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Host genetics is an emerging theme in COVID-19 and few common polymorphisms and 

some rare variants have been identified, either by GWAS or candidate gene approach, 

respectively. However, an organic model is still missing. Here, we propose a new model 

that takes into account common and rare germline variants applied in a cohort of 1,300 

Italian SARS-CoV-2 positive individuals. Ordered logistic regression of clinical WHO 

grading on sex and age was used to obtain a binary phenotypic classification. Genetic 

variability from WES was synthesized in several boolean representations differentiated 

according to allele frequencies and genotype effect. LASSO logistic regression was used 

for extracting relevant genes. We defined about 100 common driver polymorphisms 

corresponding to classical “threshold model”. Extracted genes were demonstrated to be 

gender specific. Stochastic rare more penetrant events on about additional 100 extracted 

genes, when occurred in a medium or severe background (common within the family), 

simulate Mendelian inheritance in 14% of subjects (having only 1 mutation) or oligogenic 

inheritance (in 10% having 2 mutations, in 11% having 3 mutations, etc).  

The combined effect of common and rare results can be described as an integrated 

polygenic score computed as: (𝑛𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 𝑛𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠)  + 𝐹 (𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 𝑚𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠)  

where n is the number of common driver genes, m is the number of driver rare variants and 

F is a factor for appropriately weighing the more powerful rare variants. We called the 

model “post-Mendelian”. The model well describes the cohort, and patients are clustered 

in severe or mild by the integrated polygenic scores, the F factor being calibrated around 2, 

with a prediction capacity of 65% in males and 70% in females. In conclusion, this is the 

first comprehensive model interpreting host genetics in a holistic post-Mendelian manner. 

Further validations are needed in order to consolidate and refine the model which however 

holds true in thousands of SARS-CoV-2 Italian subjects.  
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1. Introduction 

Coronavirus disease 2019 (COVID-19) represents an important testing case for 

developing new models of complex disorders due to the combination of environmental and 

genetic factors. Unlike other multifactorial disorders, the main environmental factor can 

easily be identified through PCR-based tests on swab. Assuming a relatively low impact of 

viral genome variability [1], the remaining variability might likely be associated with age 

and host genetics, including gender. 

Genome-Wide Association Studies (GWASs) have identified a certain number of 

common polymorphisms in relevant genes. However, these associations do not fully 

explain the variability of clinical outcomes [2-3]. The candidate gene approach has shown 

that, as with many other complex disorders, a simple Mendelian inheritance is also found 

in COVID-19, affecting some rare individuals with a defect in genes related to innate 

immunity [4-5]. 

In a previous study, we explored host genetics through Whole Exome Sequencing 

analysis (WES) in a cohort of 35 hospitalized COVID-19 patients, which led to the 

definition of a preliminarily combined model of rare and common variants impacting the 

clinical outcome [6]. Then, within the Italian GEN-COVID Multicenter Study, 

biospecimens from more than 1,000 SARS-CoV-2 positive individuals have been collected 

in the GEN-COVID Biobank (GCB), with clinical data stored in the related Patient 

Registry (GCPR), and genetic data have in the connected Genetic Data Repository 

(GCGDR) [7]. SNP genotyping of this cohort contributed to the identification of some loci 

associated with COVID-19 [3], while WES analysis pinpointed additional common non bi-

allelic polymorphisms [8] and rare variants [9]. However, an organic model explaining 

how common variants may combine with rare variants is still missing. In this study, we 

propose a new model for predicting the severity of COVID-19 using both common and 

rare variants. The model was defined in two steps. Initially, logistic regression was used to 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.27.21250593doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250593


 

identify a set of genes that are predictive for the severe or the mild phenotype of COVID-

19. Association rules extracted using variants of these genes as input features revealed a 

robust  link between the class of the variants (i.e., protecting or predisposing to the severe 

phenotype) and the actual phenotype, which supports the predictive capability of the 

selected genes. In the second step of the model, these predictive genes were used to define 

a score that separates the extreme COVID-19 phenotypes. This score was able to predict 

the phenotype in a testing dataset with accuracy of X, proving the predictive capacity of 

the strategy proposed.  

2. Materials and methods  

2.1 Patients cohort and Clinical classification 

Demographic and clinical characteristics of the data set were reported in [7]. The number 

of cases used in this study is 1,318. In order to obtain a clinical classification as 

independent as possible from age and gender, an Ordered Logistic Regression (OLR) 

model was used. Separately for the male and female cohorts, two OLR models were fitted 

using the age to predict the ordinal grading (0, 1, 2, 3, 4) dependent variable (Figure 1). 

Then, each patient had clinical classification equal to: 0 (mild), if the actual patient grading 

was below the one predicted by the OLR; or 1 (severe), if the grading was above the OLR 

prediction. The patients with a predicted gradient equal to the actual gradient were 

excluded from the LASSO analysis, by which we wanted to compare the “extreme ends” .  

 

2.2 WES analysis 

Whole Exome Sequencing with at least 97% coverage at 20x was performed using 

the Illumina NovaSeq6000 System (Illumina, San Diego, CA, USA). Library preparation 

was performed using the Illumina Exome Panel (Illumina) according to the manufacturer's 

protocol. Library enrichment was tested by qPCR, and the size distribution and 
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concentration were determined using Agilent Bioanalyzer 2100 (Agilent Technologies, 

Santa Clara, CA, USA). The Novaseq6000 System (Illumina) was used for DNA sequencing 

through 150 bp paired-end reads. Variants calling was performed according to the GATK4 

best practice guidelines, using BWA for mapping and ANNOVAR for annotating. WES data 

were represented in a binary mode on a gene-by-gene basis. 

