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Abstract

The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium
tuberculosis (M.tb) infection compared to individuals with more remote, established infec-
tion. We aimed to define blood-based biomarkers to distinguish between recent and re-
mote infection, which would allow targeting of recently infected individuals for preventive
TB treatment. We hypothesized that integration of multiple immune measurements would
outperform the diagnostic performance of a single biomarker. Analysis was performed on
different components of the immune system, including adaptive and innate responses to my-
cobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were
standardized using variance stabilizing (vast) scaling and missing values were imputed us-
ing a multiple factor analysis-based approach. For data integration, we compared the perfor-
mance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which
was built to the single datasets. Biomarkers with non-zero coefficients from the optimal sin-
gle data EN models were then isolated to build logistic regression models. A decision tree
and random forest model were used for statistical validation. We found no difference in the
predictive performances of the optimal MTP-EN model and the EN model [average area un-
der the receiver operating curve (AUROC)=0.93]. EN models built to the integrated dataset
and the adaptive dataset yielded identically high AUROC values (average AUROC=0.91),
while the innate data EN model performed poorly (average AUROC=0.62). Results also
indicated that integration of adaptive and innate biomarkers did not outperform the adaptive
biomarkers alone (Likelihood Ratio Test χ2=6.09, p=0.808). From a total of 193 variables,
the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the
strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was
confirmed in both tree-based models.
A single biomarker measuring M.tb-specific T cell activation yielded excellent diagnostic
potential to distinguish between recent and remote M.tb infection.
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1 Introduction

Tuberculosis (TB) is an airborne bacterial disease that is a leading cause of mortality due to an
infectious agent worldwide [1]. It is estimated that about a quarter of the world’s population is
infected with Mycobacterium tuberculosis (M.tb), the causative agent of TB [2]. Acquisition of
M.tb infection is generally asymptomatic and often remains undiagnosed unless serial diagnostic
testing is performed. To determine M.tb infection status, the QuantiFERON TB (QFT) measures
the level of interferon-gamma (IFN-γ), a cytokine released by T cells, upon stimulation of blood
cells with two immunodominant antigens expressed by M.tb, early secretory antigen 6 (ESAT6)
and culture filtrate protein 10 (CFP10) (here collectively termed E6C10). The highest risk of
progressing to TB disease is during the first two years post-infection [3], which can be mea-
sured as recent QFT conversion by serial testing. However, serial testing for M.tb infection is
not routinely performed in TB endemic settings. A blood-based immune signature that enables
identification of recent M.tb infection would therefore allow targeting of preventive treatment to
those at high risk of TB progression, even without serial diagnostic testing.

In order to define immunological determinants of recent M.tb infection, data from different arms
of the immune response, namely adaptive, donor unrestricted T (DURT) and innate cell im-
munity were combined. Adaptive immunity consists of memory-driven antigen-specific T cell
responses, such as those measured by QFT. In this study we measured functional and phenotypic
features of classical M.tb-specific T cell responses and refer to these variables as the adaptive
dataset. In contrast, innate immune cells, such as monocytes or natural killer (NK) cells, pro-
vide non-specific cellular defence mechanisms, which are more transient in nature. DURT cells
display features of both adaptive and innate immune cells and bridge both arms. In this study,
we included measurements of monocyte, NK and DURT cell functions in the innate dataset.
We hypothesized that the integration of multiple immune measures from the adaptive and innate
immune arms would outperform individual data types in stratifying individuals with recent or
remote M.tb infection.

Data integration presents several challenges, such as: i) different scales from different data types,
which is typically overcome by employing data standardization or transformations methods; ii)
missing values that arise due to some individuals or time points not being available in each data
table, which can be meaningfully replaced using imputation methods; and iii) high dimensional-
ity of the dataset post-integration.

Regularized regression with sparsity is a common approach for modeling high-dimensional
datasets with multicollinearity. The most popular regularized regression models are Ridge Re-
gression [4], which minimizes the residual sum of squares subject to an L2 bound; the least
absolute shrinkage and selection operator (LASSO) model [5], which imposes an L1 penalty
on the regression coefficients; and the Elastic Net (EN) model [6], which is a combination of
the two. The latter two models are particularly advantageous as they perform both parameter
estimation and feature selection simultaneously, by shrinking the effect of some coefficients to
zero. However, if there is a group of highly correlated variables in the dataset, the LASSO model
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will select one of these variables at random and ignore the rest. The EN model was designed
to overcome this issue. Liu et al. (2018) [7], however, observed that the standard EN approach
tends to shrink all features simultaneously and does not consider differing effect sizes in pre-
dictors from different datasets. The authors hypothesized that the Multiple Tuning Parameter
Elastic Net (MTP-EN) model that allows for different degrees of shrinking for variables from
different data sets could account for the differences between each dataset and result in a model
with higher predictive performance than a standard EN approach. We therefore tested whether
the MTP-EN did improve the predictive performance of the integrated dataset, by directly com-
paring the MTP-EN and standard EN models.

