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ABSTRACT 

Background:  

Four models are commonly used to adjust for energy intake when 

estimating the causal effect of a dietary component on an outcome; (1) the 

'standard model' adjusts for total energy intake, (2) the 'energy partition 

model' adjusts for remaining energy intake, (3) the 'nutrient density model' 

rescales the exposure as a proportion of total energy, and (4) the 'residual 

model' indirectly adjusts for total energy by using a residual. It remains 

underappreciated that each approach evaluates a different estimand and 

only partially accounts for proxy confounding by common dietary causes. 

Objective: 

To clarify the implied causal estimand and interpretation of each model and 

evaluate their performance in reducing dietary confounding. 

Design:  

Semi-parametric directed acyclic graphs and Monte Carlo simulations were 

used to identify the estimands and interpretations implied by each model 

and explore their performance in the absence or presence of dietary 

confounding.  

Results:  

The 'standard model' and the mathematically identical 'residual model' 

estimate the average relative causal effect (i.e., a 'substitution' effect) but 

provide biased estimates even in the absence of confounding. The 'energy 
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partition model' estimates the total causal effect but only provides unbiased 

estimates in the absence of confounding or when all other nutrients have 

equal effects on the outcome. The 'nutrient density model' has an obscure 

interpretation but attempts to estimate the average relative causal effect 

rescaled as a proportion of total energy intake. Accurate estimates of both 

the total and average relative causal effects may instead be estimated by 

simultaneously adjusting for all dietary components, an approach we term 

the 'all-components model'.  

Conclusion:  

Lack of awareness of the estimand differences and accuracy of the four 

modelling approaches may explain some of the apparent heterogeneity 

among existing nutritional studies and raise serious questions regarding 

the validity of meta-analyses where different estimands have been 

inappropriately pooled. 

 

Keywords: Nutritional epidemiology, Estimand, Causal inference, 

Compositional Data, Directed Acyclic Graphs 
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INTRODUCTION 

Estimating the causal effect of an individual dietary component on one or 

more health outcomes is a common practice in nutrition research. The 

purported aim is to identify foods or nutrients that are particularly 

beneficial or harmful to health, and hence reveal potential targets for 

public health or policy intervention. For example, many countries have 

introduced taxes on sugar-sweetened beverages because of their high 

concentration of non-milk extrinsic sugars and their estimated 

contribution to the risks of obesity and other adverse health 

outcomes.(1,2) 

Randomised controlled trials are generally difficult to perform in larger 

samples over longer time periods, and the effects observed may not 

generalize to dietary practices in the target population.(3) Nutrition 

research is therefore highly reliant on the analysis of observational data, 

which brings several challenges for causal inference. One of the biggest of 

these is how to separate the effects of individual dietary components from 

the effects of the overall diet. Typically, those who consume a greater 

quantity of any one dietary component will also consume a greater overall 

quantity of food and have a greater overall energy intake.(4) Those who 

consume a greater overall quantity of food are often also systematically 

different in several other important ways, such as body size and 

composition.(4) Separating the effect of a single nutrient exposure from 

the effects of body size, body composition, metabolic efficiency, and 

overall energy intake, is however extremely challenging.(5) Identifying 
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the exact physiological, psychological and sociocultural determinants of 

dietary intake and composition is not straightforward. Many of these 

determinants cannot be measured directly or are simply unknown. Overall 

energy intake is often the best available 'proxy' for these determinants, 

and is hence routinely used to address confounding.(4) 

Several strategies have been proposed to 'control' (i.e. statistically 

adjust) for differences in overall energy intake when attempting to 

estimate the effects of individual dietary components, and there has been 

considerable debate about which of these strategies is most 

appropriate.(4–9) The two most common approaches are: the 'standard 

model', which involves adjusting for total energy intake (i.e. total intake 

of calories from all sources including the nutrient exposure of interest); 

and the 'energy partition model', which involves adjusting for the 

remaining energy intake (i.e. the intake of calories from all sources 

excluding the exposure nutrient of interest). A third approach, known as 

the 'nutrient density model', involves examining the nutrient exposure 

as a proportion (percentage) of total energy intake, with or without 

further adjustment for total energy intake. Finally, the 'residual model' 

involves adjusting for the residual produced by regressing the nutrient 

exposure on total energy intake.  

