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Abstract 

Deep Vein Thrombosis (DVT) is a blood clot most found in the leg, which can lead to fatal pulmonary 

embolism (PE).  Compression ultrasound of the legs is the diagnostic gold standard, leading to a 

definitive diagnosis. However, many patients with possible symptoms are not found to have a DVT, 

resulting in long referral waiting times for patients and a large clinical burden for specialists. Thus, 

diagnosis at the point of care by non-specialists is desired.  

We collect images in a pre-clinical study and investigate a deep learning approach for the automatic 

interpretation of compression ultrasound images. Our method provides guidance for free-hand 

ultrasound and aids non-specialists in detecting DVT. 

We train a deep learning algorithm on ultrasound videos from 246 healthy volunteers and evaluate on 

a sample size of 51 prospectively enrolled patients from an NHS DVT diagnostic clinic. 32 DVT-

positive patients and 19 DVT-negative patients were included. Algorithmic DVT diagnosis results in a 

sensitivity of 93.8% and a specificity of 84.2%, a positive predictive value of 90.9%, and a negative 

predictive value of 88.9% compared to the clinical gold standard.  

To assess the potential benefits of this technology in healthcare we evaluate the entire clinical DVT 

decision algorithm and provide cost analysis when integrating our approach into a diagnostic pathway 

for DVT.  Our approach is estimated to be cost effective at up to $150 per software examination, 

assuming a willingness to pay $26 000/QALY. 
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Introduction 

Venous thromboembolism (VTE) is associated with a major global burden of disease. Worldwide, the 

incidence of VTE is 1 – 3 per 1000 individuals, rising to 2 – 7 per 1000 in individuals aged over 70 

years, and 3 – 12 per 1000 in those over 80 years1. VTE, DVT and pulmonary embolus are the 

leading cause of hospital related Disability-Adjusted Life Years lost2. 

Using these estimates, and using the most conservative incidence figure, globally at least 7.7 million 

people will require investigation for VTE every year. An aging population across many countries will 

lead to a greater health burden, particularly in middle- and low-income countries where early death 

from is decreasing. Mortality from VTE is common, a European study estimated 534 000 deaths per 

year3 and a similar study in the US reported 300 000 deaths per year4. Deep vein thrombosis (DVT) 

has a high level of morbidity and 30 - 50% of the surviving patients develop long-term symptoms in 

their affected leg (post-thrombotic syndrome)5.  

In high income countries, the routine practice to diagnose patients after a positive D-dimer blood test 

and an indicative evaluation using the Wells score6 is to confirm or rule out a suspected DVT with a 

two- or three-point ultrasound scan. Ultrasound scans are most commonly performed in a radiology 

department of a hospital by a highly trained radiographer/radiologist. 

Currently, no reliable test is available that can be used in a general healthcare setting (GP practice, 

community hospital, on a hospital ward) or be used remotely at the point of care (nursing home, 

patient’s home). Between 85 – 90% of patients presenting to their GP in high income countries with a 

suspected DVT will be investigated only to find no evidence of a thrombus5. Many patients will receive 

unnecessary anticoagulants with many potential side-effects through an often painful subcutaneous 

injection whilst waiting more than the recommended four hours for their scan. Safely negating this 

wait would improve patient satisfaction, reduce the burden of high-risk treatment (anticoagulants 

confer haemorrhagic complication risks) and reducing healthcare costs. Rapid diagnosis is known to 

improve compliance to regulatory guidelines that state DVT should be diagnosed within 24 hours6-8. 

Clinical evidence that DVT examinations can be performed by nurses has been shown by9-11. 

However, confidence in acquiring ultrasound images is generally low because of the required image 

interpretation skills and liability concerns, which inhibits wide-scale adoption of such approaches.  
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In this study we evaluate if Machine Learning (ML) technology can provide anatomical image 

acquisition guidance and point of care diagnostic support. Such ML technology is currently often 

summarised as Artificial Intelligence (AI) support systems.  

Our hypothesis is that ML technology can complement the clinical pathway and provide front line of 

care personnel with the necessary confidence and skills to perform ultrasound DVT screening 

autonomously. Early modelling has been undertaken to assess the potential cost-effectiveness of 

such an approach. 

