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Abstract 13 

Sequencing of large cohorts offers an unprecedented opportunity to identify rare genetic variants and to 14 

find novel contributors to human disease. We used gene-based collapsing tests to identify genes 15 

associated with glucose, HbA1c and type 2 diabetes (T2D) diagnosis in 363,977 exome-sequenced 16 

participants in the UK Biobank. We identified associations for variants in GCK, HNF1A and PDX1, which 17 

are known to be involved in Mendelian forms of diabetes. Notably, we uncovered novel associations for 18 

GIGYF1, a gene not previously implicated by human genetics, in diabetes. GIGYF1 predicted loss of 19 

function (pLOF) variants associated with increased levels of glucose (0.77 mmol/L increase, p = 4.42 x 10
-

20 
12

) and HbA1c (4.33 mmol/mol, p = 1.28 x 10
-14

) as well as T2D diagnosis (OR = 4.15, p= 6.14 x10
-11

). 21 

Multiple rare variants contributed to these associations, including singleton variants. GIGYF1 pLOF also 22 

associated with decreased cholesterol levels as well as an increased risk of hypothyroidism. The 23 

association of GIGYF1 pLOF with T2D diagnosis replicated in an independent cohort from the Geisinger 24 

Health System. In addition, a common variant association for glucose and T2D was identified at the 25 

GIGYF1 locus. Our results highlight the role of GIGYF1 in regulating insulin signaling and protecting from 26 

diabetes. 27 

Author Summary 28 

Genetic studies focused on high impact variants in protein-coding regions of the genome can provide 29 

valuable insight into the biology of human disease. As these variants tend to be rare, studying them 30 

requires large cohort sizes and methods to aggregate variants that are likely to have a similar biological 31 

impact. We studied how rare genetic variants contribute to type 2 diabetes (T2D) using sequencing data 32 

from 363,977 participants in the UK Biobank, employing methods to aggregate variants at the level of 33 

individual genes. As well as identifying genes known to be involved in inherited forms of diabetes, we 34 

uncovered a novel association for GIGYF1. GIGYF1 loss of function associated with increased risk of T2D 35 

and increased levels of the diabetes biomarkers glucose and HbA1c. This association was also seen in an 36 

independent dataset. GIGYF1 encodes a protein that binds a negative regulator of the insulin receptor 37 

that has not been well-characterized in the literature. By highlighting the importance of GIGYF1 in 38 

modulating insulin signaling these results may lead to new therapeutic approaches for diabetes as well 39 

as a new appreciation for GIGYF1 loss of function as a genetic risk factor for T2D. 40 

Introduction 41 

Human genetics provides powerful methods for understanding the roles of genes and proteins in 42 

disease and can lead to new therapeutic hypotheses and drug targets. Genetic evidence based on 43 

sequence variants within coding regions of the genome is better at predicting the efficacy and safety of 44 

novel therapeutics than evidence from genome-wide association studies (GWAS), which tend to involve 45 

common noncoding variants [1-3]. Among coding variants, predicted loss of function (pLOF) variants are 46 

particularly informative in association studies because they establish a direct causal link between 47 

reduction in gene function and biological outcomes. Additionally, rare missense variants predicted to be 48 

deleterious can provide valuable biological insights [4, 5]. However, interrogation of the effects of such 49 

variants is hampered by the rarity of these variants and the cohort sizes needed to identify associations 50 

[6]. Exome or whole-genome sequencing of large biobanks coupled with gene-level aggregation of rare 51 

high impact variants can help to circumvent these challenges [4]. Biobanks offer a considerable 52 

advantage over case-control cohorts as they contain richer phenotyping data which often includes 53 
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biomarker measurements as well as disease diagnoses. This allows a more complete understanding of 54 

the biological consequences of damaging variants in particular genes [7, 8]. 55 

Diabetes is a disease that has been extensively studied in traditional array-based GWAS with hundreds 56 

of associations identified to date [9-12]. Although these studies have given insight into some of the 57 

biological mechanisms contributing to diabetes, most of the reported associations are with variants in 58 

non-coding regions, making identification of the causal gene challenging. More recently, exome 59 

sequencing has been applied to discover protein-coding variants that alter the risk of developing type 2 60 

diabetes (T2D). Sequencing of 20,791 T2D cases followed by the use of gene-based collapsing tests (to 61 

aggregate predicted damaging variants) identified associations of SLC30A8, MC4R and PAM with T2D 62 

diagnosis [5].  63 

Using 363,977 whole exome sequences from the UK Biobank (UKBB) we performed gene-level collapsing 64 

tests to examine the association of pLOF and damaging missense variants in ~17,000 genes with 65 

biomarkers of glycemic control, glucose, and glycated hemoglobin (HbA1c), as well as T2D diagnosis. 66 

Results 67 

Gene-level associations with glucose, HbA1c and T2D 68 

We used 454,787 whole exome sequences from the UK Biobank (UKBB) to identify rare variants with a 69 

minor allele frequency (MAF) ≤1% likely to have functional impact; pLOF variants (i.e. frameshift, stop 70 

gain, splice donor or splice acceptor variants) called as high confidence by LOFTEE [13] or missense 71 

variants predicted to be damaging (Combined Annotation Dependent Depletion [CADD] score ≥ 25). We 72 

identified 726,422 rare pLOF variants affecting 16,477 genes, 58.5% of which were singletons (carried by 73 

a single individual), and 2.14 million damaging missense variants in 17,312 genes, 49.6% of which were 74 

singletons (Supplementary Table 1). 75 

Given the large proportion of variants present in just a single individual, we used gene-based collapsing 76 

tests to look for associations with biomarkers of glycemic control and T2D diagnosis. We used two 77 

variant aggregation strategies; 1) pLOF variants with MAF ≤1% and 2) damaging missense variants with 78 

MAF ≤1% and performed burden testing in the unrelated White population (n=363,977) adjusting for 79 

age, sex and genetic ancestry via 12 principal components. 80 

First, we tested genes for association with glucose and HbA1c levels. We required at least 10 variant 81 

carriers per gene to have measurements based on an examination of genomic inflation at different 82 

carrier thresholds (Supplementary Figure 1). Using a p-value threshold adjusted for the number of 83 

variant sets and phenotypes tested (p ≤ 7.82 x 10
-7

), four genes significantly associated with glucose 84 

levels: GCK pLOF (p = 1.56 x 10
-9

, 1.24 mmol/L increase), GCK damaging missense (p = 6.15 x 10
-11

, 0.61 85 

mmol/L increase), GIGYF1 pLOF (p = 4.42 x 10
-12

, 0.77 mmol/L increase) and G6PC2 damaging missense 86 

variants (p = 4.62 x 10
-83

, 0.33 mmol/L decrease) (Figure 1, Table 1). The same variant sets also 87 

associated with HbA1c levels along with 27 additional sets including HNF1A pLOF (p = 2.14 x 10
-7

, 4.01 88 

mmol/mol increase), TNRC6B pLOF (p = 2.36 x 10
-7

, 3.94 mmol/mol increase) and PDX1 damaging 89 

missense variants (p = 2.54 x 10
-7

, 0.41 mmol/mol increase) (Figure 1, Table 1).  90 

We then tested aggregated pLOF and damaging missense variants for association with T2D diagnosis 91 

(n=24,695 cases). Using a p-value threshold adjusted for the number of variant sets tested (p ≤ 1.46 x 10
-