Although ostensibly similar in purpose, the choice of energy adjustment 

strategies has important implications, for both the causal effect being 

targeted (i.e. the estimand) and the accuracy of the estimate 

obtained.(8) In theory, applied researchers are encouraged to select the 
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adjustment strategy that is most compatible with their research question, 

or otherwise to carefully present and interpret different estimates.(8) 

However, in practice, there is often limited explicit justification given for 

the approach(es) adopted and reported. Even when the models are 

correctly interpreted, there is little or no explanation regarding which 

approach is most suitable, and instead several approaches are commonly 

used and compared, even when they target different causal effect 

estimands.(10,11)  

In this study, we use directed acyclic graphs (DAGs) and simulations to 

clarify the estimand and appropriate causal interpretation for each 

adjustment strategy. We also explore the performance of each strategy 

for reducing confounding by common causes of dietary intake and 

composition. Throughout, we consider the illustrative example of the 

effect of non-milk extrinsic sugars (referred to as 'sugar(s)' for simplicity) 

on body weight.  

CONSIDERING COMPOSITIONAL NUTRITION DATA USING DAGS 

A key challenge in the analysis of nutritional data is recognizing that total 

energy intake, together with energy intake from individual dietary 

components, represents an example of compositional data.(12) Data are 

compositional when a 'whole' variable (i.e. total energy intake) can be 

divided into meaningful 'part' variables which together sum to that whole 

(i.e. energy intake from individual dietary components).(13) Although we 
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might consider these whole and part variables to be distinct, in reality 

they represent the same variable at different levels of aggregation.  

Compositional data can be depicted using a type of semi-parametric DAG, 

as introduced by Arnold et al.(14). DAGs are causal diagrams in which 

variables (nodes) are connected by unidirectional arrows (arcs) to depict 

hypothesized causal relationships between them; no node may indirectly 

cause itself.(15) Although they are generally used to depict probabilistic 

relationships, they can also be used to depict situations for which the 

value of one variable is completely determined by one or more parent 

variables(16). We depict probabilistic and deterministic variables with 

single and double-outlined rectangles, respectively, and probabilistic and 

deterministic relationships with single and double-lined arrows, 

respectively. We also place a dashed box around the compositional 

variables to highlight that they occur at the same point in time.(14) The 

DAG in Figure 1 depicts our illustrative scenario, where the energy intake 

from sugars and all other energy sources completely determines total 

energy intake and (probabilistically) affects body weight.  

Depicting the relationship in this way – with total energy intake as the 

'consequence' of the energy intake from all individual sources – is helpful 

for understanding the impact of different adjustment strategies because 

total energy intake can be conceptualized as a 'collider'. A collider is a 

variable that is simultaneously caused by two or more other variables. 

Where the collider is completely determined by its individual components, 

as in the case of total energy intake, conditioning on the collider (i.e., 
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holding its value fixed) creates a dependency between all the constituent 

components, such that any change in the value of one component must 

be accompanied by an equal but opposite average change in all other 

(unconditioned) components. Analyses that adjust for total energy intake 

therefore evaluate the 'substitution' effect of exchanging the exposure 

with one or more other component nutrients.(14) The compositional 

nature of the data should be recognized when selecting the most 

appropriate adjustment strategy. 

TOTAL VERSUS RELATIVE CAUSAL EFFECT ESTIMANDS 

Several authors have examined the interpretation of the different 

approaches to energy adjustment,(4,6–8) but none have explicitly 

considered the target estimand of each approach. This is likely because 

none of the models were developed within a formal causal framework. 

The estimand and estimating performance of each approach must 

therefore be inferred from theory. 

The total causal effect of a nutrient exposure (e.g. sugars) on a health 

outcome (e.g. body weight), is the individual effect of increasing energy 

intake from that exposure while keeping all other sources of energy 

intake constant; this has previously been described as an 'additive' 

effect.(8) Since total energy intake is a 'collider' between the exposure 

nutrient and the outcome, it should be evident that an unbiased estimate 

of this effect cannot be obtained by adjusting for total energy intake. 

Therefore, of the four most common adjustment approaches, only the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250156doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250156
http://creativecommons.org/licenses/by/4.0/


 

 

9 

energy partition model targets this effect. This model can be expected to 

improve the precision of the estimate (by reducing unexplained 

heterogeneity in the outcome) and reduce confounding bias from common 

causes of diet (Figure 2a). However, this strategy would not be expected 

to fully eliminate confounding by common causes of diet if the competing 

dietary components have distinct effects on the outcome, since only their 

average effect will be adjusted for. In this instance, to target the total 

causal effect, adjusting simultaneously for each remaining dietary 

component – an approach we term the 'all-components model' – can 

be expected to provide a less biased estimate of this effect than would be 

obtained by adjusting for the average remaining energy intake (Figure 

2b). 