 

Materials and Methods 

Study design 

This study is a primary analysis of compression ultrasound screen recordings performed on 

prospectively enrolled patients at the Oxford Haemophilia and Thrombosis Centre adult DVT clinic. 

The University of Oxford, UK, approved the study (Ethics: 18/SC/0220, IRAS 234007). All participants 

provided written informed consent.  Eligible participants were consecutively recruited between 

January 2019 and December 2019. Patients were approached about participation in the study after 

their routine ultrasound DVT examination. After study information and consent, they were scanned for 

a second time by an expert radiographer. During the second scan a mobile ultrasound device was 

used (Clarius L7 (2017) or Philips Lumify L7). Built-in functionality was used to record the examination 

as mp4 videos. Patient identifying information has not been recorded in the videos but separately in a 

spreadsheet where it was tagged with a unique identifier (UID) by co-author Ch.D.. Only the UID was 

used during downstream analysis. 

In this work we call the data set from the Oxford Haemophilia and Thrombosis Centre the external 

validation set.  

Since the analysed prototype device is based on a ML computer algorithm, training data and 

preliminary testing data is required. Thus, preliminary data acquisition was performed on healthy 

volunteers (n=246) and nine consenting DVT patients. Acquisition has been performed by two 

radiologists and three trained engineers. We call this algorithm training data training set (Table A1 in 

Appendix A). The volunteers and patients that have been left out from training to monitor the 
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algorithm’s performance during development are included in the internal validation set (Table A2 in 

Appendix A).   

Image quality control has been performed by a medical student according to a specialist-defined 

scheme (Appendix C). 

All compression sequences have been manually annotated by a trained workforce (n=23 trained 

labellers) including medical students and employees of ThinkSono to a) train the algorithm and b) 

evaluate its performance quantitatively.  

Ultrasound Protocol 

Non-enhanced ultrasound imaging was performed by a research physician (at least one year of 

hands-on ultrasound DVT imaging training) using either Clarius (Clarius L7 (2017) and Clarius L7 HD 

(2020)) or Philips Lumify L7 or GE VScan Extend (scanned with linear probe) ultrasound devices. 

Example images for these scanners are shown in Figure 1. Two-point compression ultrasound was 

used for this study. Clinically, a compression is deemed adequate when the vein was compressed 

fully or is incompressible at the same pressure a healthy vein would collapse. The femoral vessels 

were examined from 2 cm distal to the saphenofemoral junction to 2 cm proximal from the inguinal 

band. The superficial femoral vessels were examined in the adductor canal. The examination of the 

popliteal vein starts from the distal 2 cm of the popliteal vein and its trifurcation into the anterior tibial 

vein, posterior tibial vein, and the peroneal vein. The entire examination has been recorded as screen 

capture and cropped to the ultrasound image area without user-interface content. Participants were 

positioned in a supine position, with hip rotated outwards by about 60 – 80° and knee flexed at about 

60°. The knee area was examined either supine with neutral hip and knee flexed at 80 – 90° or sitting 

upright with knee hanging loose over the gurney edge at 90°. 

Statistical Analysis 

Ultrasound has a specificity of 94% and a sensitivity of 97% for DVT detection12,13 when performed by 

specialised radiologists. Two studies reported sensitivity of 84.4 – 90.0% and specificity of 97.0 – 

97.1% when intensely trained nurses and GPs were the ultrasound operators9,10.  

Sample size: The sample size in this manuscript is 167.145 annotated ultrasound imaging frames for 

model training from 255 healthy volunteers, 15.523 annotated frames from 26 participants for internal 
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model validation and 17.855 frames in video recordings from 51 patients with suspected DVT for 

external, prospective model evaluation. This is in line with other studies evaluating algorithmic 

diagnostic decision support, who recently reported external validation sample sizes of, e.g., 5032,33, 

9134, and 19835 subjects during retrospective testing and 8036 to 9737 during prospective testing. 

Statistical approximations for sample size estimation38 suggest that eight patients with the required 

outcome would be sufficient in an external validation set, given an incident rate of 7.1% (Table 4) as 

observed in our thrombosis clinic. We have included 32 patients with confirmed DVT and 19 patients 

from the same clinic who were suspected but did not suffer from DVT. 