92 
6
), 6 variant sets significantly associated with T2D; pLOF variants in GIGYF1, GCK, HNF1A and TNRC6B 93 
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and damaging missense variants in GCK and PAM (Figure 2, Table 2). As the time of available follow-up 94 

differs between England, Scotland, and Wales, we controlled for country of recruitment in the 95 

regression (see Methods). In addition, we confirmed that significant hits did not associate with country 96 

of recruitment (all p > 0.035) and that hits remained significant when only data from England were 97 

considered (Supplementary Table 2).  98 

Table 1: Gene-level associations with glucose and HbA1c levels 99 

Association of pLOF or damaging missense variants (CADD score ≥ 25) aggregated per gene with glucose 100 

and HbA1c levels. The effect is shown in standard deviations (SD) of transformed values as well as in 101 

International Federation of Clinical Chemistry (IFCC) units. CI; confidence interval. 102 

gene Variant set title pvalue Effect 

(SD) 

effect 

(units) 

95% 

CI - 

95% CI 

+ 

units n carrier 

measured 

GCK pLOF glucose 1.56 x 10
-9

 1.00 1.24 0.84 1.65 mmol/L 35 

GIGYF1 pLOF glucose 4.42 x 10
-12

 0.62 0.77 0.55 0.98 mmol/L 121 

GCK missense 

CADD>25 

glucose 6.15 x 10
-11

 0.49 0.61 0.42 0.79 mmol/L 173 

G6PC2 missense 

CADD>25 

glucose 4.62 x 10
-83

 -0.27 -0.33 -0.36 -0.3 mmol/L 5128 

GCK pLOF HbA1c 2.64 x 10
-17

 1.29 8.75 6.73 10.78 mmol/mol 38 

GIGYF1 pLOF HbA1c 1.28 x 10
-14

 0.64 4.33 3.23 5.43 mmol/mol 129 

HNF1A pLOF HbA1c 2.14 x 10
-7

 0.59 4.01 2.50 5.53 mmol/mol 68 

TNRC6B pLOF HbA1c 2.36 x 10
-7

 0.58 3.94 2.45 5.43 mmol/mol 70 

RHAG pLOF HbA1c 3.31 x 10
-34

 -0.86 -5.81 -6.75 -4.88 mmol/mol 179 

EPB41 pLOF HbA1c 3.14 x 10
-17

 -0.53 -3.58 -4.41 -2.75 mmol/mol 226 

PTPRH pLOF HbA1c 4.39 x 10
-10

 0.11 0.74 0.51 0.97 mmol/mol 2924 

APOB pLOF HbA1c 6.94 x 10
-8

 0.23 1.57 1.00 2.15 mmol/mol 478 

PLD1 pLOF HbA1c 2.99 x 10
-7

 0.23 1.56 0.96 2.16 mmol/mol 438 

EPB42 pLOF HbA1c 6.11 x 10
-7

 -0.31 -2.08 -2.90 -1.26 mmol/mol 234 

GCK missense 

CADD ≥ 25 

HbA1c 1.86 x 10
-17

 0.56 3.83 2.94 4.71 mmol/mol 201 

G6PC2 missense 

CADD ≥ 25 

HbA1c 6.71 x 10
-45

 -0.18 -1.21 -1.38 -1.04 mmol/mol 5574 

PFAS missense 

CADD ≥ 25 

HbA1c 2.09 x 10
-8

 -0.05 -0.32 -0.44 -0.21 mmol/mol 12621 

PDX1 missense 

CADD ≥ 25 

HbA1c 2.54 x 10
-7

 0.06 0.41 0.25 0.56 mmol/mol 6694 

PIEZO1 missense 

CADD ≥ 25 

HbA1c 1.0 x 10
-132

 -0.15 -1.00 -1.07 -0.92 mmol/mol 26726 

AMPD3 missense 

CADD ≥ 25 

HbA1c 7.28 x 10
-34

 0.13 0.86 0.72 1.00 mmol/mol 8258 

PFKM missense 

CADD ≥ 25 

HbA1c 2.16 x 10
-28

 -0.28 -1.92 -2.26 -1.58 mmol/mol 1353 

ANK1 missense 

CADD ≥ 25 

HbA1c 3.12 x 10
-19

 -0.13 -0.87 -1.06 -0.68 mmol/mol 4342 

PFKL missense 

CADD ≥ 25 

HbA1c 2.69 x 10
-14

 0.10 0.68 0.50 0.85 mmol/mol 5245 

AXL missense 

CADD ≥ 25 

HbA1c 4.11 x 10
-12

 -0.08 -0.54 -0.69 -0.39 mmol/mol 6827 

LCAT missense 

CADD ≥ 25 

HbA1c 1.29 x 10
-11

 -0.27 -1.82 -2.34 -1.29 mmol/mol 565 
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PLA2G12A missense 

CADD ≥ 25 

HbA1c 5.74 x 10
-11

 -0.08 -0.51 -0.67 -0.36 mmol/mol 6761 

PLD1 missense 

CADD ≥ 25 

HbA1c 1.51 x 10
-10

 0.08 0.57 0.40 0.75 mmol/mol 5180 

APEH missense 

CADD ≥ 25 

HbA1c 1.86 x 10
-10

 0.29 1.96 1.36 2.57 mmol/mol 429 

TNFRSF13B missense 

CADD ≥ 25 

HbA1c 4.63 x 10
-9

 -0.08 -0.51 -0.68 -0.34 mmol/mol 5470 

BLVRB missense 

CADD ≥ 25 

HbA1c 2.53 x 10
-8

 -0.07 -0.48 -0.65 -0.31 mmol/mol 5533 

TMC8 missense 

CADD ≥ 25 

HbA1c 3.01 x 10
-8

 0.11 0.77 0.50 1.05 mmol/mol 2095 

HK1 missense 

CADD ≥ 25 

HbA1c 1.08 x 10
-7

 -0.16 -1.08 -1.48 -0.68 mmol/mol 988 

SLC4A1 missense 

CADD ≥ 25 

HbA1c 1.76 x 10
-7

 -0.15 -1.04 -1.43 -0.65 mmol/mol 1025 

TFR2 missense 

CADD ≥ 25 

HbA1c 4.24 x 10
-7

 -0.12 -0.84 -1.16 -0.51 mmol/mol 1491 

CARHSP1 missense 

CADD ≥ 25 

HbA1c 6.78 x 10
-7

 -0.13 -0.86 -1.20 -0.52 mmol/mol 1360 

 103 

Table 2: Gene-level associations with T2D diagnosis 104 

Association of pLOF or damaging missense variants (CADD score ≥ 25) aggregated per gene with T2D 105 

diagnosis. OR; odds ratio, CI; confidence interval. 106 

gene Variant set title pvalue OR 95% CI - 95% CI 

+ 

N cases N 

carrier 

N carrier 

cases 

N 

expected 

GCK pLOF T2D 2.96 x 10
-15

 14.16 7.33 27.34 24695 40 19 2.71 

GIGYF1 pLOF T2D 6.14 x 10
-11

 4.15 2.71 6.37 24695 131 29 8.89 

HNF1A pLOF T2D 1.23 x 10
-9

 5.27 3.08 9 24695 73 20 4.95 

TNRC6B pLOF T2D 2.00 x 10
-7

 4.44 2.53 7.79 24695 71 17 4.82 

PAM missense 

CADD ≥ 25 

T2D 2.26 x 10
-12

 1.31 1.21 1.41 24695 9357 801 634.85 

GCK missense 

CADD ≥ 25 

T2D 1.70 x 10
-8

 2.96 2.03 4.32 24695 202 34 13.71 

 107 

Identification of genes with a biological role in diabetes 108 

Variants in two genes, GCK and GIGYF1, significantly associated with glucose, HbA1c and T2D diagnosis, 109 

strongly suggesting a biological role in diabetes; GCK is involved in Mendelian forms of diabetes while 110 

