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Abstract

The SARS-CoV-2 virus has spread around the world with over 90
million infections to date, and currently many countries are fighting
the second wave of infections. With neither sufficient vaccination capa-
city nor effective medication, non-pharmaceutical interventions (NPIs)
remain the measure of choice. However, NPIs place a great burden
on society, the mental health of individuals, and economics. Therefore
the cost/benefit ratio must be carefully balanced and a target-oriented
small-scale implementation of these NPIs could help achieve this bal-
ance. To this end, we introduce a modified SEIR-class compartment
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model and parametrize it locally for all 412 districts of Germany. The
NPIs are modeled at district level by time varying contact rates. This
high spatial resolution makes it possible to apply geostatistical meth-
ods to analyse the spatial patterns of the pandemic in Germany and
to compare the results of different spatial resolutions. We find that
the modified SEIR model can successfully be fitted to the COVID-19
cases in German districts, states, and also nationwide. We propose the
correlation length as a further measure, besides the weekly incidence
rates, to describe the current situation of the epidemic.

1 Introduction

The SARS-CoV-2 virus was first detected in China in late 2019, and then
rapidly spread around the world. By March 2020, COVID-19, the disease
caused by SARS-CoV-2, was officially declared a pandemic by the World
Health Organization (Cucinotta et al., 2020). To date, the pandemic has
resulted in devastating consequences to life, health, and national economies.
The novelty of the SARS-CoV-2 virus, coupled with the comparative lack
of clinical research on coronaviruses in general, has left Non-Pharmaceutical
Interventions (NPIs), such as masks, lockdowns, and social distancing meas-
ures, as the main weapons in the fight against COVID-19. Indeed, NPIs have
so far played an important role in modulating the dynamics of the pandemic
(Ferguson et al., 2020).

In Europe and other regions, NPIs during the first wave of COVID-19
were typically implemented at the national level or at the state level in some
federations. In Germany for example, the first COVID-19 case was reported
on 2020-01-27 and the first NPIs were imposed on 2020-17-03, with a lock-
down of most public places, including school closures. This was followed two
weeks later by a ban on meeting with too many people outside of one’s own
household, and the number of people simultaneously allowed in supermarkets
was restricted. These measures were largely effective (Khailaie et al., 2020),
and the first COVID-19 wave peaked in Germany at the beginning of April
2020. Relaxations of the nationwide NPIs began by the third week of April,
and by May 2020, the first wave in Germany was effectively over. While
this type of broad-scale NPI deployment strategy was successful, it was also
extremely costly and brought with it many unintended consequences. For
example, schools and universities across Germany were completely closed
during the lockdown (Nicola et al., 2020). Additionally, the price and calen-
dar adjusted GDP shrank by 9.7 % in the second quarter of 2020 relative to
the same period in 2019 (Statistisches Bundesamt [Destatis], 2020).
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Europe is currently engulfed in a second wave of COVID-19, and despite
many advances since the first wave crested, definitive solutions, such as suffi-
cient vaccination capacity, remain elusive. At the same time, the devastating
economic, social, and political consequences of nationwide lockdowns have
become increasingly apparent. Uncoordinated smaller scale measures failed
to keep the virus in check in the fall of 2020. The result has been the reimple-
mentation of nationwide lockdowns. On the one hand, this failure could be
interpreted as evidence against the efficacy of local measures. On the other
hand, it provides an opportunity to develop more comprehensive strategies
for applying NPIs at different scales (e.g., local, regional, national), and for
identifying the conditions which require ramping control efforts up to larger
scales.