A relative causal effect of a nutrient exposure is the joint effect of 

increasing energy intake from that nutrient while decreasing energy 

intake from one or more other energy sources to keep the total energy 

intake constant. In theory, there are many different relative causal effects 

that might be considered; requiring many different adjustment strategies. 

The average relative causal effect (also known as the weighted 

average compositional effect)(17) is the effect of a nutrient exposure 

relative to the weighted average effect of all other sources of energy, and 

is commonly estimated by adjusting for total energy (Figure 3). Other 

more specific average relative causal effects can also be targeted by 

additionally adjusting for specific competing sources of energy intake to 

remove them from the substitution group. However, as with remaining 
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energy intake, adjusting for total energy intake is susceptible to residual 

confounding by common causes of diet if each residual dietary component 

has a distinct effect on the outcome. In this instance, a less biased 

estimate of the average relative causal effect may again be derived from 

the 'all-components model' (Figure 2b), by subtracting the weighted 

average effect of all the residual sources of energy intake from the total 

causal effect of the exposure.  

ILLUSTRATIVE EXAMPLE 

To illustrate these principles, we explore the target estimand and the 

performance in estimating these quantities of the four standard energy 

adjustment strategies, the 'all-components model', and a reference 

unadjusted model, using simulated data. We consider the example of 

estimating the effect of sugar on body weight in a simple scenario where 

body weight is caused by the intake of seven macronutrients (including 

sugar), either in the presence or absence of confounding by common 

causes of dietary intake and composition. We only consider confounding 

that acts through the individual dietary components (i.e., no direct effect 

on the outcome) because this best illustrates the use of energy intake as 

a proxy of dietary determinants. 

Methods 

Standardized data were simulated using the 'dagitty' (0.2-3) R 

package(18) to reflect the data generating process depicted in 

Supplementary Figure 1, where total energy intake was fully 
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determined by the energy intake from seven macronutrients: 1) sugars, 

2) carbohydrates, 3) fiber, 4) saturated fat, 5) unsaturated fat, 6) 

protein, and 7) alcohol. Total energy and remaining energy intake were 

not directly simulated. Instead, they were calculated from the sum of all 

macronutrient energy variables, or the sum of all energy variables except 

sugar, respectively. Each macronutrient was assigned a unique effect on 

body weight. Specific path coefficient values were chosen to represent 

plausible causal effects, and simulated variables were rescaled with 

plausible mean and standard deviation values informed by the National 

Diet and Nutrition Survey (see Supplementary Table 1).(19) All 

simulations and models (see below) were repeated in the presence of a 

single variable (U) that causes the intake of all macronutrients, to 

demonstrate the influence of confounding by common causes of dietary 

composition. Each simulation included 1,000 observations and was 

repeated over 100,000 iterations. We report the median effect estimate 

and 2.5th and 97.5th centiles (representing 95% simulation interval, SI) 

from the 100,000 iterations for each model. For ease of illustration, effect 

estimates are presented in kilograms per 100 kilocalories (kg/100kcal).  

Simulated Effects 

The total causal effect is the effect of increasing energy intake from the 

exposure of interest (i.e., sugars) while maintaining the same levels of 

energy intake from all other sources. We simulated a total causal effect of 
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5kg/100kcal, meaning that body weight increased by an average of 5kg 

for each additional 100kcal of sugars consumed.  

The average relative causal effect is the effect of increasing the energy 

intake from the exposure (i.e., sugars) while decreasing the energy intake 

from all other macronutrients to maintain the same total energy intake. 

We simulated an average relative causal effect of 2kg/100kcal (equivalent 

to 0.4kg per 1% of total energy intake), meaning that body weight 

increased by an average of 2kg for each additional 100kcal (or 0.4kg for 

each additional 1% of total energy) derived from sugars rather than from 

other macronutrient sources.  

Models Examined 

We present and discuss the results obtained from using the following six 

models.  

0) The unadjusted model. 