The power of this study is above 0.8 at a significance level of 0.05, with a Cohen's d effect size of 0.5, 

when assuming an effect between 0.9 (without software support n9=697, n10=1,107) and 0.95 (with 

software support, this study n=51) with a standard deviation of 0.1. For this setting, 51 patients are 

required as minimum to reach a power of 0.8. The R software package (© The R Project for Statistical 

Computing) has been used for numerical power analysis. 

Algorithms are evaluated at the participant level. To evaluate classifier performance, we calculate 

sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy for 

DVT identification for the internal and external validation sets. 

We also generate the receiver operating characteristic curve of the DVT classification score for the 

internal and external validation sets and calculated the area under the receiver operating 

characteristic curve (AUC). We show confusion matrices at the optimal algorithm threshold. 

Algorithm design 

This study aims to validate the effectiveness of an ML-powered device (AutoDVT) for the diagnosis of 

proximal DVT. AutoDVT is a CE-marked software product (93/42/EEC 40873) that is coupled to a 

handheld CE-marked ultrasound machine. The AutoDVT software has two functions: (1) Directing the 

user to correctly position the ultrasound to complete a thorough scan, (2) Analysing the scan results 

to confirm the presence/absence of a thrombus. 

The software uses a fully automated ML vessel segmentation network with auxiliary branches that 

predict the anatomical location of the ultrasound image relative to the deep veins in the leg and the 

compression status of the vein (open or closed). Veins have been labelled by a radiologist to be either 

open or closed and fully compressed. Two identical networks have been trained: one for the 
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groin/thigh area and the knee area. The subject IDs overlap between training set and internal 

validation set because a sequence can have multiple landmarks but belong to either a healthy patient 

or a patient with confirmed DVT.  See Table A1 in Appendix A for an overview over the algorithm 

training data and Table A2 in Appendix A for the internal validation data. Annotations include manual 

delineations of vein and artery cross sections in the images as well as discrete image-level labels for 

eleven anatomical locations. To facilitate algorithmic evaluation, we have defined anatomically salient 

landmarks (LM0 – LM10) on the common femoral vein, superficial femoral vein, and popliteal vein. 

Example images for these landmarks, acquired with the different ultrasound probes that are used in 

this study, are shown in Figure 1.  
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Vscan 
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Clarius L7 

(2017) 
         

Clarius L7 

HD 

(2020)           

Philips 

Lumify L7 
          

Figure 1: Examples of the chosen anatomically salient landmarks and overview over the investigated anatomy, acquired by different acquisition devices and 

from different subjects. This figure illustrates the diversity in our dataset. See the overview above the table and Table 1 and 2 in Appendix A for a description 

for the location of these landmarks. These example images have been manually cropped and contrast normalised for better readability in the manuscript. 
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To exclude DVT an operator must follow a protocol as instructed by the software. This protocol 

mimics the clinical practice of three-point or two-point examinations14-16, which means doing 

compression ultrasound in two to three regions with the greatest risk of developing thrombosis.  

For three-point compression protocols, these regions include: (1) the common femoral vein at the 

level of inguinal crease (LM0 – LM4), (2) the superficial femoral vein superior in the adductor canal 

(LM5 – LM7), and (3) the popliteal vein and its trifurcation in the popliteal fossa (LM8 – LM10).  

For two-point compression protocols the same regions are examined except (2), i.e., LM0 – LM5 in 

the groin and LM8 – LM10 in the knee. To match the clinical practice in the clinic from where our 

external validation set originates, we investigate the effectiveness of algorithmically evaluated two-

point compression DVT examinations in this study.  

Thus, using the training set, ML models are trained on consolidated groups of landmarks LM0 – LM1, 

LM2 – LM3 – LM4, i.e., two groups, for (1) and one group, LM8 – LM9 – LM10, for (3). This means 

three successful vein compressions, two in the groin area and one in the knee area, are required in 

total to exclude DVT. All identified anatomical locations must show fully compressible veins, otherwise 

the participant is categorised as suspected DVT case. 