Tree-based algorithms are a common collection of machine learning classification models, con-
sisting of simple decision trees [8] or the popular random forest (RF) model [9]. A classification
decision tree is a supervised model that aims to predict a target by learning decision rules from
features in a dataset. Decision trees allow easy interpretation of data clearly ranking the impor-
tance of feature and relations between predictors. A downfall, however, is that they suffer from
high sampling variability [10]. RF models extend decision trees by building multiple trees on
bootstrapped samples of the data and merging them together for making decisions to achieve sta-
ble and accurate predictions. RF models also introduce additional randomness by considering a
random subset of m¡p predictor variables, where p is the total number of predictors in the dataset,
as potential split candidates. The importance of each predictor variable can then be quantified
by averaging the total amount by which the Gini Index, a measure of node homogeneity, is de-
creased for a split over a given predictor over all trees. A large value will be indicative of an
important predictor. The misclassification error is a natural measure of performance for the RF
model.

Biomarkers identified by the regression models were validated via an internal validation pro-
cedure using the tree-based algorithms.

2 Results

An overview of the data analysis pipeline is provided in Figure 1.
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Figure 1: Workflow showing data pre-processing steps (A) and regression modeling (B). PID: par-
ticipant ID; AUC: area under the curve; LR: logistic regression; CB: candidate biomarkers; CV: cross
validation; LRT: likelihood ratio test.
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2.1 Data pre-processing

In order to successfully integrate the two datasets, several data pre-processing steps needed to be
addressed. Data filtering of the adaptive immune response features using COMPASS (Supple-
mentary Figure 1, Supplementary Methods S2.1) and MIMOSA (Supplementary Methods S2.2)
retained 132 out of the 259 original variables in the dataset. Further, our novel filtering method
(Supplementary Figure 2, Supplementary Methods S2.3) identified 61 biologically meaningful
innate features from the 304 variables in the raw dataset. Therefore, among the features consid-
ered as biomarkers were 132 functional and phenotypic features of classical M.tb-specific T cell
responses, 6 features of monocytes and 15 features of NK cells. In addition, 12 mucosal asso-
ciated invariant T (MAIT) cell, 10 gamma-delta (γδ) T cell, 6 NKT cell and 12 B cell features
were also included, such that a total of 193 variables comprised the filtered, integrated dataset
that was used for analyses. We standardized the raw values in this dataset using vast scaling
and employed a multiple factor analysis (MFA)-based imputation method [24] to account for
missing data points. We found MFA imputation to outperform all other imputation methods tried
(Supplementary Figure 3, Supplementary Table 2, Section 5.7).

2.2 The MTP-EN model

The MTP-EN model was built including all 193 variables in the integrated dataset in order to
assess whether applying different penalties to each dataset improved the predictive performance
of the model, measured by the area under the receiver operating characteristic curve (AUROC)
on the testing data. The highest AUROC values after 10-fold cross validation (CV) were stored
for each of the 500 repeats, and the performance of the MTP-EN model for each value of κ, the
ratio of the penalty parameter for the innate dataset relative to that for the adaptive dataset, was
reported as an average of the 500 AUROC values. The effect on the testing AUROC for different
values of the tuning parameters as measured by κ in the MTP-EN is shown in Supplementary
4. The model performance reached a plateau for κ > 0.8, where values of κ < 1 result in
a smaller penalty applied to the innate dataset. Differential penalization therefore resulted in
lower comparative AUROC values when the effect sizes of the features in the adaptive dataset
in particular were decreased relative to the innate dataset (λ1 > λ2). In terms of the predictive
performance as determined by the AUROC, the standard EN (κ = 1) and the optimal MTP-EN
model with κ = 1.7 were identical with an average AUROC of 0.93. In addition, the computation
time for the MTP-EN model was significantly longer (24.4 hours) compared to the EN model
(2.52 hours). Accordingly, for this specific dataset, there was no added benefit to fitting the
MTP-EN model over the standard EN model. The EN model was therefore used for subsequent
analyses.