𝑊�̂� = 𝑎0̂ + 𝒂�̂�𝑁𝑀𝐸𝑆  

This model targets the total causal effect of sugars (𝑁𝑀𝐸𝑆) on body size 

(𝑊𝑇). Because the model does not adjust for energy intake or any other 

variables,  the coefficient 𝑎1̂ should produce an unbiased estimate of the 

desired estimand only where there exists no confounding by common 

causes of diet. 

1) The energy partition model. 

𝑊�̂� = 𝑏0̂ + 𝒃�̂�𝑁𝑀𝐸𝑆 + 𝑏2̂𝑅𝐸 
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This model also targets the total causal effect of sugars (𝑁𝑀𝐸𝑆) on body 

weight (𝑊𝑇), and attempts to minimize confounding by common causes 

of diet by adjusting for remaining energy intake (𝑅𝐸) (i.e., total intake of 

calories from all sources excluding sugars). Where there exists such 

confounding, the coefficient 𝑏1̂ is therefore expected to produce a less-

biased estimate of the desired estimand than in the unadjusted model (𝑎1̂ 

in model 0); however, residual confounding may remain where competing 

nutrients have different effects on the outcome. 

2) The standard model. 

𝑊�̂� = 𝑐0̂ + 𝒄�̂�𝑁𝑀𝐸𝑆 + 𝑐2̂𝑇𝐸  

This model targets the average relative causal effect of sugars (𝑁𝑀𝐸𝑆) on 

body weight (𝑊𝑇), and attempts to minimize confounding by common 

causes of diet by adjusting for total energy intake (𝑇𝐸) (i.e., total intake 

of calories from all sources including sugars). The coefficient 𝑐�̂� is 

expected to provide an unbiased estimate of this effect in the absence of 

confounding. The effect may be biased in the presence of confounding; 

residual confounding may also remain where competing nutrients have 

different effects on the outcome. 

3) The nutrient density model. 

𝑊�̂� = 𝑑0̂ + 𝒅�̂�  
𝑁𝑀𝐸𝑆

𝑇𝐸
(+ 𝑑2̂𝑇𝐸)  

This model involves transforming the nutrient exposure into a proportion 

(percentage) of total energy intake; additional adjustment may also be 
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made for total energy intake (𝑇𝐸), an approach that has been termed the 

'multivariable nutrient density model'.(4) The estimand targeted by this 

model is unclear, but it is plausibly an attempt to estimate the average 

relative causal effect of sugars (𝑁𝑀𝐸𝑆) on body weight (𝑊𝑇), rescaled as 

a percentage of total energy intake (i.e. 0.4kg/1%). However, the 

coefficient 𝑑�̂� represents an obscure quantity that conflates both the effect 

of the nutrient exposure and of the reciprocal of total energy intake, and 

it is therefore expected to be biased regardless of confounding by 

common causes of diet. We present models with (3a) and without (3b) 

adjustment for total energy intake (𝑇𝐸).  

4) The residual model. 

𝑊�̂� =  𝑒0̂ + 𝒆�̂�𝑁𝑀𝐸𝑆′ 

This two-stage approach involves regressing the nutrient exposure on 

total energy intake (𝑁𝑀𝐸𝑆̂ =  𝑥0̂ + 𝑥1̂𝑇𝐸), and entering the model residual 

(𝑁𝑀𝐸𝑆′ = 𝑁𝑀𝐸𝑆 − [𝑥0̂ + 𝑥1̂𝑇𝐸]) into a second unadjusted model. The 

approach is mathematically identical to the standard model, and therefore 

also targets the average relative causal effect of sugars (𝑁𝑀𝐸𝑆) on body 

weight (𝑊𝑇). Like in the standard model, the coefficient 𝑒�̂� is expected to 

provide an unbiased estimate in the absence of confounding; however, 

the effect may be biased in the presence of confounding or residual 

confounding if the remaining nutrient components have distinct effects on 

the outcome.  
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5) The all-components model. 

𝑊�̂� = 𝑓0̂ + 𝒇�̂�𝑁𝑀𝐸𝑆 + 𝑓2̂𝐶𝑅𝐵 + 𝑓3̂𝐹𝐵𝑅 + 𝑓4̂𝑆𝐹 + 𝑓5̂𝑈𝐹 + 𝑓6̂𝑃𝑅𝑂 +  𝑓7̂𝐴𝐿𝐶  

This model targets the total causal effect of sugars (𝑁𝑀𝐸𝑆) on body weight 

(𝑊𝑇) by adjusting for all individual component sources of energy: 

carbohydrates (𝐶𝑅𝐵); fiber (𝐹𝐵𝑅); saturated fat (𝑆𝐹); unsaturated fat (𝑈𝐹); 

protein (𝑃𝑅); alcohol (𝐴𝐿𝐶). The coefficient estimate 𝑓1̂ is expected to 

provide an unbiased estimate of this effect regardless of confounding by 

common causes of diet.  