It is therefore imperative that we learn as much as possible about the
scale-specific effects of strong NPIs from the first COVID-19 wave. A key
limitation is that most analyses so far have focused on the national level
(e.g. Khailaie et al., 2020; Barbarossa et al., 2020), and thus have not been
able to resolve local trends. An example for such a local or regional trend is
the city of Jena which was the first district to implement mandatory mask-
wearing. This measure seems to have effectively and very early stopped the
disease (Mitze et al., 2020). Another example is the largest superspreader
event in Germany to date in a meat processing plant, which mainly affected
only two districts (Guenther et al., 2020). Here, we leverage data from the
Robert Koch Institute (RKI - Homepage, 2020), reported for each of the 412
administrative districts (i.e., counties) in Germany, to quantify local effects
of NPIs from the first COVID-19 wave and the time immediately thereafter.
Specifically, we fit modified SEIR-class compartment models to the RKI data
at the district level, and quantify changes in the estimated contact rate for
each district across time periods defined by the start and end dates of the
various NPIs that were implemented. This more granular modeling of the
data also facilitates analysis of the dynamics of spatial patterns of infection
clusters, which can yield additional insights into how COVID-19 in Germany
responded to NPIs. Finally, our framework also permits a direct, multiscale
comparison to highlight how the inferences about NPI effectiveness that can
be gleaned depend on the scale of analysis.

2 Methods

In Germany, the Robert Koch Institute (RKI - Homepage, 2020) is respons-
ible for gathering and publishing data on COVID-19. Germany is divided
into 401 districts, of which one is Lake Constance and has no residents. The
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RKI further divides the most populous district of Berlin into its 12 bor-
oughs. For simplicity, these 412 areas for which the RKI publishes data
will be called districts from now on. The German reporting obligation of
all positive COVID-19 tests to the RKI and the fact that these data are
published on the district level makes it possible to model the epidemic at
this comparatively high spatial resolution. The population size of the dis-
tricts is taken from the Federal Statistical Office of Germany (Statistisches
Bundesamt [Destatis], 2020).

The COVID-19 epidemic in Germany is modeled using a compartmental
epidemiological model (Kermack et al., 1927) on the district level. Within
each district, the population is divided into Susceptible, Exposed, Infectious,
Recovered, and Dead compartments, with the total population being the
sum of the individuals in the compartments minus the COVID-19 related
deaths N = S + E + I + R −D. To keep the number of parameters as low
as possible, the exposed individuals and the asymptomatic cases are handled
together in one compartment. The modified SEIRD model is formulated as

Ṡ = −βj
N
IS (1)

Ė =
βj
N
IS − (α + κ)E (2)

İ = αE − (γ + µ)I (3)

Ṙ = κE + γI (4)

Ḋ = µI . (5)

It is assumed that the asymptomatic cases can recover, but not die due to
COVID-19, thus equation (5) is only coupled to equation (3). A graphical
visualization of the system of equations (1) - (5) is shown in Figure 1.

The NPIs are modeled by a piecewise constant contact rate β(t), which is
allowed to change at the dates of the NPI implementations. Without loss of
generality, this assumption is reformulated to constant contact rates βj, with
j = 1, 2, . . . ,M + 1 and M being the total number of NPIs. βj is exchanged
by βj+1 at the date of the j-th NPI.

Because the latent and asymptomatic cases are lumped together into one
compartment, parts of the model structure and some of its parameters cannot
easily be mapped to quantities which can actually be measured, like the mean
time it takes for the asymptomatic cases to recover. This decision was made
in order to keep the number of parameters as low as possible, but at the same
time, to have a model, that is flexible enough to reproduce the course of the
COVID-19 epidemic across different scales and all districts in Germany.

4

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.21.21250215doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.21.21250215
http://creativecommons.org/licenses/by-nd/4.0/


Susceptible Exposed Infectious

Recovered Dead

Figure 1: A visual representation of Equations (1) - (5), with the different
compartments shown as boxes and the transfer rates as arrows. The data
gathered by the RKI are shown as dotted arrows, instead of dashed ones. The
color coding of the different compartments is kept consistently throughout
this manuscript.