2.3 Regularized regression, biomarker discovery and validation

EN models were subsequently built to test whether an integrated model outperforms or adds
to the single dataset models. Therefore, three EN models were built to the integrated dataset,
and the adaptive and the innate data types separately. The final EN models built on the adap-
tive variables had tuning parameter values of α=0.21 and λ=0.82 and identified three candidate
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biomarkers corresponding to an average AUROC value of 0.91 (Supplementary Figure 5A). The
biomarkers identified were proportions of total Th1 cells expressing the phenotypic marker hu-
man leukocyte antigen (HLA)-DR, identified by stimulation with either E6C10 or M.tb-lysate,
and the frequency of interleukin (IL)2+CD107-CD154-IFN-γ- tumor necrosis factor (TNF)+
CD4+ T cells stimulated with EspC, EspF and Rv2348c (collectively termed Esp). Comparing
the two groups (recent versus persistent QFT+ individuals) using a Wilcoxon non-parametric
test [25], values for these variables were found to be significantly higher (p < 0.001) in recent
compared to persistent QFT+ individuals (Figure 2A). Hence, these variables could be validated
as potential biomarkers for recent infection.

For the EN model built on the innate dataset, the optimal values for α and λ were 0.18 and
0.41 respectively. This model identified 10 candidate biomarkers, which yielded a poor average
AUROC of 0.62 (Supplementary Figure 5B). The 10 candidate biomarkers consisted of differ-
ent functional subsets from of MAIT cells, B cells and γδ T cells (Figure 2B). The MAIT cell
subsets were all M.tb-lysate-reactive and included total TNF+ cells, Granzyme-B (GB)-IFN-
γ-IL6-IL12-TNF+ and GB-IFN-γ+IL6-IL12-TNF+ cells. The M.tb-lysate-reactive γδ T cell
subsets included total TNF+ cells and GB+IFN-γ-IL6-TNF+ cells, while the unstimulated γδ
T cell subsets were total TNF+ cells and GB-IFN-γ-IL6-TNF+ cells. Lastly, the unstimulated
B cell candidate biomarkers identified by the innate EN model included total IL10+ cells, GB-
IL6-IL10+IL12-TNF- and GB-IL6+IL10-IL12-TNF+ cells. The values for recent and persistent
QFT+ individuals for these variables were not significantly different, as indicated by Wilcoxon
tests.

The final EN models built on the integrated variables had identical parameter values to the model
for the adaptive data and consequently identified the same candidate biomarkers corresponding
to an average AUROC value of 0.91.

To quantitatively evaluate whether a combination of adaptive and innate features improved the
predictive performance of the model, a Likelihood Ratio Test (LRT) was used to compare the
Logistic Regression (LR) model built to the 13 candidate biomarkers (three from the adaptive
EN model and 10 from the innate model) to the LR model built to the three biomarkers from
the adaptive EN only. The results indicated that a combination of the non-zero coefficients from
both EN models did not significantly improve model fit (LRT χ2 = 6.09, p = 0.808). The LR
model fitted to the adaptive biomarkers was therefore the preferred model.

Backwards variable selection on this model further identified M.tb-lysate-specific proportions
of total Th1 cells expressing HLA-DR as a statistically redundant biomarker, since HLA-DR ex-
pression on either E6C10- or M.tb-lysate-specific T cells were highly correlated (Supplementary
Figure 6).
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Figure 2: Candidate biomarkers of recent M.tb infection identified by the adaptive and innate EN
models. Boxplots comparing the raw values of recent (red) and persistent (blue) QFT+ individuals for the
three candidate biomarkers identified by the adaptive EN model (A) and the 10 identified by the innate
EN model (B). Wilcoxon tests were used to compare the two groups and the resulting p-values are shown.
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The coefficients from the final LR model are shown in Table 1, model i. By exponentiat-
ing the coefficients, we can most easily interpret the coefficients in terms of the odds. Hence,
holding all other variables fixed, for every one standardized unit increase in either HLA-DR or
CD4+IL2+CD107-CD154-IFN-γ-TNF+ T cells in response to their specific stimuli, the odds of
being a persistent QFT+ individual (the default class) decreases by 99% or 94% respectively.
Accordingly, as the value of either one of these biomarkers increases, the odds that an individual
was recently infected, i.e. QFT+, increases. The performance of this model was then assessed
via an internal validation procedure and produced satisfactory results (average AUROC and Brier
scores = 0.89 and 0.008 respectively).