Two deep ML networks with identical architecture as shown in Figure 2 were trained on a GPU server 

(Nvidia Tesla K80) using the Adam optimizer with momentum 0.9 to optimise the parameters of the 

network. Binary cross entropy (BCE, Eq. 1 and 2) is used for the segmentation task (one-hot 

encoded) and the vein open/closed task. Cross entropy (CE, Eq. 3) is used for the anatomical 

landmark detection task as an error metric. 

ℒௌ௘௚௠௘௡௧௔௧௜௢௡ (௢௡௘ି௛  ௘௡௖௢ௗ௘ௗ) =  − 
ଵ

ே
 ∑ 𝑦௜log (𝑝(

௣௜௫௘௟௦
௜ୀଵ 𝑦௜)) + (1 − 𝑦௜)log (1 − 𝑝(𝑦௜)), (1) 

ℒ௔௡௔௧௢௠௜௖௔௟ ௟௢௖௔௧௜௢௡ (௢௡௘ି௛  ௘௡௖௢ௗ௘ௗ) =  − 
ଵ

ே
 ∑ 𝑦௜log (𝑝(ଵଵ

௜ୀ଴ 𝑦௜)) + (1 − 𝑦௜)log (1 − 𝑝(𝑦௜)),   (2) 

Where 𝑦 is the real label and 𝑝(𝑦) is the predicted probability for the image belonging to this label. 

ℒ௩௘௜௡ ௢௣௘௡ ௢௥ ௖௟௢௦௘ௗ =  −(y log൫p(y)൯ + (1 − 𝑦)log (1 − 𝑝(𝑦)),     (3) 

The total error metric (loss function) for our network results as  
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ℒ௧௢௧௔௟ =  𝛼ℒ௦௘௚௠௘௡௔௧௜௢௡ + 𝛽ℒ௔௡௔௧௢௠௜௖௔௟ ௟௢௖௔௧௜௢௡  +  𝛾ℒ௩௘௜௡ ௢௣௘௡ ௢௥ ௖௟௢௦௘ௗ   (4) 

where α and β are adjustable hyper-parameters. We use 𝛼 = 100 𝑎𝑛𝑑 𝛽 =  𝛾 = 1.   

The pytorch deep learning framework17 has been used for implementation. 

A series of manually tuned temporal quality control functions ensures robust communication with the 

user regarding vessel location in the image, quality of compressions, imaging parameters and 

placement of the probe, see Figure 2. 
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Figure 2: overview over the AutoDVT prototype core algorithm. A U-Net18 serves as a backbone for joint vessel masking. The prediction of the anatomical 

location of the image is based on our previous work19. Network branches predict the anatomical location and if the vessel is open or closed under pressure. 

Landmark predictions are performed from the learned numeric representation in the bottleneck layer; vessel compression state is predicted from the output 

segmentation mask. The network components are connected and can be trained through backpropagation20 in an end-to-end manner. The input is a stack of 

nine images from an ultrasound video stream that moves by one in a sliding window fashion. A single segmentation mask is produced for the last-most image 

within approximately 25 ms. Two separate models with identical architecture are trained, one for the groin area (LM0 – LM5) and one for the knee area (LM8 

– LM10). Each model holds 31 475 527 parameters. (OC = open/close) 
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The internal validation set (n=26 healthy subjects, held out from training, Appendix A) has been used 

to test the models’ performance during development by comparing segmentations to manual 

delineations of the vessels and manual, categorical image labels with respect to the anatomical 

locations (LM0 – LM10) and the vessel compression status (open or fully closed).  