The assumptions made for SIR-type models break down for small popula-
tions. Because the number of cases per day is often already low on the district
level without separating the cases into different age groups, we neglect the
age distribution of the population to avoid further reducing the number of
individuals in the respective compartments.

Using the next generation matrix approach (Diekmann et al., 2010), the
reproduction number for the SEIRD-model can be calculated yielding

Rj =
αβj

(α + κ)(γ + µ)
. (6)

The system of non-linear ordinary equations (1) - (5) is numerically solved
using an explicit Runge-Kutta method of order 5(4), derived by Dormand
et al., 1980 and implemented by SciPy 1.0 Contributors et al., 2020.

TheM+5 unknown parameters θ = (α, β1, β2, . . . βj, γ, κ, µ)T in equations
(1) - (5) are estimated using Bayesian inference. For the evidence, the number
of laboratory-confirmed cases per day Iobs and the number of deaths related
to COVID-19 per day Dobs, gathered by the RKI, are used. These data are
grouped together as Xobs = (Iobs, Dobs)

T . Translating Xobs to the SEIRD-
model (1) - (5), the rate of positively tested cases per day is expressed as
Iobs =̂ αE and the rate of COVID-19 related deaths as Dobs =̂ µI, with
X = (αE, µI)T . As the objective function, the negative root-mean-square
error L = −E((X −Xobs)

2)1/2 is used.
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The parameter inference is set up for all of the 412 districts and the
sampling is repeated 200000 times for each of them. The prior distributions
of the parameters are uniform P (θ) ∼ U and the sampling is done using the
Metropolis-Hastings MCMC algorithm (Metropolis et al., 1953; Hastings,
1970). The first 10% of the simulations are used for classical Monte Carlo
sampling for the burn-in period. From this, the best parameter set is used as
the initial parameter set for the Metropolis sampler. 30 MCMC chains are
used for convergence checks. SPOTPY (Houska et al., 2015) is used for the
implementation of the parameter inference.

The RKI gathers and updates its data on the COVID-19 epidemic once
a day. These data are downloaded and preprocessed in order to use it for
the evidence in the Bayesian framework. Next, the parameter inference is
executed for all districts in parallel. Finally, the analyses are done and the
plots are created. All these steps are part of a fully automatised workflow
on the HPC Cluster EVE (Schnicke et al., 2020) at the UFZ Leipzig.

For a comparison with the much more common approach of modeling an
epidemic on a national level, the results from all fitted district level simu-
lations are aggregated, first to the level of states within Germany, and sub-
sequently to the national level. This yields three different spatial resolutions
that can then be compared: 1) district, 2) state, and 3) national. Addition-
ally, the same SEIRD-model (1) - (5), which was applied to the districts, is
also parametrized for the national case and death rates for resolution 3) and
for the 16 individual German states for resolution 2).

We performed sensitivity analyses to better understand the model beha-
vior using the extended Fourier amplitude sensitivity test (FAST) algorithm
(Saltelli et al., 1999). This method is a variance-based global sensitivity
analysis taking parameter interactions into account and is implemented by
SPOTPY (Houska et al., 2015).

The relatively high spatial resolution of German districts makes it possible
to use geostatistical methods to identify spatial correlation structures. The
(semi-)variogram is a function describing the type, range, and strength of
these spatial correlations. If only few and spatially separated superspreader
events take place in Germany, we expect to see a high correlation range but a
low correlation strength, because all the districts with low infection numbers
are highly correlated over a large area. But if a superspreader event causes a
spreading of infections to neighboring districts and a map of the case numbers
on a district level would be plotted, this map would look very patchy, with
clusters of high case numbers next to clusters of low case numbers. This
would be reflected in a variogram with shorter correlation lengths and a
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higher correlation strength. The semi-variogram is defined as

γ(rk) =
1

2N(rk)