GIGYF1 has not previously been implicated by genetics in the disease. Both GCK and GIGYF1 are located 111 

on chromosome 7 but are 56Mb apart, strongly suggesting that these signals are independent; this 112 

independence was confirmed by conditional analysis (Supplementary Table 3). Two additional variant 113 

sets, HNF1A pLOF and TNRC6B pLOF, had genome-wide associations with both T2D diagnosis and HbA1c 114 

levels while G6PC2 damaging missense associated with decreased levels of both glucose and HbA1c but 115 

not T2D diagnosis (Table 3). 116 

To see which other significant genes were likely to have a role in diabetes we looked at all variant sets 117 

with a significant glucose, HbA1c, or T2D association and examined whether they had associations with 118 

additional diabetes traits using a more permissive p-value threshold correcting for the number of variant 119 
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sets tested (p ≤ 0.0016, 32 sets tested). Damaging missense variants in PDX1 and PFAS, which had 120 

significant associations with HbA1c levels in our primary analysis, associated with T2D diagnosis using 121 

this threshold (Table 3 and Supplementary Table 4). 122 

Many HbA1c associations appeared to be secondary to effects on red blood cells. 22 out of 31 variant 123 

sets associated with HbA1c did not show effects on glucose levels or T2D diagnosis (Supplementary 124 

Table 4) and were not implicated in Mendelian forms of diabetes. Out of these 22 variant sets, 12 were 125 

in genes implicated in Mendelian disorders affecting red blood cells (for example EPB42 and TFR2; see 126 

Supplementary Table 5) and an additional five had highly significant associations with red blood cell 127 

traits in our data (p ≤ 7.82 x 10
-7

; Supplementary Table 6).  128 

We focused on the variant sets associated with multiple diabetes traits as these are strong candidates 129 

for regulating glucose homeostasis. The genes fall into three main groups; known MODY (maturity-onset 130 

diabetes of the young) genes (GCK, HNF1A and PDX1) [14], known genes reported in previous exome-131 

wide analyses of glucose levels or T2D (G6PC2 and PAM) [5, 15], and novel genes not previously 132 

implicated by genetics in diabetes (GIGYF1, TNRC6B and PFAS).  133 

Because obesity is linked to the development of T2D, we adjusted for body mass index (BMI) in the 134 

burden tests and found that the association of variants in these genes with diabetes-related traits 135 

remained significant (Supplementary Tables 7 and 8).  136 

Associations for rare variants can be susceptible to confounders such as population stratification and 137 

sample relatedness leading to false positives. Therefore, we used the generalized linear mixed model 138 

implemented by SAIGE-Gene which accounts for relatedness and adjusts for unbalanced case-control 139 

ratios [16] to verify association of our variant sets of interest with glucose, HbA1c, and T2D diagnosis. 140 

SAIGE-Gene was run in the White population including related individuals (n=398,574). Using the p-141 

value thresholds previously employed, all associations were statistically significant using this method 142 

apart from the associations of TNRC6B pLOF with HbA1c (p = 6.85 x 10
-6

) and T2D diagnosis (p = 4.77 x 143 

10
-5

) which were less significant (Supplementary Table 9).  144 

To maximize power to detect associations for rare variants, our original analysis of glucose and HbA1c 145 

included individuals with a diabetes diagnosis. Associations for all variant sets of interest were at least 146 

nominally significant when such individuals were excluded from the analysis (Supplementary Table 10). 147 

For GIGYF1 pLOF, there was still a substantial effect on glucose (p=2.95 x 10
-8

, effect = 0.53 SD) and 148 

HbA1c (p=8.29 x 10
-7

, effect = 0.43 SD) levels in carriers without a formal diabetes diagnosis. 149 

Table 3: Genes and variant sets associated with multiple diabetes-related traits 150 

Variant sets significant for at least one trait in our primary analysis that are also associated with 151 

additional diabetes traits (p ≤ 0.0016, 32 sets tested). Effect is shown in SD of transformed values or as 152 

an odds ratio (OR). 153 

gene Variant set Pvalue 

glucose 

Effect 

glucose 

Pvalue 

HbA1c 

Effect 

Hba1c 

Pvalue T2D OR T2D 

GCK pLOF 1.56 x 10
-9

 0.999 2.64 x 10
-17

 1.292 2.96 x 10
-15

 14.16 

HNF1A pLOF 0.01 0.317 2.14 x 10
-7

 0.592 1.23 x 10
-9

 5.27 

GIGYF1 pLOF 4.42 x 10
-12

 0.616 1.28 x 10
-14

 0.639 6.14 x 10
-11

 4.15 

GCK missense 

CADD ≥ 25 

6.15 x 10
-11

 0.487 1.86 x 10
-17

 0.565 1.70 x 10
-8

 2.96 
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PAM missense 

CADD ≥ 25 

0.92 0.001 0.009 0.026 2.26 x 10
-12

 1.31 

TNRC6B pLOF 4.01 x 10
-5

 0.507 2.36 x 10
-7

 0.582 2.00 x 10
-7

 4.44 

PDX1 missense 

CADD ≥ 25 

0.02 0.029 2.54 x 10
-7

 0.060 3.99 x 10
-5

 1.21 

PFAS missense 

CADD ≥ 25 

0.32 0.009 2.09 x 10
-8

 -0.048 4.43 x 10
-4

 0.88 

G6PC2 missense 

CADD ≥ 25 

4.62 x 10
-83

 -0.266 6.71 x 10
-45

 -0.179 0.97 1.00 

 154 

GIGYF1 pLOF associations replicate using independent datasets 155 

We sought to use independent measurements of glucose and HbA1c to verify the associations of 156 

interest seen in our primary analysis which used measurements taken as part of the UKBB assessment. 157 

To do this we extracted lab test values for glucose and HbA1c from primary care data, which is available 158 

for approximately half of the cohort, taking the mean measurement per individual. In gene-based 159 

burden tests all variant sets showed a direction of effect consistent with that seen in the primary 160 

analysis and 10 out of 12 of these were significant when correcting for the number of tests performed (p 161 

≤ 0.004). This included the association of GIGYF1 pLOF with glucose (p=2.10 x 10
-6

, effect = 0.65 SD) and 162 

HbA1c (p=1.19 x 10
-5

, effect = 0.74 SD) levels (Supplementary Figure 2 and Supplementary Table 11).  163 

We then assessed whether rare variants in GIGYF1 and the other novel genes associated with T2D 164 

replicated in an independent exome-sequencing cohort. Gene-based tests in European ancestry 165 

individuals from the Geisinger Health System (GHS; 25,846 T2D cases and 63,749 controls) confirmed 166 

the association of GIGYF1 pLOF with T2D (p=0.01, OR=1.8). We did not replicate the association of 167 

TNRC6B pLOF with T2D. We also tested an expanded PFAS variant set (pLOF + deleterious missense) and 168 

did not detect an association with T2D (Supplementary Table 12). Notably variant set definitions varied 169 

somewhat from those used in our primary analysis (see Methods). 170 

Multiple variants contribute to associations with diabetes diagnosis and 171 

biomarkers 172 

To examine whether specific variants were driving the associations with diabetes traits we conducted 173 