 

2.3 Boolean representation of bi-allelic polymorphisms  

In the boolean representation of bi-allelic polymorphisms, all the unique 

combinations (mutually exclusive) of common variants (frequency > 1%) with frequency  

in the cohort above 5% were selected. These unique combinations were used to define a 

matrix of M by N input features (M and N being respectively the number of combinations 

and samples), with element j,i equal to 1 if the combination of common variants j is 

present in sample i. 

 

2.4 Boolean representation of rare variants 

Three models were proposed for the binary representation of rare variants: 

autosomal dominant (AD), autosomal recessive (AR), and X-linked (XL). Only coding 

variants (missense, non-sense, and ins/del), as well as splicing mutations, were considered 

together with any pathogenic mutations (coding and non-coding) with a frequency below  

5% (Phe508del in CFTR being 1.1% in the non-Finnish European population). In the AD 

model, the input feature j,i is 1 if gene j in sample i has at least one variant with a 

frequency ≤ 1%. In the AR model,  the input feature j,i is 1 if gene j in sample i has either 

a variant with a frequency ≤ 1% in a homozygous state or two variants. In the XL model, 

only to the male cohort and only genes on chromosomes X are considered. The input 

feature j,i is 1 if gene j in sample i has a variant with frequency ≤ 1%  (hemizygous state).  
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2.5 Sample pre-processing   

Among 1,318 samples, after PCA analysis, 63 outliers were removed. Those corresponded 

to no-white subjects (32 hispanic, 12 black, 18 asian, 1 arabic). In the boolean 

representation concerning rare variants, genes with higher percentages of mutations than 

expected as defined by knee analysis were considered artifacts and excluded from the 

analyses (Fig. S1). Among the 18,085 annotated genes 12 genes were excluded from the 

analysis due to error in the annotation such as ARSD and VCX family gene. 

 

2.6 LASSO Logistic Regression  

The binary classification problem, i.e., mild/severe cases, was solved by a logistic 

regression model, one of the most common and successful Machine Learning (ML)  1) 

common bi-allelic coding haplotypes of autosomal genes (hetero plus homo versus wt) 

extracting common variants acting in a heterozygous state; 2) common bi-allelic coding 

haplotypes of autosomal genes (homo versus hetero and wt) extracting common variants 

acting in a homozygous state; 3) common bi-allelic coding haplotypes of X-linked genes 

(hemy versus wt) extracting common variants acting in a hemizygous state in males; 4) 

rare variants of autosomal genes (hetero plus homo versus wt) extracting rare variants 

acting in heterozygous state; 5) rare variants of autosomal genes (homo versus hetero and 

wt) extracting rare variants acting in a homozygous state; 6) rare variants of X-linked 

genes (hemy versus wt) extracting rare variants acting in a hemizygous state in 

males.algorithms for binary classification tasks with probabilistic interpretation. In order to 

enforce both the sparsity and the interpretability of the results, the model was trained with 

the additional LASSO (Least Absolute Shrinkage and Selection Operator) regularization 

term. By denoting with 𝛽𝑘 the coefficients of the logistic regression model and by lambda 

(λ) the strength of the regularization, the LASSO regularization term of the loss, 

𝜆 ∑𝑝
𝑘=1  |𝛽𝑘|, has the effect of shrinking the estimated coefficients to 0, providing a 
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feature selection method for sparse solutions within the classification task. The weights of 

the logistic regression algorithm can be interpreted as the feature importances of the subset 

of the most relevant features for the task [10]. 

The fundamental hyper-parameter of the logistic regression algorithm is the 

strength of the LASSO term, which was tuned with a grid search method on the average 

area under the Receiver Operating Characteristic (ROC) curve for the 10-fold cross-

validation. 50 equally spaced values in logarithmic scale in the range [10 −3, 102] were 

tested. The optimal regularization parameter was selected as the one with the best trade-off 

between the simplicity of the model and the cross-validation score, i.e., as the highest 

value providing an average score closer than one standard deviation from the highest 

score. The rationale of this method is to select the most important genes (and not 

necessarily the entire set of genes contributing to COVID-19 variability). Data pre-

processing was coded in Python, whereas for the logistic regression model, the scikit-learn 

module with the liblinear coordinate descent optimization algorithm was used.  

2.7 Association Rules 

Association rules are statements in the form "X implies Y", where, in the current study, X 

indicates a set of mutated genes and Y indicates the clinical classification of a patient. 

Association rules can be mined from the data using apriori algorithm. Each association 

rule is associated with a support, that corresponds to the number of patients for which the 

antecedent X holds (i.e., patients that have all the genes in the X set mutated) and a 

confidence, that is the percentage of the patients in the support for which the consequent Y 

holds. The statistical significance of an association rule can be assessed by comparing the 

distributions of the values of Y in the set of patients harboring the mutations on the X 

genes and of the set of all the others, by means of the Fisher's exact test. In this study, we 

randomly split the patients in train (80%) and test (20%) sets. We mined the rules on the 
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training set only and used a grid search approach to identify the best pair of support and 

confidence thresholds. Then, we selected only those rules having a p-value lower than 0.05 

on the training set. The remaining rules are further tested on the test set and only those 

having a Bonferroni corrected p-value lower than 0.05 are kept. For mining association 

rules we used the arules library (in R).  