An unbiased estimate of the average relative causal effect (say, �̂�1) can 

also be estimated using this model. This is achieved by subtracting a 

weighted average of the estimated effects of all other individual  component 

sources of energy from the total causal effect of the exposure (i.e., �̂�1 =

𝑓1 − [∑ 𝑤𝑖𝑓𝑖
𝑛
2 ], where 𝑤𝑖 is the proportion of the remaining energy intake 

contributed by each component 𝑖 = {2, … , 𝑛}).  

Results 

Full results from the six models considered are given in Table 1.  

0) The unadjusted model. 

With no confounding by common causes of diet, the unadjusted model 

returns an unbiased estimate of the total causal effect 

(𝑎1̂=5.0kg/100kcal). However, because the unadjusted model does not 

account for any competing sources of energy intake, the unadjusted 
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model returns a severely biased estimate (𝑎1̂=8.2kg/100kcal [95% SI: 

7.1, 9.4]) when there is confounding.  

1) The energy partition model. 

With no confounding, the energy partition model returns an unbiased 

estimate of the total causal effect (𝑏1̂=5.0Kg/100kcal). With confounding, 

the energy partition model returns a more accurate (but still biased) 

estimate (𝑏1=5.5 [95 SI: 4.5, 6.5]), compared to the unadjusted model. 

2) The standard model. 

With no confounding, the standard model returns a slightly biased 

estimate of the average relative causal effect (𝑐1̂=1.9kg/100kcal [95% SI: 

0.8, 3.1]). With confounding, the standard model also returns a biased 

estimate of the average relative causal effect (𝑐1̂=2.3kg/100kcal [95% SI: 

1.2, 3.4]).  

3) The nutrient density model. 

3a) With no confounding, the nutrient density model returns a severely 

biased estimate of the average relative causal effect (𝑑1̂=0.14kg/% [95% 

SI: -0.11,0.40]). With confounding, the nutrient density model also 

returns a biased estimate of the average relative causal effect 

(𝑑1̂=0.47kg/% [95% SI: 0.16, 0.76]).  

3b) With no confounding, the multivariable nutrient density model returns 

a more accurate estimate than the (unadjusted) nutrient density model, 

but one which is still biased (𝑑1̂=0.35kg/% [95% SI: 0.14,0.56]). With 
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confounding, the multivariable nutrient density model also returns a more 

accurate estimate than the (unadjusted) nutrient density model, but the 

estimate is still biased (𝑑1̂=0.39kg/% [95% SI: 0.18,0.58]). 

4) The residual model. 

With no confounding, the residual model returns the same (biased) 

estimate of the average relative causal effect as the standard model 

(𝑒1̂=1.9kg/100kcal [95% SI: 0.8, 3.1]). With confounding, the residual 

model also returns the same (biased) estimate of the average relative 

causal effect as the standard model (𝑒1̂=2.3kg/100kcal [95% SI: 1.2, 

3.4]).  

5) The all-components model. 

With no confounding, the all-components model returns unbiased 

estimates of the total causal effect (𝑓1̂=5.0kg/100kcal [95% SI: 4.0,6.1]) 

and average relative causal effect (𝑔1̂=2.0kg/100kcal [95% SI:0.9,3.1]). 

Because this model involves adjusting for all remaining component 

sources of energy separately, in the presence of confounding by common 

causes of diet it also returns unbiased estimates of the total causal effect 

(𝑓1̂=5.0kg/100kcal [95% SI: 4.0,6.0]) and average relative causal effect 

(𝑔1̂=2.0kg/100kcal [95% SI:0.9,3.1]). 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250156doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250156
http://creativecommons.org/licenses/by/4.0/


 

 

18 

DISCUSSION 

Overview 

This study used DAGs and simulations to explore the target estimands 

and performance of the four standard approaches to adjusting for energy 

intake in nutritional research, as well as a fifth model that involves 

adjusting for all individual energy components. We demonstrate that the 

four standard approaches evaluate different estimands with different 

interpretations, and that none of the four methods provide robust 

estimates in the presence of confounding by common causes of dietary 

intake and composition. In contrast, the 'all-components' model offers an 

accurate means to estimating both the total causal effect and average 

relative causal effect. The nutrient density model conflates the effects of 

the exposure and total energy and does not target a meaningful 

estimand, regardless of bias. 