N(rk)∑
i=1

(z(xi)− z(x′i))
2
, (7)

with z being the quantity of interest (in this case, the number of individu-
als), with rk ≤ ‖xi − x′i‖ < rk+1 being the bins or the distances in which
data points are grouped, and N(rk) being the number of values in the re-
spective bin (Matheron, 1963; Rubin, 2003). The variograms are calculated
and estimated with GSTools (Schüler et al., 2020). For the calculation of
the variograms, first the reported cases are accumulated over the periods of
the NPIs, corresponding to the contact rates βj. Then, for each period an
empirical variogram is calculated and a variogram model is fitted to it. For
all empirical variograms, the best fit was achieved with exponential models

γ e(rk) = σ2(1− exp(−rk/λ)) , (8)

with σ2 being the correlation strength or simply the variance and λ being
the correlation range or length.

3 Results

Visualizing the cumulative reported cases exemplarily for the period of the
second NPI on 2020-04-02 to the third NPI on 2020-04-20 on a national, a
state, and a district level in Figure 2 shows that reported cases are distributed
very inhomogeneously. On the state level one can see that there is a gradient
from south to north, but that most of the cases are only reported in relatively
small areas can only be seen on the district level. These three scales open
up the opportunity of comparing the epidemic over very differently sized
populations. The districts have a typical population size in the order of 105,
the states of 107, and the nation of 108.

The aggregated and nationally calibrated approaches are compared to the
German-wide positively tested cases over time (Fig. 3a). First of all, it can
be seen that the calibrated national SEIRD-model (1) - (5) with the variable
contact rates can be used to reproduce the epidemic in Germany. Aggregating
the simulation results from the fitted district models also reproduces the
case numbers on a national level, but with some interesting deviations from
the fitted national model. The very fast increase of reported cases until
mid of March is matched well by both approaches. The subsequent peak
is underestimated by the aggregated models. At the beginning of April,
they show a second peak, which does not appear in the national model. For
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Figure 2: The number of laboratory confirmed COVID-19 cases per 100000
accumulated from the second NPI on 2020-04-02 until the third NPI on
2020-04-20 on three different spatial resolutions according to the hierarchical
administrative divisions of Germany.

lower infection rates, the accumulated models perform well, although they
tend to show minor peaks at the NPI change points. From the final NPI
on, the spreading events become more scattered with a higher variance and
the aggregated models underestimate the case numbers. There is a problem
with the initial conditions, because at the early stage of the epidemic, many
districts did not have any reported cases or had larger periods with zero
infections. Therefore, the cases have to be interpolated for non-trivial initial
conditions. This causes the aggregated cases to be larger at the start of the
simulation.

Similarly and very easily within this modeling framework, the district
level data can be aggregated to the next hierarchical level, namely the states.
As an example, the state of Bavaria, which had the most cases of all German
states during the first wave, is taken. The result is similar to the compar-
ison of the national model. The aggregated reported cases show two peaks,
whereas the state model only shows one late peak. The peaks at the dates
of the NPIs are also present and the aggregated models underestimate the
slow and scattered increase from August on.

Now that we have seen that the aggregated fitted simulations can repro-
duce the reported case numbers on higher hierarchical levels, we can analyse
individual districts and see what is being averaged out, when looking at the
case numbers on a higher hierarchical level. At the same time, the capab-
ilities and limits of the modified SEIRD model (1) - (5) applied to districts
are shown. The results of the parametrized simulations for three districts
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(a) (b)

Figure 3: Comparisons of parametrized model runs on a higher hierarchical
level with the aggregated case numbers from the fitted district level models.
The fitted national model and the summed positive cases resulting from the
412 district level models are compared to the nationwide reported cases in
Figure (a) and the fitted state model of Bavaria and the summed positive
cases resulting from its 96 district level models are compared to the reported
cases in Bavaria in Figure (b).

with qualitatively different courses of the epidemic are discussed here. The
results of the model runs fitted to the Stadtkreis (SK, urban district) Jena,
Landkreis (LK, rural district) Gütersloh, and SK Duisburg, respectively (Fig.
4a - 4c) are presented now.