“leave-one-out” burden tests. The association of PAM missense variants with T2D diagnosis was driven 174 

entirely by a previously reported variant Ser539Trp (rs78408340; p = 0.43 when Ser539Trp is excluded). 175 

For all other variant sets, multiple variants contributed to the associations observed (Supplementary 176 

Figure 3). Notably, when singleton variants were excluded, half of the associations no longer reached 177 

significance including those for GCK pLOF and glucose (p = 0.0015 without singletons versus p = 1.56 x10
-

178 
9
) and GIGYF1 pLOF and T2D (p = 2.9 x 10

-5
 without singletons versus p = 6.14x10

-11
) (Supplementary 179 

Table 13), demonstrating the power of including singletons in gene-based tests. 180 

For the variants contributing to our novel discovered associations, GIGYF1 pLOF, TNRC6B pLOF and PFAS 181 

damaging missense variants, we examined the quality scores, sequencing depth, transcripts affected 182 

and presence of contributing variants in gnomAD. We found that for GIGYF1 and PFAS the variants 183 

contributing most to the associations had good quality scores and depth and were present in the non-184 

Finnish European population in gnomAD. In contrast, TNRC6B is a highly constrained gene and the most 185 

common pLOF variant is not present in gnomAD. It is possible pLOF variants for constrained genes may 186 

not result in true loss of function (see Supplementary Note and Supplementary Figure 4). This 187 
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observation along with the fact that the association of TNRC6B pLOF with T2D did not replicate in 188 

Geisinger Health System leads us to view this association with suspicion.  189 

Replication of published gene-level associations with T2D and associations for 190 

T2D drug target genes 191 

The association between predicted damaging variants in PAM and T2D diagnosis was previously 192 

reported in an exome-sequencing study performed by Flannick and colleagues [5]. We examined 193 

whether the other two significant genes in the study, SLC30A8 and MC4R, associated with diabetes traits 194 

in our analysis. Both pLOF and damaging missense variants in SLC30A8 associated with reduced levels of 195 

HbA1c and glucose and suggestively associated with decreased incidence of T2D diagnosis 196 

(Supplementary Table 14). Combining SLC30A8 pLOF and missense variants resulted in more significant 197 

associations with glucose (p = 2.71 x 10
-6

), HbA1c (p = 8.64 x 10
-10

) and T2D diagnosis (p = 0.005) 198 

(Supplementary Table 14). There were no MC4R high confidence pLOF variants in our dataset and MC4R 199 

predicted damaging missense variants did not associate with diabetes-related traits in our study (all p > 200 

0.19). We note that the MC4R Ile269Asn variant driving the association in Flannick and colleagues’ 201 

analysis is absent from our dataset, consistent with the fact that it is absent from European populations 202 

in gnomAD. 203 

We also examined whether we detect associations for the 8 genes encoding T2D drug targets (GLP1R, 204 

IGF1R, PPARG, INSR, SLC5A2, DPP4, KCNJ11, ABCC8). Variant sets in three of these genes, DPP4, GLP1R 205 

and KCNJ11 significantly associated with either T2D diagnosis or HbA1c levels (p < 0.003 correcting for 206 

15 variant sets tested) and an additional 4 genes had a nominally significant association with T2D and/or 207 

HbA1c (Supplementary Figure 5 and Supplementary Table 15).  208 

PheWAS of GIGYF1 pLOF reveals associations with cholesterol levels, 209 

hypothyroidism and complications of diabetes 210 

The most significant novel associations were seen for GIGYF1 pLOF which associated with increased 211 

glucose and HbA1c levels as well as increased incidence of T2D diagnosis. GIGYF1 encodes a protein 212 

named for its binding to GRB10 (GRB10 interacting GYF protein 1), an adapter protein that has been 213 

shown to bind both the insulin and IGF-1 receptors. The association between GIGYF1 pLOF and 214 

increased diabetes risk indicates that GIGYF1 has a role in regulating insulin signaling and in protecting 215 

from diabetes. To give additional insight into the biological roles of GIGYF1 we performed a phenome-216 

wide association study (PheWAS) testing GIGYF1 pLOF for association with 142 quantitative traits and 217 

262 ICD10-coded diagnoses. Based on the number of tests performed, the threshold for significance was 218 

p ≤ 1.22 x 10
-4

 (Figure 4). 219 

GIGYF1 pLOF strongly associated with decreased levels of total cholesterol (p=2.44 x 10
-12

, effect = -0.61 220 

SD) which was, in large part, driven by LDL cholesterol (p = 2.40 x 10
-10

, effect = -0.56 SD) although an 221 

effect on HDL cholesterol was also observed (Table 4). To understand the extent to which this is 222 

influenced by the use of cholesterol-lowering medication in diabetics, we adjusted for medication use in 223 

the regression and performed a separate analysis excluding those on cholesterol-lowering medication. 224 

The association between GIGYF1 pLOF and LDL cholesterol levels was significant in both analyses 225 

(Supplementary Table 16). GIGYF1 pLOF also associated with decreased grip strength and decreased 226 

peak expiratory flow which may reflect changes in body size, muscle mass or general health in carriers 227 

[17, 18]. Notably, GIGYF1 pLOF also associated with increased levels of the kidney injury biomarker 228 
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cystatin c (p= 6.65 x 10
-6

, effect = 0.36 SD) and increased diagnosis of urinary system disorders (p = 7.32 229 

x 10
-5

, OR = 2.71) which might suggest renal complications of diabetes in carriers (Table 4 and Table 5). 230 

After diabetes, the most significant disease association of GIGYF1 pLOF was with increased risk of 231 

hypothyroidism (p = 1.25 x 10
-9

, OR = 4.53). 21 out of the 131 GIGYF1 pLOF carriers had a diagnosis of 232 

unspecified hypothyroidism and 7 of these also had a diagnosis of T2D. Given the autoimmune 233 

component in hypothyroidism and type 1 diabetes (T1D), we examined the association of GIGYF1 pLOF 234 

with T1D diagnoses but did not detect a significant association (p = 0.1). GIGYF1 pLOF significantly 235 

associated with increased risk of syncope and collapse (p = 1.92 x 10
-6

, OR = 3.75), possibly reflecting 236 

complications of diabetes or thyroid disorders (Table 5). 237 

Other phenome-wide significant associations with quantitative traits included waist circumference, total 238 

protein and mean corpuscular hemoglobin as well increased time to complete a cognitive test (Table 4). 239 

To ensure that the association of GIGYF1 pLOF with HbA1c was independent of effects on hemoglobin 240 

we adjusted for mean corpuscular hemoglobin level and verified that the association remained highly 241 

significant (p = 4.10 x 10
-12

). GIGYF1 pLOF also associated with increased diagnosis of emphysema and 242 

anemia (Table 5). 243 

Table 4: PheWAS of GIGYF1 pLOF – quantitative traits 244 

Showing significant results for burden tests on quantitative traits (p ≤ 1.22 x 10
-4

). Effect is shown in 245 

standard deviations (SD) of transformed values. RH; right hand, LH; left hand. 246 

gene variant 

set 

title pvalue Effect 

(SD) 