          We mined separately for females and males all significant association rules having 

support >= 0.08 and confidence >= 0.8, by considering the top genes as extracted by Lasso 

Logistic Regression. The assessment requires to consider which genes are assembled 

within rules which associate with either mild or sever course of COVID-19; a confirmation 

of the model requires genes associated with mild course to be mildness genes, and genes 

associated with severe course to be severity genes, whereas rules are assembled by our 

method regardless of a prior assignment to these categories. We also selected enough rules 

to be associated with high percentages of patients (ranging from 90% of females to 94% of 

severe cases of males and 99% of mild cases of males).  

 

2. 7 The post-Mendelian model  

              The proposed model extends the standard “threshold model” of common 

polymorphisms to a more general framework, including the effect of rare variants. The 

main hypothesis of the model is to describe the combined effect of common and rare 

results by means of the following “integrated polygenic score” (IPGS): 

IPGS = (𝑛𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 𝑛𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠)  + 𝐹 (𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 − 𝑚𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠)   

In equation 1,𝑛𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 and 𝑛𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠 are the number of common polymorphic driver genes 

conferring severity or mildness respectively to COVID-19;  while 𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 and 𝑚𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠  

are the number of driver rare variants conferring severity or mildness respectively to 

COVID-19. The multiplicative factor 𝐹was included to model a more penetrant effect of 
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rare variants with respect to common variants. In order to identify the optimal value of this 

weighting factor, for each value of F in the range 0-20, the silhouette coefficient of the 

clustering (mild vs severe) results was calculated. The optimal value of F was defined as 

the one that maximizes the silhouette coefficient, i.e., provides the best separation between 

the two clusters.  

3. Results 

3.1 Assessing clinical classification stratified by sex and adjusted by age 

Whole Exome Sequencing (WES) data stored in the Genetic Data Repository of the GEN-

COVID Multicenter Study (GCGDR) and coming from biospecimens of 1,300 SARS-

CoV-2 PCR positive subjects were used for the analysis [7]. Since age and gender are 

strong determinants of the clinical outcome, we stratified the cohort by gender and then 

applied ordered logistic regression to re-classify the patients (Figure 1) as: i) severe, 

subjects falling above the expected treatment according to age; ii) intermediate, subjects 

matching the expected treatment according to age; iii) mild = subjects falling below the 

expected treatment according to age. This novel classification is expected to be 

independent of age, and consequently, it should facilitate the identification of the genetic 

factors responsible for COVID-19 severity. 

 

3.2 Discovery of genes and gender dependent effect 

We then used severe versus mild cases defined by ordered logistic regression as 

inputs for  a series of logistic regression models for LASSO regularization. The purpose of 

these logistic models is to identify which features are better predictive for either severity or 

mildness. Six different types of genetic variability were represented in a boolean manner 

and tested separately: 
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For common bi-allelic haplotypes (hetero plus homo versus wt), we identified 19 

genes ordered by importance using the cohort with both genders (Figure S2a), 12 of them 

being linked to severity and 7 of them to mildness. Among relevant severity genes are: the 

haplotype Gly195Glu/Asp213Gly/Glu270Asp of IBSP,  a sialoprotein part of Coronavirus 

receptor system, Lys191Thr of ADAM15, a negative regulator of TRIF-mediated NF-kB 

and IFN-b reporter gene activity, Gln5148His/Pro5521Leu of MUC5AC, the most frequent 

mucin in the upper respiratory tract. Among relevant mildness genes are: Ile134Val of 

HOXC4, which enhances antibody response under the regulation of estrogens, and 

Leu470Val of DAPK2, a protein kinase that mediates the body responses to viral infections 

(Table S1). 

We then repeated the analysis with gender stratification. We found that the 

majority of genes, 16 out of 19, are gender-specific, i.e., found in one gender only 

(specifically 12 in males and 4 in female) (Figure 4 and Figure S2b and S2c). For 

example, the effect of Ile134Val of HOXC4 was identified in females only, as expected on 

the base of its biological role, while Gln5148His/Pro5521Leu of MUC5AC and Lys191Thr 

of ADAM15 was shown to affect males only (Figure 4). A similar pattern was found for all 

the other boolean representations. 

 The logistic models training with gender stratified cohorts pinpoints an increased 

number of predictive genes. Indeed, 107 genes were identified in males only and 44 in 

females only versus 19 in the cohort of both genders. The presence of gender specific 

effects is the most likely explanation for the increase in the number of predictive genes in 

gender stratified cohorts (Figure 2). Therefore, we decided to proceed with stratification 

by gender as gender medicine appears to be much more relevant in COVID-19 than in 

other disorders. In the next two sections, the genes identified in the male and female 

cohorts are presented. 
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3.3 Discovery of relevant genes with common and rare variants in males 

Using LASSO logistic regression on the boolean representation of common bi-

allelic haplotypes and rare variants, we identified 293 relevant genes in males: 154 of them 

having common variants/haplotypes, while 139 having rare variants. 

 Among the 154 genes with common variants/haplotypes, in 109, the associated 

genotype was heterozygous (and homozygous), in 11 homozygous (120 being on 

autosomes), and in 34 hemizygous, the gene being on the X chromosome. Among the 139 

genes with rare variants, in 11, the variant was present in at least one allele (AD-like 

inheritance), in 69, the variant was present in at least two alleles (AR-like inheritance), and 

in 59, the variant was hemizygous, the gene being on the X chromosome (XL-like 

inheritance). 