For categorical labels, the F1-score is used, 

𝐹1 =
௧௥௨௘ ௣௢௦௜௧௜௩௘ ௖௟௔௦௦௜௙௜௖௔௜௧௢௡௦

௧௥௨௘ ௣௢௦௜௧௜௩௘ ௖௟௔௦௦௜௙௖௜௔௧௜௢௡௦ା 
భ

మ
(௙௔௟௦௘ ௣௢௦௜௧௜௩௘ ௖௟௔௦௦௜௙௜௖௔௧௜௢௡௦ା௙௔௟௦  ௡௘௚௔௧௜௩௘ ௖௟௔௦௦௜௙௜௖௔௧௜௢௡௦)

 , (5) 

And for segmentation masks the Sørensen–Dice Coefficient is applied per label (background, artery, 

vein),  

𝐷𝐼𝐶𝐸 =  
ଶ ∙௧௥௨௘ ௣௢௦௜௧௜௩௘ ௣௜௫௘௟௦

ଶ ∙௧௥௨௘ ௣௢௦௜௧௜௩௘ ௣௜௫௘௟௦ା௙௔௟௦௘ ௣௢௦௜௧௜௩௘ ௣௜௫௘௟௦ା௙௔௟  ௡௘௚௔௧௜௩௘ ௣௜௫௘௟௦
.   (6) 

Additionally, the bounding boxes for the individual segmentation masks are generated and the 

intersection over union (IoU = Jaccard index) is computed, which is a common performance metric for 

object detection tasks,  

𝐼𝑜𝑈 =
ிଵ

(ଶିிଵ)
=   

஺௥௘௔ ௢௙ ௢௩௘௥௟௔௣ ௪௜௧௛ ௧௥௨௘ ௕௢௨௡ௗ௜௡௚ ௕௢௫

஺௥௘௔ ௢௙ ௨௡௜௢௡ ௪௜௧௛ ௧௥௨௘ ௕௢௨௡ௗ௜௡௚ ௕௢௫
     (7) 

In an end-user scenario an operator would have three attempts to complete a compression, otherwise 

referral is recommended. A screenshot of the AutoDVT software during use is shown in Figure 3. 
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Figure 3: The AutoDVT software instructs users to locate a given landmark, instructs to perform a 

correct compression and evaluates the result automatically.  

Cost effectiveness  

We simulated the potential cost-effectiveness of a ML-enabled approach at the front line of care, 

where non-specialists may perform the examination independently. A decision tree analytic model 

was designed and implemented in Microsoft Excel (© Microsoft Corporation) to estimate the lifetime 

costs and benefit measured in terms of Quality Adjusted Life Years (QALYs) for different proximal 

deep vein thrombosis (DVT) testing algorithms. The current clinically used diagnostic DVT algorithm is 

shown in Figure 4a and the proposed integration of our method is shown in Figure 4b.  

 

 

(a)        (b) 

Figure 4: (a) current clinical algorithm to diagnose DVT and (b) the proposed modification with our 

approach to support front line of care staff to perform the diagnosis reliably.  

The cost analysis model adheres to guidelines issued by the National Institute of Health and Care 

Excellence (NICE)21. It uses an NHS and personal social services perspective with costs at 2018/19 

prices and with discounting for both costs and QALYs being undertaken at 3.5% per annum.  

The model uses sensitivity (the ability of a test to correctly identify a patient with a true proximal DVT) 

and of specificity (the ability of a test to correctly identify a patient without a true proximal DVT) as 

measured on the external validation set in this study. We also include clinical tests (Wells Score, D-

dimer, and proximal ultrasound) that form part of the diagnostic algorithm.  
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The cost analysis model splits patients into two subgroups at the start of each algorithm, a subgroup 

in which patients have a proximal DVT and a subgroup in which patients do not have a proximal DVT. 

Measured sensitivity and specificity values are used alongside an estimate of the prevalence of 

proximal DVT of 14.7% taken from Kilroy et al.22 to estimate the number of patients (from a cohort of 

user specified size) that receive each clinical test and their ultimate diagnoses (proximal DVT or not). 

Patients with a diagnosed proximal DVT will receive treatment. 

The cost analysis model generates four possible outcomes for patients based on their DVT status and 

the results of each diagnostic algorithm: Treated patients with a true DVT (true positive patients), 

treated patients without a true DVT (false positive patients), untreated patients without a true DVT 

(true negative patients) and untreated patients with a true DVT (false negative patients). 

Each of the four diagnostic accuracy outcomes have estimated associated costs incurred and utility 

accrued for the patients. These numbers are multiplied by the proportion of patients in each outcome 

and are combined with the costs of each test to obtain estimates of the total costs and QALYs for the 

diagnostic algorithm. When costs and QALYs are obtained for a diagnostic algorithm including the ML 

model and one excluding our approach, the estimated incremental cost-effectiveness ratio for 

AutoDVT can be calculated. Details regarding model parameters are provided in Appendix B. 