Table 1: Model estimates and the average performance metrics after internal validation of the final LR
model (i) and the LR model built to E6C10-specific total Th 1 cells expressing HLA-DR only (ii).

Coefficients β (95% CI) eβ (95% CI) Avg. AUC Avg. Brier
i (Intercept) -1.55 (-2.97 - -0.13) 0.21 (0.05 - 0.88) 0.89 0.008

E6C10 HLA-DR -4.34 (-7.20 - -1.47) 0.01 (0.00 - 0.23)
Esp CD4+IL2+CD107-
CD154-IFN-γ-TNF+

-2.79 (-5.27 - -0.30) 0.06 (0.01 - 0.73)

ii (Intercept) -0.91 (-1.92 - 0.09) 0.40 (0.15 - 1.10) 0.87 0.007
E6C10 HLA-DR -4.06 (-6.36 - -1.76) 0.02 (0.00 - 0.17)

Candidate biomarkers from the innate dataset did not improve the adaptive model fit and
these two variables from the adaptive dataset were sufficient to distinguish between the different
stages of infection.

Since including the frequencies of Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells
as a predictor variable in the LR model statistically improved model fit (LRT χ2 = 12.76, p <
0.001) compared to E6C10-specific HLA-DR frequencies alone, we explored whether the suc-
cessful discriminatory ability of this cell subset was dependent on the subset being negative for
CD107, CD154 and IFN-γ. This was tested by comparing the predictive performance of an
LR fitted to E6C10-specific HLA-DR and IL2+TNF+ CD4+ T cell when stimulated with Esp,
regardless of CD107, CD154 and IFN-γ expression, to model i in Table 1. We found that the
average AUROC value and hence predictive performance of this model was lower (average AU-
ROC = 0.79) compared to model i. In addition, this model had a higher Akaike information
criterion score [26] compared to model i (57 compared to 42), thus indicating a poorer fit to the
data. The relative quality of the model was therefore dependent on the CD4+ T cell subset being
negative for CD107, CD154 and IFN-γ.

The ability of E6C10-specific HLA-DR expression alone to distinguish between the different
stages of M.tb infection was then assessed. The performance of this model and the model includ-
ing Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells were similar and equally high
(average AUROC and Brier scores = 0.87 and 0.007 respectively) (Table 1, model ii).
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2.4 Statistical validation

Using the same vast standardized and MFA-imputed dataset, a simple classification tree was
built to all the 193 features in the dataset (Figure 3A). The tree identified two features from the
set of all variables in the integrated dataset to best discriminate between recent and persistent
QFT+ individuals. The best classifying feature in the dataset was the level of HLA-DR on total
Th1 cells when stimulated with E6C10, followed by the frequency of Esp-specific IL2+CD107-
CD154-IFN-γ-TNF+ CD4+ T cells. The split value for E6C10-specific HLA-DR was identified
as -0.098 (Figure 3B). Seventeen observations had values greater than or equal to -0.098 for
E6C10-specific HLA-DR expression levels and were assigned to leaf node 2, where all observa-
tions were correctly classified as recent QFT+. Otherwise, out of the seven observations in node
4, six were correctly classified as recent converters. Observations were assigned to this node if
they had a value less than -0.098 for E6C10 HLA-DR but greater than -0.12 for the frequency of
Esp-specific CD4+IL2+CD107-CD154-IFN-γ-TNF+ T cells (Figure 3C). Any observations that
had values less than both these split values for each of the predictors were assigned to leaf node
5, which correctly classified 29 out of the total 30 persistent QFT+ individuals, but misclassified
6 recent QFT+ individuals. These decision rules identified by the tree resulted in 12% (7 out of
59) of the observations being misclassified.

The final RF model, after hyperparameter tuning, was then built such that 500 decision trees
built to 500 random bootstrapped samples of the data made up the forest, a random subset of 25
out of the 176 features were considered at each split, and each tree built was allowed no more
than 10 nodes from root to terminal node to avoid overfitting. The Gini Index was then used
to measure variable importance. Among the 10 top variables with the largest mean decrease
were nine variables from the adaptive dataset (Figure 3D). The E6C10-specific HLA-DR vari-
able resulted in the largest mean decrease. One single variable from the innate dataset, total TNF
production in unstimulated γδ T cells, was found to be the sixth most important.