Among relevant extracted severity genes with common variants are: Val802Ile 

(hetero) of C5, part of the innate immune system, Leu412Phe (hetero) of TLR3 controlling 

interferon response, Arg31Pro (hetero) in TBPL2, a transcription factor cleaved by 

Coronavirus protease, Pro285Ala (homo) of GBP2, involved in the innate immune system 

and Glu391Asp (hemi) of GBC4 gene, a proteoglycan known to be involved in HCV 

attachment (Figure S2b, S2e, S2g, and Table S2, S5 and  S6). Among relevant extracted 

genes with rare severity variants are: MUC5B (at least 2 variants), a component of mucus 

secretions, NEB (at least 2 variants) involved in inflammatory responses in SARS-CoV-2 

infection, and APOB (at least 2 variants) apolipoprotein involved in lipid metabolism and 

HCV hepatocytes entering, TLR7 (on X Chr) controlling interferon response and 

CACNA1F (on X Chr) calcium channel regulating different processes in T lymphocytes 

(Figure S2i, S2n, S2p and Table S8, S11 and S13). 

Among relevant extracted mildness genes with common variants are: 

p.Asp611Asn (hetero) of N4BP2, required for influenza virus infection and Ile57Val 

(hetero) of AURKA, a cell cycle regulator downregulated during SARS-CoV-2 infection,  
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Ser59Ala (homo) of RRM2 mildness gene, a cellular factor essential for virus replication, 

and Arg45His (hemi) of TXK mildness gene, involved in immune response (Figure S2b, 

S2e, S2g and Table S2, S5, and  S6). Among relevant extracted genes with rare mildness 

variants are: VPS16 (at least 1 variant), involved in SARS-CoV-2 replication, and DUOX2 

(at least 1 variant), involved in innate immune response BTNL8 (at least 2 variants), a 

stimulator of primary immune response, XPNPEP2 (on X Chr), an ACE2 network protein 

involved in SARS-CoV-2 infection and STK26 (on X Chr), involved immune regulation 

and inflammatory responses (Figure S2i, S2n, S2p, and Table S8, S11 and S13). 

We then mined data by association rules in order to identify relevant associations 

of specific polymorphisms conferring severity: 94% of severe cases of males are covered 

by the rules reported in  Figure S3a and  Figure S3b. Among relevant severity rules in 

males are  TLR3 Leu412Phe and IL17RC Gln267Arg involved in inflammation associated 

with infection. MUC5AC Gln5148His, over expressed in Sars-Cov-2 patients and TFRC 

Gly181Ala, a receptor involved in Sars-cov-2 viral entry (Figure S3a). Among relevant 

mildness rules in males are NLRP6 Met163Leu part of inflammasome involved in immune 

response and SLC25A5 Leu111Arg a regulator of RNA-viral replication (Figure S3b).   

 

3.4 Discovery of  relevant genes with common and rare variants in females  

Using LASSO logistic regression on the boolean representation of common bi-

allelic haplotypes and rare variants, we identified 122 relevant genes in females, 78 of 

them having common variants/haplotypes, while 44 having rare variants. Among the 78 

genes with common variants/haplotypes, in 44, the associated genotype was at least 

heterozygous, in 34 homozygous. Among the 44 genes with rare variants, in 36, the variant 

was present in at least one allele (AD-like inheritance), in 8, the variant was present in at 

least two alleles (AR-like inheritance). 
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Among relevant extracted severity genes with common variants are: Ile997Val 

(hetero) of EP300, a transcriptional regulator protein involved in chromatin remodeling of 

proviral genes and Met498Val (hetero) of HERC5, involved in antiviral immunity, and 

Pro33Arg of TP53 (homo), acting as a host antiviral factor (Figure S2c and Table S3). 

Among relevant extracted mildness genes with common variants are: Thr34Ala 

(hetero) of HAPLN3, involved in cell-adhesion and Asn258Ser of ALCAM (hetero), a cell 

adhesion molecule strongly up-regulated in SARS-CoV-2 patients, and Met35Ile (homo) 

of APOBEC1, a deaminase involved in SARS-CoV-2 genome editing (Figure S2c and 

Table S3). 

Among relevant extracted severity genes with rare variants are: APBA3 (at least 1 

variant) involved in antiviral immune responses, APOL3 (at least one variant), involved in 

vesicular trafficking and autophagosomes induced by inflammation, ATG9B (at least one 

variant), up-regulated in response to SARS-CoV-2 infection and SPINT1 (at least 2 

variants), associated to SARS-CoV-2 disease severity (Figure S2l, S2o and Table S9, and 

S12).  

Among relevant extracted genes with rare mildness variants are: ITGA7 (at least 

one variant), an integrin involved in post-infection immune response, MASP1 (at least one 

variant), a serine protease involved in complement activation, TNFAIP2 (at least 2 

variants), a primary response gene of TNF-alpha. (Figure S2l, S2o and Table S9, and 

S12). 

Data mining for association rules reveals that 90% of cases are covered by the rules 

indicated in Figure S3c and Figure S3d. Among severity rules are TP53 Pro33Arg and 

EPCAM Met 115Thr, an adhesion molecule involved in HBV replication (Figure S3c). 