Jena (Fig. 4a) was the first district to introduce mandatory mask-wearing
and at the same time, this district was very successful in quickly reducing
the confirmed cases to almost zero, with only a few days over several month
when single new cases were confirmed. This reduction might be a direct
consequence of the mandatory face masks (Mitze et al., 2020). The drop in
cases can also be seen from the fitted model results, where the peak of the
newly reported cases was around the time the first NPI was implemented.
After this peak, the rate quickly decreased to around zero per day at the
time of the third NPI. The gradual increase of uncertainty in the contact
rates from β2 to β6 is a result of the very low case numbers (Fig. 5).

Compared to Jena, Gütersloh (Fig. 4b) had a broader peak of infections
at the beginning of the epidemic, but at the time of the third NPI, the rate
became very low here too. This changed in mid June when a major outbreak
occurred at a meat processing plant, with over 1000 infected employees (RKI
- Homepage, 2020; Guenther et al., 2020). This outbreak was spread out
over LK Gütersloh and LK Warendorf, where many of the employees lived.
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(a) (b)

(c)

Figure 4: The time evolution of the epidemic in three different districts. The
transfer rates into the compartment Exposed (

βj
N
IS) is shown in purple, into

Infectious (αE) in orange, and into Recovered (κE+γI) in green. The shaded
area shows the 95% credible interval of the rates. The reported positive cases
are shown as a scatter plot in orange, corresponding to Iobs =̂ αE. The
vertical grey lines indicate the dates of the NPIs.
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Figure 5: The posterior distributions of the parameters for SK Jena. For
better visualization, the parameters κ and µ are shown again on a separate
y-scale. A classical box plot is show inside the violins, with the white dot
indicating the optimal parameter.

This outbreak lasted about two weeks, but the model spreads and broadens
the peak between the NPI change points before and after the event. This
is an issue of the insufficient temporal resolution of the contact rates βj. A
drawback of the current parameter estimation is revealed by the model results
for Gütersloh. The estimation of all contact rates βj is done simultaneously
and not for each NPI period successively. This problem arises before the fifth
NPI, where the number of exposed and infectious individuals increases only
to decrease after the NPI in order to match the data better.

Duisburg (Fig. 4c) has had a mean infection rate of Iobs = 14 d−1± 8 d−1

with a standard deviation of 58% without a significant trend. Linearly fit-

ting the data results in a slope of only dIobs
dt

= 0.016 d−2. Although SIR-type
models tend towards either an exponential increase or decrease of the rates,
the modified SEIRD model (1) - (5) reproduces the linear trend in Duisburg
satisfactorily. The high variance of the reported cases affects the 95% cred-
ible interval, where the spread is much higher relatively to the two other
analysed districts (Fig. 4a and 4b).

A different view of the course of the epidemic can be gained by looking at
the variograms of the infection rates. The variogram and its fit for a single
NPI period from 2020-03-17 until 2020-03-23 of the cumulative case rates
are shown in Figure 6a. The variograms for all periods can be found in the
appendix (Fig. 9). The correlation lengths, derived from the variograms,
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increase from about λ1 = 40 km and peak at the crest of the first wave at
twice the length λ2 = 81 km, when the first NPIs where implemented (Fig.
6b). From then on, the correlation lengths drop until the first NPIs are
relaxed on 2020-04-20 with λ4 = 26 km, where the correlation lengths stay
nearly constant until a minor peak at λ6 = 36 km is reached. Finally, a global
minimum of λ7 = 5.8 km is reached with the last relaxation of the NPIs. For
comparison, the district centroids have a mean distance to their neighboring
district centroids of about 32 km.

(a) (b)

Figure 6: The empirical and the exponential variograms (Eq. (8)) of the
cumulative rates of the reported cases for the time period before the first
NPI are shown in Figure (a). The time evolution of the correlation lengths
λi of the covariance models for the cumulative cases is shown in Figure (b).
The mean distance of the neighboring district centroids is indicated by the
dashed grey line.

