doi.org/10.1186/1465-9921-11-128 555 

Roth GA, Abate D, Abate KH, et al (2018) Global, regional, and national age-sex-specific 556 
mortality for 282 causes of death in 195 countries and territories, 1980–2017: a 557 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.11.21249617doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249617
http://creativecommons.org/licenses/by-nd/4.0/


26 

 

systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392:1736–558 
1788. https://doi.org/10.1016/S0140-6736(18)32203-7 559 

Sakornsakolpat P, Prokopenko D, Lamontagne M, et al (2019) Genetic landscape of chronic 560 
obstructive pulmonary disease identifies heterogeneous cell-type and phenotype 561 
associations. Nat Genet 51:494–505. https://doi.org/10.1038/s41588-018-0342-2 562 

Shrine N, Guyatt AL, Erzurumluoglu AM, et al (2019) New genetic signals for lung function 563 
highlight pathways and chronic obstructive pulmonary disease associations across 564 
multiple ancestries. Nat Genet 51:481–493. https://doi.org/10.1038/s41588-018-0321-7 565 

Smith GD, Ebrahim S (2003) “Mendelian randomization”: can genetic epidemiology contribute 566 
to understanding environmental determinants of disease? Int J Epidemiol 32:1–22. 567 
https://doi.org/10.1093/ije/dyg070 568 

Soler Artigas M, Loth DW, Wain LV, et al (2011) Genome-wide association and large-scale 569 
follow up identifies 16 new loci influencing lung function. Nat Genet 43:1082–1090. 570 
https://doi.org/10.1038/ng.941 571 

Sun BB, Maranville JC, Peters JE, et al (2018) Genomic atlas of the human plasma proteome. 572 
Nature 558:73–79. https://doi.org/10.1038/s41586-018-0175-2 573 

Voight BF, Peloso GM, Orho-Melander M, et al (2012) Plasma HDL cholesterol and risk of 574 
myocardial infarction: a mendelian randomisation study. Lancet 380:572–580. 575 
https://doi.org/10.1016/S0140-6736(12)60312-2 576 

Wain LV, Shrine N, Miller S, et al (2015) Novel insights into the genetics of smoking behaviour, 577 
lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic 578 
association study in UK Biobank. Lancet Respir Med 3:769–781. 579 
https://doi.org/10.1016/S2213-2600(15)00283-0 580 

Zuo H, Faiz A, van den Berge M, et al (2019) Cigarette smoke exposure alters 581 
phosphodiesterases in human structural lung cells. American Journal of Physiology-Lung 582 
Cellular and Molecular Physiology 318:L59–L64. 583 
https://doi.org/10.1152/ajplung.00319.2019 584 

 585 

 586 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.11.21249617doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249617
http://creativecommons.org/licenses/by-nd/4.0/