Among the mildness rules in females are APOBEC1 Met80Ile conferring more activity to 

the RNA editing defence against RNA virus and CFHR4 Glu125Asp controlling 

complement (Figure S3d). 
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3. 5 The post-Mendelian paradigm for COVID-19 modelization 

              In the previous sections, the protocol used to identify predictive genes for the 

severe/mild phenotypes were presented. The plausibility of these genes is supported by 

biological evidence, and by the fact that association rules for the severe phenotype mostly 

used genes identified by logistic regression as predisposing to severity, and vice versa. 

This agreement among biological knowledge and two independent modelling approaches 

pushed us to further explore the possibility to combine variants information on these genes 

into a predictive model of the phenotype. The proposed model extends the standard 

“threshold model” of common polymorphisms to a more general framework, including 

both the effect of common and rare variants. In order to discuss the functioning of the 

model, it will be assumed that the severity of COVID-19 is primarily determined by 200 

genes, with approximately half of them presenting common variants, and the remaining 

rare variants. In case that each variant carries the same relative risk, subjects with 

approximately the same number of common variants in mildness and severity genes will 

behave according to their age (black dots in the ordered logistic regression of Figure 1). 

Instead, subjects with unbalanced variants, that is with a higher number of mildness or 

severity variants, will more likely belong to the corresponding phenotype, with a 

probability that increases as the difference between the number of mildness and severity 

variants increases. Looking for the epidemiological data of the total percentage of those 

who are severely ill (intubated or CPAP-BiPAP), one should infer the exact number of 

genes involved in the model and the exact percentage necessary for the threshold effect. 

In addition to the cumulative effect of common variants, another group of genes 

(for simplicity again assumed as composed by 100 genes) may be affected by a rare 

mutation according to an autosomal dominant, autosomal recessive, or X linked model 

(with similar probabilities in males). Rare variants have a MAF less than 1%, and like the 
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common variants half of them (about 50) are conferring severity, and half of them (about 

50) are conferring mildness when the alternate sequence is present.  

Let us suppose a rare mutation occurring in a neutral or severity background of 

commons. In that case, it will be either a more severe or earlier disease segregating as a 

Mendelian inheritance (because family members are likely to have identical or similar 

combinations of common variants). If a rare occurs in a mildness background, the 

penetrance will depend on the strength of the rare (and likely it is not penetrant).  

 If a mildness rare occurs in a neutral or mildness background, the individual will 

be even more mild (for example, an individual with the persistence of antibodies far away 

from the vaccine or infection). If rare mildness variants occur in a harmful background, its 

effect will depend on the strength (relevance) of mildness (the type of gene and of 

mutation) and location of the gene in the pathophysiological process. For example, 

individuals with rare variants in FACL4 (which prevents the accumulation of lipid 

microparticles necessary for the development of the virus) could have milder symptoms 

even in a negative background (because the action is upstream). On the other hand, for 

example, there are individuals who are fine after infection but whose swab remains 

positive for a long time. These could be individuals with common mildness variants but 

“severity rare mutations” favoring the spread of the virus on the tissues. However the 

downstream process then appears milder because they respond well by innate and adaptive 

immunity. 

The number of rare variants that each individual can have varies from 0 to more 

than 6. In individuals without rare variants, the prediction of severity is based on the 

common variants only. In individuals with rare variants, the correct prediction is made 

considering common and rares together. In the case of more than one rare in the same 

sense (e.g., more than one severity rare), the segregation simulates the oligogenic model 

(digenic, trigenic, etc.). 
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3.6 Fitting the model in the cohort and calibration of rare variants contribution  

In the cohort of 1,300 SARS-CoV-2, we tested the above-reported model in which 

rare variants contribute together with common polymorphisms to COVID-19 liability. For 

each patient of the cohort, by counting the mutations of the genes extracted by LASSO 

logistic regression we obtained the integrated polygenic scores reported in the frequency 

distribution (Figure 5) separately for severe (red) and mild (green) phenotypes. 

The calibrated F factor, i.e. the coefficient for which the mean silhouette coefficient is 

maximum, is shown in Figure 5 for the male (1,6) and female (2,1) cohorts. 

In the overall cohort, Mendelian inheritance is simulated when rare variants 

occurred in a medium or severe background (14% of subjects having only 1 susceptibility 

mutation) and oligogenic inheritance (10% having 2 susceptibility mutations, 11% having 

3 mutations, etc.). 

 

3.7 Segregation of the post-Mendelian model in families 

In the cohort 15 familial cases were collected and analysed. Segregation analysis  

using integrated polygenic score perfectly matched the phenotype in all families except 

one (Figure 6). Looking at very rare variants the severely affected member of this family 

had a very rare pathogenic mutation in IFNAR1. The frequency of IFNAR1 variants is too 

low to identify them in a cohort of this size by logistic regression. 

 

3. 8 Testing the model 

 We repeated the whole analysis by splitting the cohort in a training set (90%) and a 

testing set (10%) in order to test whether the proposed model is able to generalize the 

predictions to unseen samples. The total number of genes identified in the training set was 

240 in males and 198 in females. Considering only those that were extracted in more than 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.27.21250593doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250593


 

50% of the 5 repeated cross-validations, we set the number of very relevant genes for both 

males and females at 135. We therefore tested the predictivity of the model by applying 

the polygenic score with this set of genes to the testing set. The calibration of F was at 2 

for males and at 1 for females. The frequency distributions of the integrated polygenic 

score are reported in Figure 7 for the male and the female cohorts. In the upper plots 

(Panels a and b) the distributions for the training set (90%) are reported whereas the testing 

set results (10%) are in the lower plots (Panels c and d). The red distribution is related to 

the severe phenotypes and the green one to the mild phenotypes. Predictivity of the method 

(ROC-AUC) is 65% and 70%, for males and females respectively. 