95% CI - 95% CI + n carrier 

measured 

GIGYF1 pLOF HbA1c 1.28 x 10
-14

 0.64 0.48 0.80 129 

GIGYF1 pLOF cholesterol 2.44 x 10
-12

 -0.61 -0.78 -0.44 128 

GIGYF1 pLOF glucose 4.42 x 10
-12

 0.62 0.44 0.79 121 

GIGYF1 pLOF LDL cholesterol 2.40 x 10
-10

 -0.56 -0.73 -0.38 128 

GIGYF1 pLOF apolipoprotein b 2.52 x 10
-10

 -0.56 -0.73 -0.39 127 

GIGYF1 pLOF LH grip strength 5.11 x 10
-10

 -0.37 -0.49 -0.25 131 

GIGYF1 pLOF RH grip strength 1.01 x 10
-8

 -0.34 -0.46 -0.23 131 

GIGYF1 pLOF peak expiratory flow 5.73 x 10
-8

 -0.41 -0.56 -0.26 114 

GIGYF1 pLOF cystatin c 6.65 x 10
-6

 0.36 0.20 0.51 128 

GIGYF1 pLOF mean corpuscular 

hemoglobin 

6.80 x 10
-6

 -0.38 -0.55 -0.22 128 

GIGYF1 pLOF HDL cholesterol 1.53 x 10
-5

 -0.35 -0.52 -0.19 121 

GIGYF1 pLOF time to complete round 

(cognitive test) 

1.67 x 10
-5

 0.35 0.19 0.51 129 

GIGYF1 pLOF waist circumference 3.98 x 10
-5

 0.32 0.16 0.47 130 

GIGYF1 pLOF total protein 6.45 x 10
-5

 -0.36 -0.53 -0.18 121 

GIGYF1 pLOF apolipoprotein a 6.88 x 10
-5

 -0.33 -0.49 -0.17 121 

 247 

Table 5: PheWAS of GIGYF1 pLOF – ICD10-coded diagnoses 248 

Showing significant results for burden tests on ICD10 coded diagnoses with ≥ 500 cases and ≥ 1 expected 249 

case carrier (p ≤ 1.22 x 10
-4

). OR; odds ratio. 250 
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gene Variant 

set 

title pvalue OR 95% CI 

- 

95% CI 

+ 

N cases N carrier 

cases 

N 

expected 

GIGYF1 pLOF E11 T2D 6.14 x 10
-11

 4.15 2.71 6.37 24695 29 8.89 

GIGYF1 pLOF E03 other 

hypothyroidism 

1.25 x 10
-9

 4.53 2.78 7.38 19417 21 6.99 

GIGYF1 pLOF R55 syncope and 

collapse 

1.90 x 10
-6

 3.75 2.18 6.47 12706 15 4.57 

GIGYF1 pLOF D50 iron deficiency 

anemia 

8.52 x 10
-6

 3.56 2.04 6.23 12886 14 4.64 

GIGYF1 pLOF J43 emphysema 1.99 x 10
-5

 6.13 2.67 14.10 3015 6 1.09 

GIGYF1 pLOF N39 other 

disorders of urinary 

system 

7.32 x 10
-5

 2.71 1.66 4.45 24581 19 8.85 

 251 

Common variants at GIGYF1 associate with glucose, T2D and GIGYF1 252 

expression 253 

Replication is a challenge for rare variant association studies. Despite the rarity of GIGYF1 pLOF variants, 254 

we replicated the T2D association in an independent cohort. In addition, we looked for more common 255 

variants that could further implicate the GIGYF1 locus in diabetes. We tested array genotyped and 256 

imputed variants at the GIGYF1 locus for association with glucose levels in 294,042 unrelated White 257 

individuals with measurements available. We found a cluster of variants in a linkage disequilibrium block 258 

covering GIGYF1 and EPO significantly associating with glucose levels (Figure 4). This signal is 259 

represented by rs221783, an intergenic variant whose minor T allele associated with decreased glucose 260 

(p = 1.8 x 10
-11

, effect = -0.03 SD,) and HbA1c (p = 3.6 x 10
-7

, effect = -0.02 SD,) levels as well as increased 261 

cholesterol (p = 7.0 x 10
-12

, effect = 0.03 SD,). This variant also associated with a decreased risk of T2D (p 262 

= 0.005, OR = 0.96) and hypothyroidism (p = 6.95 x 10
-7

, OR=0.92) (Table 6). rs221783 is the best eQTL 263 

(R
2
 > 0.8) for GIGYF1 in several tissues including pancreas, adipose and thyroid [19] (Supplementary 264 

Table 17). In all tissues, the T allele associating with decreased glucose and decreased T2D risk 265 

associated with increased GIGYF1 expression. Conditional analysis showed that the glucose and HbA1c 266 

associations of GIGYF1 pLOF and rs221783 are independent of each other (Supplementary Table 18). 267 

The association of rs221783 with glucose levels replicated in Biobank Japan (p = 1.7 x 10
-4

, effect = -0.05 268 

SD for T allele) [20] whilst in FinnGen, rs221783 showed a nominal association with T2D diagnosis (p = 269 

0.02, OR = 0.96 for T allele) (Supplementary Table 19). The association with thyroid disease has been 270 

replicated elsewhere [21]. 271 

The independent glucose and T2D associations at the GIGYF1 locus and their replication in other 272 

datasets further support the hypothesis that decreasing GIGYF1 predisposes to diabetes while increasing 273 

GIGYF1 levels may protect from diabetes. 274 

Table 6: Common variant associations at the GIGYF1 locus 275 

Associations for the array-typed variant rs221783. For quantitative traits the effect is shown in standard 276 

deviations (beta) and for diagnoses as an odds ratio (OR). MAF; minor allele frequency. 277 

phenotype chrom Pos 

(hg19/hg38) 

Ref 

(effect 

allele) 

Alt rsid MAF pvalue Effect 

(beta/OR) 

95% CI 

- 

95% CI 

+ 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2021. ; https://doi.org/10.1101/2021.01.19.21250105doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21250105
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

glucose 7 100292914/ 

100695291 

T C rs221783 11% 1.82x10
-11

 -0.03 -0.03 -0.02 

HbA1c 7 100292914/ 

100695291 

T C rs221783 11% 3.58x10
-7

 -0.02 -0.03 -0.01 

Cholesterol 7 100292914/ 

100695291 

T C rs221783 11% 7.00x10
-12

 0.03 0.02 0.03 

LDL 7 100292914/ 

100695291 

T C rs221783 11% 6.25x10
-10

 0.02 0.02 0.03 

T2D 7 100292914/ 

100695291 

T C rs221783 11% 0.005 0.96 0.93 0.99 

Hypothyroidism 7 100292914/ 

100695291 

T C rs221783 11% 6.95x10
-7

 0.92 0.88 0.95 

 278 

Identification of causal genes at GWAS loci  279 

Given the fact that the GIGYF1 locus harbors both rare and common variants associated with T2D we 280 

examined whether our study points to the causal gene at additional GWAS loci. For 558 variants 281 

associated with T2D in a recent study by Vujkovic and colleagues [9] we tested whether either of the 282 

two closest genes associated with T2D or HbA1c levels in our study. Just nine genes close to these 558 283 

variants significantly associated with T2D or HbA1c (p ≤ 2.41 x 10
-5

 adjusting for 2071 variant sets tested) 284 

- ANK1, GCK, HNF1A, TNRC6B, SLC30A8, NF1, IRS2, CFTR and HNF4A (Supplementary Figure 6 and 285 

Supplementary Table 20). Most of these genes are already known to be causal for T2D including GCK, 286 

HNF1A, SLC30A8, IRS2 and HNF4A. Given that there is a common variant association with T2D at 287 