4 Discussion

In this work, we present a modified SEIRD-type epidemiological model with
variable contact rates tailored to the COVID-19 pandemic. This model is
fit to the data from each of the 412 German districts, all 16 states, and the
nation. The parametrization is done using RKI data of the daily positively
tested cases and the COVID-19 related deaths. The most important tool
to modulate the epidemic to date, the non-pharmaceutical interventions, are
implemented using piecewise constant contact rates which only change at the
dates of NPI implementations. This model is flexible enough to satisfactorily
reproduce the time evolution of the epidemic on a district level over many
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months, although the development of the epidemic is qualitatively very dif-
ferent across the different districts. Some districts had a very pronounced
first peak followed by a long period in which the disease was practically erad-
icated. Others had a more or less constant rate of positively tested cases over
several months. Furthermore, the same model can reproduce the epidemic
on a state and on a national level. However, only on the district level is the
spatial resolution high enough to analyse spatial patterns, for which we use
the geostatistical method of variogram estimation. This method does not
require any additional data, which makes variogram analysis an ideal tool
during the onset of new epidemics, when only limited data are available.

Monitoring and modeling the infections on this small scale level is a first
step towards local, precise, and target-oriented NPIs. Doing so could in-
crease the cost/benefit ratio and also the acceptance of NPIs. The correlation
lengths of the estimated variograms might help in evaluating if local NPIs are
sufficient or if state or even nationwide measurements should be taken. An
example scenario where the case numbers or weekly incidence rates alone are
not enough to judge the effectiveness of local-scale NPIs is the following. If
the quarantining in the aftermath of a superspreader event is applied too late
or not rigorously enough, it could reduce the total amount of newly reported
cases, but commuters might have already spread the disease to neighboring
districts. In these surrounding districts, the case numbers would only slowly
increase. Thus, by only taking the total case numbers into account, one
might come to the conclusion, that the superspreader event was successfully
quarantined. Whereas the correlation length would increase early with the
slow spreading to the neighboring districts, even though the total amount
of reported cases drops after the initial quarantining. This information can
also be extracted from maps, but they contain the information in complex
ways and it is always easier to communicate information in single numbers
(e.g. weekly incidence rates, instead of the time evolution of the reported
cases, the mean instead of the complete distribution, the h-index instead of
the quality and topics of a researcher).

The high spatial resolution of the district level opens up the possibility to
aggregate the results to a specific level, e.g. to the states or to the national
level, which can also yield unique insights into the epidemic. The aggregated
district models show a second peak during the first wave on 2020-04-01 (Fig.
3a). This might actually hint at the large number of districts, where the
peak infection was reached with a delay of about two weeks compared to the
districts, in which the epidemic started earlier. On a national level this delay
is completely averaged out and it cannot be seen in the data on a German-
wide level. Later on, the aggregated district models tend to underestimate
the national-level case numbers. A reason for this could be that the dynamics
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of the epidemic are often driven by local superspreader events, which could
be isolated and quarantined effectively. These events look like outliers on
a district level, but increase the averaged cases on a national level, making
them easier to match on the higher level. From August on, the infections
seem to become more scattered with a much higher variability than before.
This is also roughly the time, when more local NPIs were implemented and
a central modeling approach with fixed NPIs for all districts might become
too rigid for this kind of scenario.