 

4. Discussion 

Using machine learning methodologies, we identified a subset of genes 

predisposing to severe COVID-19 and a subset of genes preventing the development of 

such a disease, thus conferring a mildness effect (Figure 2). Most importantly, we defined 

a new genetic model for explaining genetic susceptibility to COVID-19 (Figure 3). The 

proposed method has a number of innovative approaches. 

First, the clinical modified WHO outcome scale was combined with the age, that is 

the main “non genetic” factor influencing clinical outcome, dividing subjects in three 

categories only: those having a clinical outcome as expected just for age and those having 

either a worse or better clinical outcome. The last two were selected as extreme ends of 

phenotype and used for selecting relevant genes.  

Second, the method is gene based and processes the genes in a Boolean manner, i. 

e. having or not having that variant. For both common and rare variants the Boolean 

classification was repeated three times corresponding of having at least the heterozygous 

genotype (dominant modes), homozygous genotype (recessive model) or hemizygous 

genotype (X-linked model) for genes on chromosome X and males only. 
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Third, we reasoned that not rarely (3413) genes have more than one coding 

polymorphism. All the coding changes may move the function of the protein either in the 

same direction (for example lowering or increasing the function) or in the opposite 

direction therefore cancelling each other. We used a “coding haplotype” approach for 

classifying polymorphic variability in a Boolean manner: we counted the most common 

combinations (not all theoretical combinations are present due to linkage disequilibrium) 

and assigned the score of 1 to each gene if the specific combination is present or zero if 

not. Again the Boolean classification was repeated three times corresponding to having at 

least the heterozygous genotype, homozygous genotype or hemizygous genotype for genes 

on chromosome X and males only. 

Fourth, the method is treating separately males and females thus representing the 

first approach fully translating into practice gender medicine. Indeed, male patients 

affected by COVID-19 undergo a more severe clinical course. 

Fifth, the method we used for gene selection, based on Lasso regularization for a 

logistic regression classifier, is indirectly confirmed by association rules, produced by a 

different method, as protection genes spontaneously associate with mild cases and severity 

genes associate with severe cases.      

Finally, the method is able to take into account both common and rare variability. 

To our knowledge this is the first method able to synthesise in an holistic approach both 

variabilities, which usually are treated separately: using polygenic score from GWAS 

approach for the common variability and Mendelian model for rare variability. We 

therefore suggest to call this method “post-Mendelian model”.  

However, the method is still far from perfect and needs further improvement. For 

example the method is treating each gene as having the same weight within common or 

within rare variants. 
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Furthermore, a number of genetic variabilities are missed in the model such as: i) 

non biallelic common polymorphisms like polyamino acid repeats, known to contribute to 

COVID-19 [8]; ii) variability due to germline CNV; iii) variability due to somatic 

mutations, both CNV and SNP [12-13]; iv) very rare variants or private variants, whose 

frequency is not enough to be detected by LASSO logistic regression. 

Further studies are needed in order to improve the model taking into account the 

above reported variability and increase prediction performances. 

 

 

5. Conclusion 

We were able to identify a set of genes in which common polymorphisms confer 

either severity or mildness against COVID-19 severity. We also identified another set in 

which rare variants confer either severity or mildness to COVID-19 disease. We have 

finally defined a new post-Mendelian genetic model, based on an analysis of common and 

rare variants, that can explain severity in COVID-19.  

The model is good enough to extract the relevant genes of a specific patient and 

understand the main pathogenic pathways useful for assessing a personalized co-adjuvant 

treatment flanking the current use of cortisone. It is still young to be used as a predictive 

tool in not yet infected individuals, but it represents the basis for a second release of the 

model with potential predictive use. 

By better understanding the role of host genetics in COVID-19 susceptibility, we 

are also in a stronger position to identify public health measures that will help to curb the 

impact of the disease on society as a whole. This should help us to genetically screen 

already affected patients as well as individuals who may potentially be patients in order to 

predict those who are more or less susceptible to developing COVID-19 post-infection. It 

should further help us in, not only reassigning therapeutics or developing new 

interventions (including vaccines), but also in decision-making regarding therapeutics and 
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vaccine allocations. Beyond what this post-Mendelian method can help us understand 

regarding the role of host genetics in COVID-19 susceptibility and the potential 

implications for clinical and public health responses, the model also has strong potential 

for understanding the role of host genetics in other complex disorders, as alluded to above. 

As we move into an era of precision, patient-centric medicine, this post-Mendelian method 

can help us tailor treatments to the specific needs of individual patients. 
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Figure 7. 

 

FIGURE LEGENDS 

 

Figure 1. Clinical classification adjusted by age 

Two Ordered Logistic Regression (OLR) models, stratified by gender, fitted using the age 

to predict the ordinal grading (0, 1, 2, 3, 4) dependent variable.  