Principal findings 

Our simulations highlight four important considerations for the analysis 

and interpretation of nutritional data.  

First, different modelling strategies target different estimands. The energy 

partition model is the only one of the four standard approaches that 

targets the total causal effect of the nutrient exposure on the outcome 

(i.e., the 'additive' effect of the exposure on top of the existing diet). In 

contrast, the standard model and the mathematically equivalent residual 
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model both target the average relative causal effect of the nutrient 

exposure (i.e., the effect of 'substituting' the exposure with other calorific 

sources to maintain the same total energy intake). The nutrient density 

model targets an obscure estimand that conflates the effects of the 

nutrient exposure and the (inverse) effect of total energy intake; this is 

conceptually closest to the average relative causal effect, rescaled as a 

proportion of the total energy intake.   

Second, we show that none of the four standard approaches provide 

robust estimates of their respective causal estimands in the presence of 

confounding by common causes of dietary intake and composition. There 

are different reasons for this which depend on the model used. For 

example, the standard model and the energy partition model only remove 

the average effect of energy intake. Residual confounding will therefore 

remain wherever the effect varies between different component energy 

sources. This assumption is, however, fundamental to the conduct of 

nutritional research, as there would otherwise be no justification for 

estimating the causal effect of one or more individual nutrient exposures. 

The residual model is algebraically identical to the standard model,(6) and 

as such suffers the same problems while offering no additional benefits. 

The nutrient density model involves evaluating a proportion of energy 

intake (i.e., a ratio) as the exposure, rather than the absolute amount of 

the nutrient exposure consumed. For a variable expressed as a ratio, the 

individual causal effects of the constituent components cannot be 

separated and interpreted on their own. Ratio variables like these have 
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obscure interpretations and are not robust to confounding bias.(20) 

Adjusting for total energy intake - as in the multivariable nutrient density 

model - offers considerably more accurate estimates of average relative 

causal effects by reducing confounding and reducing the distorting joint 

effects of the total energy denominator, but nevertheless remains biased.   

Third, even in the absence of confounding, both the standard model and 

residual model returned slightly biased estimates (most probably due to a 

loss of information when combining the exposure and all remaining 

components into a single 'total' variable), and the nutrient density model 

produced moderately to severely biased estimates depending on whether 

additional adjustment was made for total energy intake.  

Finally, we show that a model that includes all individual dietary 

components (i.e., the all-components model) offers a robust means to 

estimating both the total causal effect and average relative causal effect. 

Implications 

None of the most common approaches to adjusting for energy intake in 

nutritional research provide robust estimates of meaningful causal effects. 

For some models, this is true even with no confounding by common 

causes of diet, reflecting fundamental issues with these approaches. This 

has serious implications for the validity and interpretation of existing 

studies that have used these models. 

It remains underappreciated that adjusting for total energy intake and 

adjusting for remaining energy intake evaluate very different causal 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250156doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250156
http://creativecommons.org/licenses/by/4.0/


 

 

21 

estimands. In our simulation, the true total causal effect of sugars on 

body weight was 5kg/100kcal, and the true average relative causal effect 

was 2kg/100kcal. These two estimands relate to very different questions 

that require very different interpretations. If this distinction is not 

recognized, there is a high chance of misinterpretation and confusion. 

Unfortunately, meta-analyses of dietary exposures rarely separate studies 

based on their target estimand and/or modelling strategy(1), resulting in 

confusing summary estimates that are difficult - if not impossible - to 

interpret causally. The inappropriate synthesis of estimates from different 

estimands may therefore render many meta-analyses as meaningless.  

Residual confounding is also likely to contribute to the heterogeneity of 

estimates observed in the literature, given the inadequacy of adjusting for 

energy intake using any of the traditionally recommended approaches. 

More robust estimates can be obtained by adjusting simultaneously for all 

dietary components (as in the 'all-components model'), but this is not 

common practice. However, this strategy does introduce a trade-off 

between minimizing bias (by including the largest number of components 

at the finest level of detail) and maximizing precision (by having to 

estimate many parameters, i.e., one for each additional dietary 

component).  Creating and adjusting for latent dietary profiles may offer a 

more parsimonious and hence more efficient approach to adjusting for 

common dietary causes, but there is still likely to be some accuracy 

trade-off.(21)   
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Recommendations 

Studies that seek to estimate the causal effect of one or more dietary 

components on one or more outcomes should clearly state their target 

estimand(s) of interest and justify an adjustment strategy for estimating 

this effect.  