TNRC6B but conflicting results for TNRC6B pLOF in UKBB and GHS, further study of this locus may be 288 

warranted. 289 

Discussion 290 

Our results highlight the power of whole exome sequencing to make novel discoveries relevant to 291 

human disease and to detect known associations of Mendelian disease genes. Gene-level aggregation 292 

and burden testing of rare pLOF and predicted damaging missense variants identified genes associating 293 

with diabetes and biomarkers of glycemic control. These included several genes not previously 294 

implicated in diabetes, GIGYF1, TNRC6B and PFAS, as well as GCK, HNF1A and PDX1, known MODY genes 295 

[14, 22-24]. We also identified PAM and G6PC2, genes highlighted by other rare-variant studies of T2D 296 

and glucose levels [5, 15]. Gene-level tests were needed to detect the majority of these associations 297 

owing to the rarity of the variants. For example, out of 363,977 individuals, just 40 carried a pLOF variant 298 

in GCK and 131 carried a pLOF variant in GIGYF1. In general, singleton variants contributed a large part 299 

of the signal arguing strongly, as others have done [4], for including such variants in gene-based 300 

collapsing tests. 301 

Test statistic inflation can be a challenge when testing rare variants as statistical assumptions break 302 

down when the number of carriers expected to have the disease of interest is low [4, 25]. To avoid false 303 

positives in our analysis of diabetes, we initially examined associations with glucose and HbA1c because 304 

quantitative traits are less susceptible to inflation. All of the variant sets that associated with T2D also 305 

affected HbA1c and/or glucose levels giving us confidence in these associations. In addition, T2D 306 

associations for all genes, apart from TNRC6B, were significant (p ≤ 1.46 x 10
-6

) using the linear mixed 307 

model implemented by SAIGE-Gene which can be more robust when dealing with low numbers of 308 

variant carriers [16]. We also verified the majority of our associations with glucose and HbA1c levels, 309 
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including those for GIGYF1 pLOF, using independent measurements from primary care data. Additional 310 

confidence in our results comes from the fact that we identified genes known to be involved in 311 

Mendelian forms of diabetes and previously reported genes. In addition, a targeted analysis of the genes 312 

encoding T2D drug targets revealed HbA1c and/or T2D associations for variants in several of these 313 

genes. The lack of association for variants in some of these drug target genes may partly be due to a lack 314 

of statistical power. Several of these genes are constrained for pLOF variation and/or have small 315 

numbers of pLOF carriers in UKBB (for example, PPARG has just 16 pLOF carriers). However, for some of 316 

these genes such as SLC5A2 (encoding SGLT2) we do not detect associations with diabetes traits despite 317 

good numbers of variant carriers. 318 

We uncovered novel associations with T2D and biomarkers of glycemic control for aggregated variants 319 

in GIGYF1, TNRC6B and PFAS and attempted replication of these associations in exome-sequenced 320 

individuals from GHS. The association of GIGYF1 pLOF with T2D replicated in this cohort but we did not 321 

replicate associations for TNRC6B and PFAS variants. There are differences between these two cohorts; 322 

UKBB is a population-based cohort with T2D diagnoses obtained from inpatient records while GHS is a 323 

health system-based cohort and includes both inpatient and outpatient diagnoses. There is a larger 324 

effect size for GIGYF1 pLOF in UKBB compared to GHS which may be due to these differences in 325 

ascertainment. Differences in the definition of the variant sets tested especially for PFAS (see Methods) 326 

or the frequency of the relevant variants (for example, the frequency of TNR6CB pLOF is 0.01% in UKBB 327 

but 0.16% in GHS) may have contributed to the failure to replicate the TNRC6B and PFAS associations. 328 

Alternatively, this may suggest that the TNRC6B and PFAS associations are false positives.  329 

We focused our analysis on understanding the consequences of GIGYF1 pLOF as it strongly associated 330 

with glucose, HbA1c and T2D and the T2D association replicated in GHS. GIGYF1 encodes a protein that 331 

was initially identified for its binding to the adapter protein GRB10 which negatively regulates both the 332 

insulin and IGF-1 receptors [26]. Transfection of cells with GRB10-binding fragments of GIGYF1 lead to 333 

greater activation of both the insulin and IGF-1 receptors [27]. This supports a hypothesis whereby 334 

GIGYF1 enhances insulin signaling by reducing the negative regulation of the insulin receptor by GRB10. 335 

When GIGYF1 is reduced, as is the case in individuals carrying pLOF variants, GRB10 presumably inhibits 336 

insulin signaling to a greater degree thereby reducing the action of insulin in its target tissues and 337 

leading to increased risk of T2D. However, the exact mechanistic details of these interactions remain to 338 

be determined. GRB10 variants have also been reported to associate with T2D and glycemic traits 339 

although interpretation of these results is complicated by imprinting [28, 29]. GIGYF1 is broadly 340 

expressed with high levels observed in endocrine tissues, pancreas and brain [19, 30]. GIGYF1 and the 341 

related protein GIGYF2 have also been implicated in translational repression [31] and translation-342 

coupled mRNA decay [32] suggesting biological roles beyond regulation of insulin and IGF-1 receptor 343 

signaling. 344 

PheWAS of GIGYF1 pLOF revealed a strong association with decreased cholesterol levels reflecting 345 

altered energy homeostasis in carriers. An inverse relationship between glucose and cholesterol levels 346 

has been observed for variants in other genes [33]. We also observed several associations that could 347 

reflect complications of diabetes in GIGYF1 pLOF carriers including increased cystatin c levels and 348 

increased diagnosis of urinary disorders, suggesting renal complications, as well as syncope and collapse 349 

which may be a side-effect of hyperglycemia and/or hypoglycemia in diabetics. Other associations may 350 

reflect poor health in carriers including decreased grip strength and decreased peak expiratory flow. 351 

GIGYF1 pLOF also associated with decreased mean corpuscular hemoglobin levels and increased 352 
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diagnosis of anemia as well as increased emphysema diagnosis. The biological basis for these 353 

associations is not clear. GIGYF1 is highly expressed in lung [19, 30] although the emphysema 354 

association is driven by small numbers of individuals, so replication is required. 355 

GIGYF1 pLOF associated with a 4.5-fold increased risk of hypothyroidism and GIGYF1 is highly expressed 356 

in thyroid [19, 30] consistent with a biological function in this tissue. IGF-1 and insulin have been 357 

implicated in the proliferation of thyroid cells which may, in part, explain the association with thyroid 358 

dysfunction [34-36]. An alternative possibility is that GIGYF1 contributes to thyroid function by affecting 359 

secretion of thyroid stimulating hormone in the anterior pituitary gland. Another explanation is that 360 

shared autoimmune mechanisms contribute to thyroid dysfunction and diabetes in pLOF carriers and 361 

that some of the carriers diagnosed with T2D have features of latent autoimmune diabetes in adults 362 

[37]. Damaging variants in GIGYF1 have recently been implicated in conferring risk for developmental 363 

delay and autism spectrum disorders [38]. Consistent with this, we see an association of GIGYF1 pLOF 364 

with increased time to complete a cognitive test. It may be that metabolic aberrations in carriers affect 365 

cognitive performance, that brain development is altered due to perturbation of IGF-1 signaling, or that 366 

other functions of GIGYF1 such as regulation of mRNA expression and decay are responsible for 367 

cognitive phenotypes. 368 

In addition to replicating the association of GIGYF1 pLOF with T2D in an independent cohort we also 369 

used common genetic variants to further investigate the role of the GIGYF1 locus in diabetes. Non-370 

coding variants at the GIGYF1 locus associated with glucose levels and T2D, and we replicated these 371 

findings in independent datasets. These variants associated with increased GIGYF1 expression but a 372 

lower risk of T2D. This direction of effect is consistent with what we see for the pLOF variants – reduced 373 

levels of GIGYF1 increases diabetes risk but increased levels of GIGYF1 are protective.  374 