On the Y axis, the grading according to patients’ treatment is reported (4=intubated; 

3=CPAP/biPAP; 2=oxygen therapy; 1=hospitalized without oxygen support; 0=not 

hospitalized oligo-asymptomatic patients). On the X axis, age is reported. Red dots 

represent subjects falling above the expected treatment according to age (hence considered 

severe), green dots are subjects falling below the expected treatment according to age 

(hence considered  mild) and black dots are subjects matching the expected treatment 

according to age (hence considered intermediate).  
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Figure 2. Outline of the method 

Separately for the male and female cohorts, two OLR models were fitted using the age to 

predict the ordinal grading (0, 1, 2, 3, 4) dependent variable. Then, each patient had 

clinical classification equal to: 0 (green), if the actual patient grading was below the one 

predicted by the OLR; or 1 (red), if the grading was above the OLR prediction. The 

patients with a predicted gradient equal to the actual gradient (black) were excluded from 

the LASSO analysis. LASSO Logistic Regression is performed on WES data represented 

in a boolean manner, including common and rare variants, separately for males and 

females. At the end, the post mendelian model is applied. For each subject, an integrated 

polygenic score (IPGS) is calculated. 

Figure 3. Formula of post-Mendelian model 

Formula for the computation of the integrated polygenic score (IPGS).  The first term is 

the difference between the number of common variants/coding haplotypes conferring 

severity (𝑛𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ) and mildness (𝑛𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠 ) to COVID-19;  whereas the second term is 

the difference between the number of rare variants conferring severity (𝑚𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) and 

mildness  (𝑚𝑚𝑖𝑙𝑑𝑛𝑒𝑠𝑠) to COVID-19. The multiplicative factor 𝐹was included to model a 

more penetrant effect of rare variants with respect to common variants.  

Figure 4. Gender specific effect 

Upper panel: 19 genes with common bi-allelic haplotypes (hetero plus homo versus wt), 

ordered by importance in the cohort with both genders. Down panel: genes with common 

bi-allelic haplotypes (hetero plus homo versus wt), ordered by importance and stratifing by 

gender (left side: 107 genes in males;  right side: 44 genes in females). In blue: genes 

identified only in males. In pink: genes identified only in females.  

Figure 5. Integrated Polygenic Score, factor calibration and phenotypes 
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Frequency distributions of the IPGS score for the male cohort (Panel a) and female cohort 

(Panel b). The red distribution is related to the severe phenotypes and the green one to the 

mild phenotypes. Panel c and Panel d reports the mean silhouette coefficient of the 

clustering between mild/severe phenotypes as a function of possible F values of the IPGS 

formula in the range 0-20.  The coefficient is a measure of the goodness of the clustering 

and the maximum value providing the best separation between the two clusters is 1.6 for 

male (Panel c) and 2.1 for female (Panel d). 

Figure 6. Segregation analysis of post-Mendelian model 

Example of segregation analysis of post-Mendelian model using integrated polygenic 

score in 8 pedigrees. Squares represent severe male and circles females. Red =severely 

affected (category 1 in fig. 1); green =oligo-asymptomatic subjects  (category 0 in fig. 1); 

grey squares represent intermediate subjects (category black in fig.1). Under symbols is 

reported the treatment and in parenthesis the age. For each patient is reported  the formula 

for the computation of the integrated polygenic score (IPGS). 

 Panel a: Brothers of 32 and 31 years with discordant phenotypes, hospitalized CPAP 

treated and oligosymptomatic, respectively. In agreement with their phenotype they have 

IPGS minus 3 and 5, respectively, mainly due to increased severity common 

polymorphisms in the severely affected brother such as Lys191Thr of ADAM15 a negative 

regulator of TRIF-mediated NF-kB and IFN-b reporter gene activity and the 

polymorphism Asn103Lys in the RNA trafficking gene RPAIN which increase viral 

replication. Panel b: Sisters of 62 and 60 years with partially discordant phenotype, 

hospitalized with oxygen support only and hospitalized CPAP treated, respectively.  In 

agreement with their phenotype they have IPGS minus 12 and  minus 15, respectively, 

mainly due to increased severity of rare variants in the more severely affected sister such 

as Amyloid Beta Precursor Protein Binding Family A Member 3 APBA3 which have a role 
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in immune response and  low density lipoprotein receptor family member LRP8 having  a 

role in the suppression of innate response. Treatment with immunosuppressive agents may 

be an option in this patient. 

Figure 7. Predictivity of the model 

Frequency distributions of the IPGS score for the male cohort (Panels a and c) and female 

cohort (Panel b and d). In the upper plots the distributions of integrated polygenic score 

and phenotype distribution for the training set (90%) are reported; in the lower plot the 

distribution for the testing set (10%) is reported. The red distribution is related to the 

severe phenotypes and the green one to the mild phenotypes. The predictivity is 65% for 

males and 70% for females. 

 

SUPPLEMENTARY MATERIALS 

Figure S1. Knee analysis 

 

In the boolean representation of rare variants, the genes with a number of mutations 

higher than a threshold are excluded from the LASSO analysis. The threshold has been 

defined by the knee-analysis of the empirical cumulative density function of the number of 

mutations for the genes in the overall cohort. 

Figure S2. Common polymorphisms and rare variants selected by LASSO Logistic 

Regression. Comparison of extreme ends of phenotype: subjects of class 1 (red in Fig.1) 

versus class 0 (green in Fig. 1) as defined by ordered logistic regression.  

Common (>1%) bi-allelic polymorphisms (coding haplotypes) considering heterozygous 

variants plus homozygous variants versus wt genotype and using both males and females 

(S2a) or only males (S2b) or only females (S2c); Common (>1%) bi-allelic 

polymorphisms (coding haplotypes) considering homozygous variants versus heterozygous 
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variants plus wt genotype and using both males and females (S2d) or only males (S2e). 