Meta-analyses should only attempt to pool estimates for identical 

estimands, and extra care should be taken by reviewers to determine the 

implied estimand where this is not explicit. DAGs offer a simple means to 

identifying the appropriate adjustment set for a particular estimand, and 

guidelines are now available on how best to report their use.(22)  

A single model that includes all individual components of the diet may 

provide the simplest and most accurate approach to estimating both the 

total causal effect and any relative causal effect of interest.   

Strengths and weaknesses 

While useful for demonstrating theoretical concepts, data simulations are 

over-simplifications of reality. The true causal effect of sugar intake, and 

of all other macronutrients, on weight are likely to differ from what was 

simulated. The specific values were selected to most clearly illustrate the 

issues at hand, and no effects reported in this study should be interpreted 

in the nutrition domain. Weight and all dietary variables were simulated 

to be multivariate normal, which does not reflect reality. To aid 

demonstration, we transformed these variables to have plausible means 

and standard deviations based on observations in official data sources, 
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though this has no substantive impact on the results derived. Although 

we reduced the standard deviations to minimize the occurrence of 

negative values, some negative and biologically implausible values were 

nevertheless simulated in some instances which, although nonsensical, 

did not impact the validity of the simulations or the interpretation of 

results.  

When the aim is to reduce confounding, overall energy intake is adjusted 

as a proxy of unobserved determinants of dietary intake and composition. 

Therefore, in this study we only considered proxy confounding by 

common causes of diet. Minimizing confounding by common causes of 

diet does not eliminate the need for a carefully considered adjustment 

set. In the presence of standard confounding (i.e., variables that cause 

both the exposure and the outcome), adjusting for all dietary components 

would not be sufficient to eliminate all confounding bias. In such 

circumstances, when estimating the causal effect of a nutrient exposure 

on a health outcome, the complete adjustment set should be carefully 

selected and justified, ideally using DAGs.(22) 

CONCLUSION 

It is not fully appreciated that the most common approaches to adjusting 

for energy intake in nutritional research target different estimands with 

different interpretations. Moreover, none of these approaches offer 

complete adjustment for confounding from common causes of dietary 

intake and composition. These two issues together may explain a large 
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portion of the heterogeneity in effect estimates between nutritional 

studies. The alternative single model that includes all individual 

components of the diet may provide the simplest and most accurate 

approach to estimating total causal effects and any desired relative causal 

effects.  
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TABLES 

Table 1. Regression coefficients (and 95% simulation intervals, SI) for the effect of sugars on body weight 

estimated using four different causal estimand scenarios and adjustment approaches. 

 Model Model name Estimand 

Estimate (Kg/100.kcal) 

 No confounding Confounding 

True 

estimate 

Point 

estimate 
95% SI 

Point 

estimate 
95% SI 

0 𝑊�̂� = 𝑎0̂ + 𝒂�̂�𝑁𝑀𝐸𝑆  The unadjusted model Total causal effect 5.00 5.00 3.80, 6.21 8.22 7.09, 9.35 

1 𝑊�̂� = 𝑏0̂ + 𝒃�̂�𝑁𝑀𝐸𝑆 + 𝑏2̂𝑅𝐸 

 

The energy partition model Total causal effect 5.00 5.00 3.95, 6.06 5.49 4.53, 6.45 

2 𝑊�̂� = 𝑐0̂ + 𝒄�̂�𝑁𝑀𝐸𝑆 + 𝑐2̂𝑇𝐸  

  

The standard model Average relative causal 

effect 

2.00 1.94 0.83, 3.04 2.28 1.22, 3.34 

3a 𝑊�̂� = 𝑑0̂ + 𝒅�̂�  
𝑁𝑀𝐸𝑆

𝑇𝐸
  

 

  

The nutrient density model Obscure1 0.402 0.142 0.11, 0.402 0.472 0.16, 0.752 

3b 𝑊�̂� = 𝑑0̂ + 𝒅�̂�  
𝑁𝑀𝐸𝑆

𝑇𝐸
+  𝑑2̂𝑇𝐸 The multivariable nutrient 

density model 

Obscure1  0.402 0.352 0.14, 0.562 0.392 0.18, 0.582 

4 𝑊�̂� =  𝑒0̂ + 𝒆�̂�𝑁𝑀𝐸𝑆′ 

  