Role of the funding source 

ThinkSono Ldt funded the development of the method. Data was collected at Oxford Haemophilia & 

Thrombosis Centre independently. ThinkSono Ldt provided ultrasound data acquisition devices to 

Oxford Haemophilia & Thrombosis Centre for this study.  

Data availability 

Beginning 9 months and ending 36 months following article publication in a peer reviewed journal 

algorithm raw data results access in line with the informed consent of the participants, subject to 

approval by the project ethics board and under a formal Data Sharing Agreement. Proposals may be 

submitted up to 36 months following article publication in a peer reviewed journal. Custom computer 

code is available through ThinkSono Ldt with case specific license agreements. 
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Results 

Study participation 

124 patients who presented to the DVT diagnostic clinic with symptoms suggestive of DVT were 

approached for inclusion into this study, thus, for inclusion into the external validation set.  

36 patients have been excluded during the enrolment phase for various reasons as summarised in 

the Consort Diagram in Figure 5. Two patients with confirmed DVT have been excluded due to 

imaging conditions that are not covered by the standard compression ultrasound DVT protocol (non-

echogenic thrombus and superior thrombosis in the iliac vein).  Control participants had no DVT 

based on comprehensive clinical and laboratory testing performed under the supervision of and 

interpreted by a haematologist. This results in a data set comprising of 88 eligible patients. An 

overview of patient characteristics in this clinic’s database is given in Table 4. 

It was specified that all examinations that were not performed according to the standard implemented 

in our study design should be omitted, thus, secondary exclusion criteria must be applied. Hence, 37 

patients (19 DVT positive, 18 DVT negative) have been further excluded during the analysis phase, 

due to, radiologist/haematologist confirmed, incorrect/incomplete compression (11), compression on 

incorrect/missing anatomical location (2), incorrect scanner parameters evaluated by 10-point expert 

image quality scoring (16). After these exclusions, the remaining sequences of a positive DVT patient 

may not include the clip that shows the positive DVT. Thus, further eight sequences belonging to a 

positive DVT case with a missing compression sequence confirming the DVT have been excluded. Of 

the remaining 51 patients 32 patients are DVT positive and 19 DVT negative, confirmed by to the 

current clinical pathway. This results in 100 individual compression sequences on defined anatomical 

vessel locations in these patients.  
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Figure 5: Consort diagram for study enrolment, allocation, and analysis. 

 

Participant Characteristics of the external validation set 

The external validation set was drawn from the general population of 2041 patients with suspected 

DVT from the Haemophilia and Thrombosis Centre at University of Oxford. The characteristics of the 

entire population during the year 2019 is summarised in Table 4. The ethical approval in place did not 

allow for the collection of these characteristics for the individual patients that have been enrolled into 

this study.  

Age [years] 64.2 ± 17.7 

Wells score  1.67 ± 1.12 

D-Dimer [micrograms/litre fibrinogen equivalent 

units] 

1870 ± 3070 (one-sided) 

Male [%] 46.4 

Female [%] 53.5 
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Not stated [%] 0.1 

proximal DVT diagnosis [%] 7.10 

Demographics  

 Asian - Any Other Asian Background 0.49% 

 Asian or Asian British - Indian 0.52% 

 Asian or Asian British - Pakistani 1.40% 

 Black - Any Other Black Background 0.29% 

 Black or Black British - African 0.59% 

 Black or Black British - Caribbean 0.29% 

 Mixed - Any Other Mixed 

Background 

0.20% 

 Mixed - White and Asian 0.10% 

 Mixed - White and Black African 0.10% 

 Mixed - White and Black Caribbean 0.13% 

 Other - Any Other Ethnic Group 0.39% 

 Other - Chinese 0.10% 

 Other - Not Known 0.39% 

 Other - Not Stated 15.31% 

 White - Any Other White Background 3.58% 

 White - British 74.85% 

 White - Irish 0.65% 

 Not recorded 0.62% 

Table 4: general population overview for model training and external validation set.   