For females (S2f) the performances are below the random guess. Common (>1%) bi-allelic 

polymorphisms (coding haplotypes) considering hemizygous variants (only genes on 

chromosome X)  versus wt genotype and using males only  (S2g); 

Rare variants (<1%) considering considering heterozygous variants plus homozygous 

variants versus wt genotype (dominant model) and using both males and females (S2h) or 

only males (S2i) or only females (S2l); Rare variants (<1%) considering homozygous 

variants versus heterozygous variants plus wt genotype (recessive model) and using both 

males and females (S2m) or only males (S2n) or only females (S2o); Rare variants (<1%) 

considering hemizygous variants (only genes on chromosome X) versus wt genotype (X-

linked model) and using males only (S2p). Features are gene-based representations of 

Genotypic Combinations (GC) of common polymorphisms. The histograms (weights) 

represented by importance of each feature (genes), inlcuding age and sex, for the 

classification task  (Upper Panel). The positive weights reflect a susceptible behaviour of 

the gene to the target COVID-19 disease, whereas the negative weights a mildness action. 

Down Panel: Cross-validation accuracy for the grid of LASSO regularization parameters; 

the error bar is given by the standard deviation of the average ROC-AUC within the 10 

folds; the red point corresponds to the parameter chosen for the fitting procedure.  

Figure S3. Model assessment by means of association rules  

We ordered the rules, each typically assembling four to five genes, by decreasing support. 

We then built curves of cumulative counters of distinct patients associated with at least one 

such rule; we considered as preferred cutting point of each curve a point at the start of a 

“plateau” such that cumulative counter is relative to more than 90% of patients (actually, 

90% of females, 94% of severe cases of males and 99% of mild cases of males). The most 

remarkable aspect of this construction, obtained by a data mining method which is 
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completely different from the ML-based method used for gene selection, is that genes 

assembled within mined rules are “coherent”: both for males and females, mildness genes 

associate with mild cases and severity genes associate with severe cases. Out of several 

hundred genes included in the rules, only four are “incoherent” (marked in yellow). They 

are also widely mutated and hence not really significant, as genes PRSS5, APOBEC1 and 

SLC24A3 are mutated respectively in 55%, 75% and 86% of females, and gene FOXR2 is 

mutated in 94% of males. Panel a: Male/Severity. Selected rules are significant (P<0.05), 

have support>0.08 and confidence>0.8, ordered by support (also reported as count of 

matching patients); confidence is illustrated by a graded scale. Top rules are selected based 

on the cumulative number of distinct patients associated with at least one rule (99%). 

Remarkably, all genes of top rules are severity genes. Panel b: Male/Mildness. Selected 

rules are significant (P<0.05), have support>0.08 and confidence>0.8, ordered by support 

(also reported as count of matching patients); confidence is illustrated by a graded scale. 

Top rules are selected based on the cumulative number of distinct patients associated with 

at least one rule (99%). Remarkably, all genes of top rules are mildness genes except gene 

FOXR2, which however is present in 94% of male patients. Panel c: Female/Severity. 

Selected rules are significant (P<0.05), have support>0.08 and confidence>0.8, ordered by 

support (also reported as count of matching patients); confidence is illustrated by a graded 

scale. Top rules are selected based on the cumulative number of distinct patients associated 

with at least one rule (90%). Remarkably, all genes of top rules are mildness genes except 

genes APOBEC1 and SLC24A3 (present respectively in 86% and 75% of female patients). 

Panel d: Female/Mildness. Selected rules are significant (P<0.05), have support>0.08 and 

confidence>0.8, ordered by support (also reported as count of matching patients); 

confidence is illustrated by a graded scale. Top rules are selected based on the cumulative 

number of distinct patients associated with at least one rule (90%). Remarkably, all genes 
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of top rules are mildness genes except gene PRSS55, which is present in 55% of female 

patients. 

Table S1. Common bi-allelic coding haplotypes of autosomal genes (hetero plus homo 

versus wt) using the cohort with both genders. 

Table S2.  Common bi-allelic coding haplotypes of autosomal genes (hetero plus homo 

versus wt) in male cohort. 

Table S3. Common bi-allelic coding haplotypes of autosomal genes (hetero plus homo 

versus wt) in female cohort. 

Table S4. Common bi-allelic coding haplotypes of autosomal genes (homo versus hetero 

and wt) using the cohort with both genders. 

Table S5.  Common bi-allelic coding haplotypes of autosomal genes (homo versus hetero 

and wt) in males. 

Table S6. Common bi-allelic coding haplotypes of X-linked genes (hemy versus wt) in 

males. 

Table S7. Rare variants of autosomal genes (hetero plus homo versus wt) using the cohort 

with both genders. 

Table S8. Rare variants of autosomal genes (hetero plus homo versus wt) in male cohort. 

Table S9. Rare variants of autosomal genes (hetero plus homo versus wt) in female cohort. 

Table S10. Rare variants of autosomal genes (homo versus hetero and wt). 

Table S11. Rare variants of autosomal genes (homo versus hetero and wt) in male cohort. 

Table S12. Rare variants of autosomal genes (homo versus hetero and wt) in female cohort 

Table S13.  Rare variants of X-linked genes (hemy versus wt) in males. 
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