The correlation lengths λi obtained from the variogram estimation sup-
port the idea that districts are the appropriate level of granularity for mon-
itoring and modeling the epidemic. The fact that exponential variograms
fit the data best further supports this, as it is a relatively rough correla-
tion type, compared to e.g. Gaussian variograms, indicating that although
pronounced spatial correlations exist, immediately neighboring districts can
still have very different case numbers. If λi is less than the average neighbor-
ing district distance, it indicates that NPIs should only be implemented on a
local district level, according to e.g. the weekly incidence rates of the district,
published by the RKI. However, λi greater than the inter-district distance
and less than the average distance between neighboring states suggests that
NPIs should be applied on a state level or on an intermediate level, e.g. in Re-
gierungsbezirken (provinces) in Germany. If the clusters grow beyond state
size, nationwide NPIs are likely to be appropriate again. This hierarchical
control approach works in both directions, not only for applying new NPIs
at targeted spatial extents, but also for lifting existing ones over different
regions, as the epidemic subsides. This modeling framework also makes it
very easy to make projections on different hierarchical levels, e.g. what effect
would NPIs have on the weekly incidence rates, if they are applied locally at
a district level or if they are applied on a state level. Combining this with an
economic model could help finding a balance between the effectiveness and
costs of NPIs.

The model results will likely improve, if the NPI periods are parametrized
individually and successively. This would prevent the model from increasing
the number of cases prior to an NPI and the actual increase, as can be seen
in the results for LK Gütersloh at 2020-06-09 (Fig. 4b) or in the peaks at the
NPI dates in the aggregated models (Fig. 3a, 3b). However, a multitude of
approaches for such a successive parametrization exist. The approach presen-
ted in this study could be a precursor from which all constant parameters
(α, γ, κ, µ) are identified. Subsequently, the contact rates βj could be para-
metrized successively by regarding one NPI period at a time and with priors
for βj taken from the precursor run. Alternatively, the constant parameters
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could also be estimated for each NPI period separately. The differences in
these supposedly constant parameters could be used as an indicator, to see
if the compartments should be further divided into different age groups, as
these parameters do vary between different age groups. But exploring these
possibilities is beyond the scope of this work.

A further and likely more important improvement might be to choose
an appropriate algorithm out of the wealth of published outlier detection
algorithms (e.g. Hodge et al., 2004) and to apply it to the RKI time series
to automatically identify superspreader events. Such an event could then be
implemented into the existing modeling framework by means of an additional
transfer term, which acts like a Dirac pulse type source term for the Infectious
compartment, but at the same times obeys the conservation laws. This way,
local NPIs can be detected automatically and applied without having to
prescribe NPIs manually to all districts individually.

An alternative approach could be to derive information about super-
spreader events from identifying change points in the contact rates as done
by Dehning et al., 2020.
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A Model Assessment

With the 412 districts simulated with fitted models, we can create histograms
of the model parameters. Looking at the distributions of the model paramet-
ers across the districts, it is to be expected that mostly the contact rates βj
should vary across districts (Fig. 7a and 7b). Except for some variations in
the age structures of the populations, the other model parameters should not
vary strongly. But this is only the case for the recovery rate γ, which has a
pronounced peak at about γ ≈ 3.2 d−1. The other three parameters are more
or less uniformly distributed, but with a negative trend for α. The extended
FAST sensitivity analysis (Fig. 8) reveals that the three parameters α, κ,
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and µ are not uniquely identifiable, as they are not sensitive towards the
calibrated data. This explains the uniform distribution of these parameters
across the districts, as the parameter calibration has no way of pinpointing
the parameters. From the low sensitivity one cannot deduce that the para-
meters are not important for the model, as the sensitivity analysis only tests
the relative influence towards minimizing the objective function.

(a) Contact rates

(b) Other parameters

Figure 7: Histograms of the parameters of all 412 districts. The rug plot
indicates each single parameter value with a small vertical tick.
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Figure 8: The relative sensitivities of each parameter exemplarily for the
Stadtkreis Duisburg. The larger the slice of a parameter, the more it in-
fluences the simulation results in regard to the observations, which are the
positively tested case rate and the COVID-19 related death rate.

Figure 9: The empirical and the modelled exponential variograms of the
cumulative rates of reported cases for every NPI period. The variance is
proportional to the cases and the flattening of the exponential variograms
indicates the correlation length.
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