Algorithm performance on the internal validation set 

Figure 6 shows qualitative examples for the segmentation output of our method. Table 1 shows 

quantitative results for the anatomical landmark detection task; Table 2 for the vessel compression 

task and Table 3 regarding segmentation performance. Common image evaluation metrics, 

Sørensen–Dice Coefficient (Eq. 6) for segmentation results and F1-score (Eq. 5) for anatomical 
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landmark discrimination and categorical vessel compression analysis, are used for quantitative 

evaluation.  

 Raw image Model segmentation 

output 

Manual expert 

delineation 

LM1 

   

LM6 

   

LM10 

   

Figure 6: Qualitative example images for our model’s segmentation performance. The segmentation 

is robust throughout compressions. The vein area is evaluated for complete compressibility to exclude 

DVT. Device: Clarius L7 (2017). 
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 Background, 

no landmark 

LM0-LM1 

consolidated 

LM2-LM3-

LM4-LM5 

consolidated 

LM6-LM7 

consolidated 

LM8-LM9-

LM10 

consolidated 

groin and 

thigh model 

0.97 0.88 0.90 0.74 .. 

knee model 0.96 .. .. .. 0.88 

Table 1: Quantitative results for the landmark detection task of the used models. Evaluation 

according to Eq. 5 on the internal validation set. 

 

 Vein open Vein closed and fully 

compressed 

groin and thigh model 0.92 0.95 

knee model 0.89 0.89 

Table 2: Quantitative results for the vein compression state task of the used models. Evaluation 

according to Eq. 5 on the internal validation set. 

 

 Sørensen–Dice Coefficient Bounding-box 

intersection over 

union 

 background artery vein   

groin and thigh 

model 

0.99 0.89 0.75 0.70 

knee model 0.99 0.81 0.88 0.85 

metric Eq. 6 Eq. 7 

Table 3: Quantitative results for the vessel segmentation task of the used models. Evaluation 

according to Eq. 6 and Eq. 7 on the internal validation set. 

 

Algorithm performance on the external validation set 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.23.21249964doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.23.21249964
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

The results of the analysis of the enrolled patients is summarised in Table 5. Receiver operator 

curves are shown together with the confusion Matrix in Figure 7 on patient level and Figure 8 on 

sequence/anatomical landmark level. Note that these results are based on retrospective analysis of 

prospectively acquired ultrasound videos. In a fully prospective setting, AutoDVT guides the operator 

to acquire the correct images and to perform correct compressions. This implicitly reflects the data 

curation we performed on the external validation set and the performance is expected to be similar 

when using our method for diagnosis.  

Performance metrics Algorithm decision 

Sensitivity 0.938 

Specificity 
 

0.842 

PPV 0.909 

NPV 0.889 

Accuracy 0.902 

Table 5: Values are expressed between [0,1] intervals. NPV = negative predictive value, PPV = 

positive predictive value. 

 

(a)           (b)  (c) 

Figure 7: Receiver operator characteristics for the final examination algorithm. Confusion matrix (b) at 

optimal threshold (c). Vessel status is extracted automatically through the ML models from 51 enrolled 

patients.  
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(a)         (b)   (c) 

 

Figure 8: Receiver operator characteristics for the correct compression classification per ultrasound 

sequence/anatomical landmark. Confusion matrix (b) at optimal threshold (c). Vessel status is 

extracted automatically through the ML models from the 100 available anatomical landmark 

sequences. 

Cost effectiveness 

With the sensitivity and the specificity from this study a net monetary benefit (NMB) of up to $150 per 

ML-supported examination can be achieved using a willingness to pay of $26 000 per QALY23. Figure 

9 shows how the NMB changes with different prices for such an examination. 
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Figure 9: Costs of the guidance tool vs. net monetary benefit per examination when implementing ML 

guided DVT diagnostics into a clinical algorithm as it is shown in Figure 4b.  

 

Discussion 

This study provides a proof of concept that ML-based analysis can accurately distinguish patients with 

and without DVT while providing guidance for image acquisition according to the clinical standard. 