We observed an intersection of rare and common variant associations at GIGYF1 as well as at MODY 375 

genes such as GCK, HNF1A and HNF4A. However, in general, our gene-level analysis of rare variants did 376 

not identify many additional causal genes at GWAS loci; out of 558 variants associated with T2D [9] just 377 

nine had rare variant associations at a nearby gene. 378 

We assessed the impact of pLOF and predicted damaging missense variants in approximately 17,000 379 

genes on glycemic traits and uncovered a hitherto unappreciated role for GIGYF1 in regulating blood 380 

sugar and protecting from T2D. By highlighting the importance of GIGYF1 and GRB adapter proteins in 381 

modulating insulin signaling this finding may lead to new therapeutic approaches for the treatment of 382 

diabetes. Discoveries such as this are only possible by combining health-related data with the 383 

sequencing of rare variants on a biobank scale.  384 

Methods 385 

The UK Biobank resource and data access 386 

The UK Biobank (UKBB) recruited ~500,000 participants in England, Wales, and Scotland between 2006 387 

and 2010 [39]. Written informed consent was obtained from all participants. Phenotypic data available 388 

includes age, sex, biomarker data and self-reported diseases collected at the time of baseline 389 

assessment as well as disease diagnoses from inpatient hospital stays, the cancer registry and death 390 

records obtained through the NHS. Approximately half of the participants also have diagnoses from 391 

primary care available. Array genotypes are available for nearly all participants and exome sequencing 392 
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data is available for 454,787 participants. The data used in this study were obtained from the UKBB 393 

through application 26041.  394 

Population definition and PC calculation for subjects with exome data 395 

Subject quality control was performed by Regeneron Genetics Center (RGC) and removed subjects with 396 

evidence of contamination, unresolved duplications, sex discrepancies and discordance between exome 397 

sequencing and genotyping data. Genetic relationships between participants were determined by RGC 398 

using the PRIMUS program [40]. For the unrelated subset all first- and second-degrees relatives and 399 

some third-degree relatives were excluded. 400 

Populations were defined through a combination of self-reported ethnicity and genetic principal 401 

components. We selected the unrelated individuals who identify as White (Field 21000) and ran an 402 

initial principal component analysis (PCA) on high quality common variants using eigenstrat [41]. SNPs 403 

were filtered for missingness across individuals < 2%, MAF > 1%, regions of known long range LD [42], 404 

and pruned to independent markers with pairwise LD < 0.1. We then projected the principal 405 

components (PCs) onto related individuals and removed all individuals +/- 3 standard deviations from 406 

the mean of PCs 1-6. A final PC estimation was performed in eigenstrat [41] using unrelated subjects. 407 

We then projected related individuals onto the PCs. 408 

Exome sequencing and variant calling 409 

DNA was extracted from whole blood and was sequenced by the RGC as described elsewhere [43]. 410 

Briefly, the xGen exome capture was used and reads were sequenced using the Illumina NovaSeq 6000 411 

platform. Reads were aligned to the GRCh38 reference genome using BWA-mem [44]. Duplicate reads 412 

were identified and excluded using the Picard MarkDuplicates tool (Broad Institute). Variant calling of 413 

SNVs and indels was done using the WeCall variant caller (Genomics Plc.) to produce a GVCF for each 414 

subject. GVCFs were combined to using the GLnexus joint calling tool [45]. Post-variant calling filtering 415 

was applied using the Goldilocks pipeline [43]. Variants were annotated using the Ensembl Variant Effect 416 

Predictor v95 [46] which includes a LOFTEE plug-in to identify high confidence (HC) pLOF variants [13]. 417 

Combined Annotation Dependent Depletion (CADD) scores were generated using the Whole Genome 418 

Sequence Annotator (WGSA) AMI version 0.8. 419 

Phenotype definitions 420 

Blood biochemistry values were obtained for glucose (Field 30740) and HbA1c (Field 30750) from UKBB 421 

and inverse rank normalized using the RNOmni R package [47], resulting in an approximately normal 422 

distribution.  423 

For disease diagnoses, ICD10 codes were obtained from inpatient hospital diagnoses (Field 41270), 424 

causes of death (Field 40001 and 40002) and the cancer registry (Field 40006) from UKBB. Diagnoses 425 

also included additional hospital episode statistics (HESIN) and death registry data made available by 426 

UKBB in July 2020. T2D was defined as ICD10 E11. For the purposes of excluding diagnosed diabetics 427 

from the glucose and HbA1c analysis we defined diabetes as ICD10 codes E10-E14 which includes both 428 

T1D and T2D diagnoses. 429 

For phenome-wide analyses, a selection of quantitative traits was obtained from other fields, 430 

encompassing anthropometric measurements, blood counts, as well as blood and urine biochemistry. 431 

Beyond these measurements, we selected additional quantitative traits found to be heritable (h
2 

432 

significance flagged as at least “nominal” with a confidence level flagged as “medium” or “high”) by the 433 
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Neale lab [25], using PHESANT to transform values to quantitative traits when necessary as they 434 

describe. These included the results of cognitive tests. All quantitative traits were inverse rank 435 

normalized using the RNOmni R package. [47]. For burden testing, we required at least 10 carriers to 436 

have measurements. We also tested associations with ICD10-coded diagnoses (using 3 character codes) 437 

that had more than 500 cases in the White subset of participants with exome data and at least one 438 

expected case carrier based on variant frequency and disease prevalence. 439 

Glucose and HbA1c values were also extracted from primary care data available for about half of the 440 

cohort using the following read codes. Glucose: read 2 codes 44U..,44g.., 441 

44g1.,44TJ.,44f..,44TK.,44f1.,44g0.,44f0. and read 3 codes XM0ly, X772z, XE2mq; HbA1c: read 2 codes 442 

42W5., 44TB., 66Ae0, 44TC., 42W4. and read 3 codes XaPbt, X772q, XaWP9, XaBLm, XaERp. 443 

Values were converted to IFCC units where necessary. Aberrantly high (≥ 45 mmol/L for glucose, ≥ 300 444 

mmol/mol for HbA1c) and extremely low values (≤ 0.6 mmol/L for glucose, ≤ 10 mmol/mol for HbA1c) 445 

were excluded. The mean measurement per individual was then taken and inverse rank normalized prior 446 

to association testing. The mean age at measurement was also extracted and used as a covariate in the 447 

regression. 448 

Individuals taking cholesterol-lowering medication were identified using self-reported medications 449 

recorded at their UKBB interview (Field 20003) and whether cholesterol-lowering medications were 450 

recorded using the touchscreen questionnaire (Fields 6177 and 6153). 451 

Gene-based association testing 452 

For gene-based tests, autosomal rare pLOF variants were identified as follows; LOFTEE high confidence 453 

LOFs, MAF ≤ 1%, missingness across individuals ≤ 2%, HWE p-value ≥ 10
-10

. Predicted damaging missense 454 

variants were defined as missense variants with a CADD PHRED-scaled score ≥ 25, MAF ≤ 1%, 455 

missingness across individuals ≤ 2%, HWE p-value ≥ 10
-10

. Only genes with more than one pLOF variant 456 

or damaging missense variant were tested. 457 

Burden testing was performed unrelated White subset using glm in R, using a gaussian model for 458 

quantitative traits and a binomial model for case-control analyses. Genotype was coded as 0 (no variant) 459 

or 1 (any number of variants). We adjusted for age, sex and the first 12 PCs of genetic ancestry in the 460 

regression. Additionally, when testing for association with disease diagnoses, we included country of 461 

recruitment as a covariate as the time of available follow-up differs between England, Scotland and 462 