The residual model Average relative causal 

effect 

2.00 1.94 0.83, 3.04 2.28 1.22, 3.34 

5 𝑊�̂� = 𝑓0̂ + 𝒇�̂�𝑁𝑀𝐸𝑆 + 𝑓2̂𝐶𝑅𝐵 +

𝑓3̂𝐹𝐵𝑅 + 𝑓4̂𝑆𝐹 + 𝑓5̂𝑈𝐹 + 𝑓6̂𝑃𝑅𝑂 +

 𝑓7̂𝐴𝐿𝐶  

The all-components model Total causal effect (𝑓1)  5.00 5.00 3.95, 6.05 5.00 3.95, 6.05 

  Average relative causal 
effect (𝑔1 = 𝑓1 − [∑ 𝑤𝑖𝑓𝑖

𝑛
2 ]) 

2.00 2.00 0.87, 3.13 2.00 0.88, 3.11 

1The nutrient density model evaluates an obscure estimand, but it is conceptually closest to the average relative 

causal effect rescaled as a proportion of total energy intake. 2Units are Kg/1% 
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FIGURES 

Figure 1.  

Directed acyclic graph illustrating the compositional nature of nutritional 

data. 

 

Total energy intake (the 'whole', purple) is fully determined by energy 

intake from seven constituent macronutrients (the 'parts', blue and red). 

The nutrient exposure (non-milk extrinsic sugars, blue) and six competing 

energy sources (red) all cause the outcome (body weight, grey) and are 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250156doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250156
http://creativecommons.org/licenses/by/4.0/


 

 

30 

themselves caused by all unobserved determinants of dietary intake and 

composition (grey). 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.20.21250156doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250156
http://creativecommons.org/licenses/by/4.0/


 

 

31 

Figure 2.  

Directed acyclic graphs illustrating how confounding by common 

determinants of dietary intake and composition can be reduced when 

estimating the total causal effect (blue arc) of a nutritional exposure 

(e.g., non-milk extrinsic sugars, blue) on an outcome (e.g., body weight).  
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Confounding by common determinants of dietary intake and composition 

will exist if one or more of the competing nutritional components (red) 

also cause the outcome (red arcs). This can be reduced by conditioning 

on the remaining energy intake (as show in A) or by conditioning on each 

of the competing nutritional components directly (as shown in B). For key 

see Figure 1. 
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Figure 3.  

Directed acyclic graphs illustrating the consequences of adjusting for total 

energy intake when estimating the causal effect of a nutrient exposure 

(e.g., non-milk extrinsic sugars, blue) on an outcome (e.g., body weight, 

grey).  

 

Total energy is completely determined by the exposure nutrient (non-milk 

extrinsic sugars, blue) and all competing energy sources (red). Adjusting 

for total energy intake (purple) opens conditional dependencies between 

the exposure and all competing energy sources (purple dashed arcs), so 

that total causal effect (blue arc) is now in competition with the (average) 

effect of all competing energy sources (red arcs).  The average relative 

causal effect thus represents the difference between the total causal 

effect of the exposure and the weighted average effect of all other energy 

sources. For key, see Figure 1. 
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SUPPLEMENTARY MATERIALS 

Supplementary Table 1. Target mean and standard deviation values of 

the variables in the simulated data. 

Variable (unit) Mean (SD) 

Weight (kg) 80 (25) 

  

Sugars (kcal) 250 (125) 

Carbohydrates (kcal) 500 (250) 

Fiber (kcal) 100 (50) 

Saturated fat (kcal) 275 (125) 

Unsaturated fat (kcal) 400 (200) 

Protein (kcal) 300 (150) 

Alcohol (kcal) 175 (50) 

  

Total energy intake (kcal) 2000 (400) 

Remaining energy intake (kcal) 1750 (400) 
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Supplementary Figure 1. 

Path diagram of the simulated data structure and path coefficients. 

Energy from sugars was assigned a standardized path coefficient of 0.25, 

carbohydrates 0.33, fiber -0.02 (because the calorific energy of insoluble 

fiber is not obtainable), saturated fat 0.175, unsaturated fat 0.24, protein 

0.15, and alcohol 0.09.  
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