Evaluation was performed on a sample size of n=51 enrolled patients from the same clinic, 32 DVT-

positive patients and 19 DVT-negative patients. Algorithmic DVT diagnosis results in a sensitivity of 

93.8% and a specificity of 84.2%, a positive predictive value of 90.9%, and a negative predictive value 

of 88.9%. Furthermore, a cost analysis simulation model has been evaluated when integrating the 

proposed algorithm into the clinical practice. Assuming a willingness to pay threshold of $26 

000/QALY23, a net monetary benefit of up to $150 per examination could be attained when ML 

guidance is used by the front line of care for DVT diagnosis.  

Although ML has been studied for a variety of diagnostic approaches24-26, to the best of our 

knowledge this is the first study that has shown potential benefits for the diagnosis of DVT. The 

dominating application area of ML is the automated analysis of static images (CT, MRI, etc.). Free-

hand ultrasound poses additional challenges compared to these approaches.  

First, a user needs to be directed and guided to acquire images, which are suitable to make a 

prediction though a ML model. This requires algorithmic provisions to discriminate useful images from 
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images that do not adhere to a clinic standard. We solved this problem through training a 

discriminator ML model, which can identify predefined anatomical locations along the femoral vein.  

Second, compression ultrasound requires the analysis of continuous image sequences which is 

challenging in a setup that requires real-time feedback. We solve this problem through a sliding 

window, multi-channel input approach, which enforces spatio-temporal consistency for a combined 

vein-segmentation with learned decision boundaries for identifying a vessel as fully closed. 

Furthermore, mobile ultrasound probes are used and connected to a GPU-accelerated laptop to 

provide sufficient computational power.  

Third, image domain shift is a serious limitation of ML applications in Healthcare. Domain shift occurs 

when a model is trained on images that have been acquired on one device while the testing is 

performed on images from other, previously unseen images from different devices. Commonly, a 

noticeable drop in performance is observed in such situations. We mitigate this problem through 

integrating image data from a diverse set of devices, covering almost the entire market for mobile 

ultrasound devices. Still, there is no established method for robust domain adaptation27. Hence, a risk 

of reduced performance remains when applying the presented algorithms to images from a new 

device. This risk must be avoided by deploying these algorithms exclusively with thoroughly tested, 

specific devices.  

ML-supported devices such as described here are often summarised as clinical AI26. A critical 

element of any AI-based support tool is its clinical relevance.  

The major strengths of this study are the development and validation of an algorithm and system that 

has the potential to push DVT screening upstream in clinical pathways and to enable front line of care 

personnel to acquire data at the standard of an expert. We provide a possible integration strategy into 

a diagnostic DVT decision tree and show that the use of AI technology can be cost effective. We 

would expect that rapid point of care diagnostics and wide availability of testing, which is enabled by 

our approach, would lead to timely treatment, decreased stress, and increased patient satisfaction. 

Our study has several limitations. First, we evaluated a prospectively enrolled patient cohort 

retrospectively, on video sequences that have not necessarily been acquired at an optimal standard. 

Therefore, we had to curate the data and automatically extract clips from entire exam video 

recordings that would be most similar to clips as they would be acquired by the discussed software 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.23.21249964doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.23.21249964
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

guidance method. Furthermore, free-hand ultrasound examinations are highly operator-dependent, 

and every operator has a unique style of examination. Our proposed approach aims to standardise 

these styles to provide optimal input for subsequent image analysis parts and to aid clinical audits.  

Second, our patient cohort is small, and we compare across-population with findings from literature. 

This limits the types of statistical techniques that can be employed in this study to evaluate statistical 

significance. We are currently conducting a multi-centre prospective trial which will address these 

issues to give further insights into the practical implications of employing AI support for DVT 

diagnosis.  

In conclusion, our study shows the potential of a ML-powered system using free-hand ultrasound to 

identify DVT in clinical populations with high-throughput requirements and at primary care level. Since 

access to ultrasound imaging is increasing, especially mobile ultrasound devices, which can currently 

be purchased for $3 000-$9 000, a ML-supported examination by less specialised front line care 

workers has the potential to be adopted for proximal DVT screening before confirmatory tests. 
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