Wales. Recruitment country was defined using the location of the relevant UKBB recruitment center 463 

(Field 54). Associations were later confirmed using just participants recruited in England. For case-464 

control analyses we only ran tests where there was at least one expected case carrier based on variant 465 

frequency and disease prevalence. For quantitative traits we required at least 10 carriers to have 466 

measurements.  467 

For glucose and HbA1c, to convert effect sizes from normalized values back to measured units, the 468 

estimates from the regression were multiplied by the standard deviation of these traits in the entire 469 

cohort. 470 

SAIGE-Gene was run using the SAIGE R package (v0.36.5) [48] using settings recommend by the 471 

developers and related individuals were included. 472 

T2D drug targets were defined according to Flannick et al. [5].  473 
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Manhattan plots were created using the R Package CMplot (https://github.com/YinLiLin/R-CMplot). 474 

Array association testing 475 

Genotypes were obtained through array typing and imputation as described previously [49]. Population 476 

definition and PC estimation for individuals with array data was performed as previously described [50]. 477 

We tested all variants with imputation quality score (info) ≥ 0.8 and minor allele frequency (MAF) ≥ 0.1% 478 

in a 200Mb region around GIGYF1 for association with glucose, HbA1c, T2D and hypothyroidism. 479 

Association analyses were performed using an additive model in PLINK adjusting for age at recruitment 480 

to UKBB, sex and the first 12 PCs of genetic ancestry. We also adjusted for country of recruitment where 481 

appropriate. The most significant variant with info > 0.95 was selected as the lead variant at the locus. 482 

We replicated the association of rs221783 with glucose using available summary statistics for Biobank 483 

Japan for the trait “blood sugar” (http://jenger.riken.jp/en/result) [20]. We replicated the association of 484 

this variant with T2D diagnosis using summary statistics from FinnGen release 3 for the phenotype 485 

“E4_DM2” (https://www.finngen.fi/en/access_results). The effect allele in these datasets was the 486 

alternate allele “C”. For consistency with the UKBB associations we have shown the effect for the “T” 487 

allele. 488 

Meta-analysis of the UKBB and replication dataset association results was performed with the METAL 489 

software package using the classical method [51]. 490 

Region plots were created using LocusZoom [52]. LD calculations were performed in the White 491 

population for array variants in a 500kb sliding window as follows; we extracted genotypes with info > 492 

0.9, rounded them to whole numbers, mean-imputed missing genotypes and used the R “cor” function 493 

to compute R which was then squared to get an R
2
 value.  494 

Gene expression and eQTL analysis 495 

The expression of GIGYF1 in various tissues was assessed using the GTEx portal (accessed 08/04/2020) 496 

[19] and Human Protein Atlas (http://www.proteinatlas.org) [30]. eQTL data for rs221783 was obtained 497 

from GTEx v8. For each tissue of interest, the best eQTL for GIGYF1 was identified (GTEx v8 “eGene”). R
2
 498 

for rs221783 and the best GIGYF1 eQTL was calculated as described above. 499 

Replication analysis in GHS 500 

The GHS MyCode Community Health Initiative study is a health system-based cohort and has been 501 

described previously [53]. A subset of participants sequenced as part of the GHS-Regeneron Genetics 502 

Center DiscovEHR partnership were included in this study. T2D status was defined based on meeting at 503 

least one of the following criteria: (1) clinical encounters due to or problem-lists diagnosis code for type 504 

2 diabetes (ICD-10 code E11), or (2) HbA1c greater than 6.5%, or (3) use of diabetic oral hypoglycemic 505 

medicine. Controls were participants who did not meet any of the criteria for case definition. Individuals 506 

were excluded from the analysis if they had clinical encounters due to or problem-lists diagnosis code 507 

for type 1 diabetes (ICD-10 code E10), or if they were treated with insulin but not with oral 508 

hypoglycemic medicines. 509 

Exome-sequencing, variant calling, quality control and gene-based tests were performed as previously 510 

described [54]. Variant sets tested were pLOF variants (GIGYF1 and TNRC6B) or pLOF plus missense 511 

variants predicted to be deleterious by 5/5 algorithms (PFAS) with MAF < 1%. The following variants 512 

were classified as pLOF variants: frameshift-causing indels, variants affecting splice acceptor and donor 513 
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sites, variants leading to stop gain, stop loss and start loss. The five missense deleterious algorithms 514 

used were SIFT [55], PolyPhen2 (HDIV), PolyPhen2 (HVAR) [56], LRT [57], and MutationTaster [58]. 515 

Association testing was performed in the European ancestry population using the Firth logistic 516 

regression test implemented in REGENIE [59] as previously described [54].  517 

Identification of potential causal genes at GWAS loci 518 

For 558 variants identified as associating with T2D [9] we mapped the two closest protein coding genes 519 

using bedtools. This resulted in 1118 genes for which we had tested 2071 variant sets (pLOF and/or 520 

damaging missense) in our primary analysis. Genes with p < 2.41 x 10
-5

 (correcting for 2071 variant sets 521 

tested) for HbA1c or T2D were considered significant. 522 

Ethics Statement 523 

The UK Biobank resource is an approved Research Tissue Bank and is registered with the Human Tissue 524 

Authority, which means that researchers who wish to use it do not need to seek separate ethics 525 

approval (unless re-contact with participants is required). Research in GHS was approved by the GHS 526 

IRB, approval number 2006-0258. Written informed consent was obtained from all participants in UKBB 527 

and GHS. 528 

Data availability 529 

All phenotypic data and array genotypes used in this study are accessible through application to UKBB. 530 

Currently, exome sequencing data for ~200,000 participants is available [38]; the remainder of the 531 

exome data used is scheduled for public release in 2021. Summary statistics for gene-level tests will be 532 

made available upon publication. 533 
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Figures 737 

Figure 1: Gene-level associations with glucose and HbA1c levels 738 

A) pLOF associations with glucose levels. B) Damaging missense variant (CADD score ≥ 25) associations 739 

with glucose levels. C) pLOF associations with HbA1c. D) Damaging missense variant associations with 740 

HbA1c levels. The red line indicates the threshold for significance, genes with significant associations are  741 
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Figure 2: Gene-level associations with T2D 746 

A) pLOF associations with T2D diagnosis. B) Damaging missense variant (CADD score ≥ 25) associations 747 

with T2D diagnosis. The red line indicates the threshold for significance, genes with significant 748 

associations are labeled. 749 
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Figure 3: PheWAS of GIGYF1 pLOF 753 

The x-axis is the beta (effect size in standard deviations) for the association and the y-axis is -log10(p-754 

value). Quantitative traits are colored light blue and ICD10 diagnoses colored dark blue. Phenome-wide 755 

significant associations are labeled. The dashed line indicates the p-value threshold for phenome-wide 756 

significance. Protein; total protein, RH grip; right hand grip strength, round time: time to complete 757 

round (cognitive test), LH grip; left hand grip strength, PEF; peak expiratory flow. 758 
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Figure 4: Locus plot of glucose associations at the GIGYF1 locus  761 

Association results for array genotyped and imputed variants are shown. The purple diamond represents 762 

the lead variant rs221783. Other variants are colored according to correlation (R
2
) with this marker 763 

(legend at top-left). The region displayed is chr7: 100092914-100492914. Genomic coordinates are for 764 

hg19. 765 
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