After an internal model validation procedure, the average AUC for the final RF model was 0.84
and the average misclassification error was 0.12, precisely the misclassification error of the sim-
ple classification tree.
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Figure 3: Statistical validation using tree-based models. (A) Results from the simple classification
tree built to the entire integrated dataset. Boxplots comparing vast scaled values of recent (red) and
persistent (blue) QFT+ individuals were plotted for the two most stratifying features identified by the
decision tree. The split values are superimposed onto the plots at (B) -0.098 for proportions of E6C10-
specific Th1 cells expressing HLA-DR, and (C) -0.12 for frequencies of Esp-specific IL2+CD107-CD154-
IFN-γ-TNF+ CD4+ T cells. (D) Variable importance plot of the final RF model showing the top 10
variables that resulted in the largest average decrease in the Gini Index.
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3 Discussion

This study applied regularized regression modelling approaches and machine learning algorithms
to identify biomarkers that could distinguish individuals with remote or recent infection with
M.tb, which is associated with higher risk of TB disease.

Data pre-processing steps were required to successfully integrate the datasets from the innate
and adaptive immune responses. To overcome the high dimensionality of the integrated dataset,
filtering methods were applied to each dataset separately. COMPASS [17] and MIMOSA [18]
are very sensitive algorithms that have been developed to identify biologically meaningful com-
binations of cytokines produced by rare antigen-specific T cells, and significant responses over
background, respectively. A combination of these methods was used to pre-filter the adaptive
dataset. These methods assume background immune responses detected in unstimulated sam-
ples to be extremely low. This is not the case for most innate immune cells, which spontaneously
produce variable levels of cytokines, even when cultured in absence of stimulation, that can
be biologically meaningful. COMPASS and MIMOSA were thus not appropriate to pre-filter
innate variables and we therefore developed our own filtering method to robustly identify bi-
ologically meaningful cell subsets from innate immune cells and DURT cells. The intrinsic
biological variability between the two datasets was then accounted for by using vast scaling to
standardize the raw values to a common scale, and missing values were successfully imputed us-
ing an MFA-based imputation method. We compared several imputation methods, to account for
missing values, and the MFA-based method performed the best, in this dataset characterized by
non-normally distributed data with missing rows. Because our focus in this aim was less on esti-
mating model coefficients, but more on identifying predictive markers, instead of using Rubin’s
rule [27] to take into account imputation variability, we rather repeated the MFA imputation for
each CV run. Therefore, we were confident that the results found here were not a consequence
of the imputation method used.

We first built an MTP-EN model, which applied differential penalties to the datasets in the
integrated model. The results indicated that applying a greater penalty to the adaptive dataset
(κ < 1) yielded comparatively worse AUROC values. However, when a smaller penalty was
applied to this dataset (κ > 1), the predictive performances were identical to the model with no
additional penalty (the standard EN model). In terms of computing power and predictive perfor-
mance, there was insufficient evidence to justify building the MTP-EN model over the standard
EN model for the integrated dataset. However, because a comparatively worse average AUROC
value was yielded when a larger penalty was applied to the adaptive dataset, the MTP-EN results
did demonstrate the importance of the features of the adaptive immune response in stratifying
the two stages of M.tb infection.

The EN model built to the integrated dataset identified only non-zero coefficients from the adap-
tive dataset as important features. The candidate biomarkers identified from these models were
the proportions of E6C10-specific Th1 cells expressing HLA-DR and the frequencies of Esp-
specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells. TNF and IL2 produced by CD4+ T
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cells are early response cytokines that both play an important role in the context of TB [28].
HLA-DR on the other hand is a cell surface receptor reflecting T cell activation. HLA-DR expres-
sion on M.tb-specific T cells is an excellent biomarker to distinguish individuals with (remote)
M.tb infection from those with active TB disease, and to monitor antibiotic treatment response
[29][30][31][32]. The robustness of HLA-DR expression as a biomarker to also distinguish re-
cent from remote asymptomatic M.tb infection was confirmed in response to either E6C10 or
M.tb lysate. We propose E6C10 to be a more appropriate stimulation for use in diagnostic tools,
since it only includes M.tb-specific antigens (the same as in interferon gamma release assays),
whereas M.tb-lysate contains a mix of different antigens that do cross-react with other mycobac-
teria and is therefore less specific.

The true effect of these two identified biomarkers on the probability of an individual being re-
motely M.tb infected (persistent QFT+ individuals) was estimated through a LR model. Higher
standardized frequencies of both these biomarkers were associated with a larger probability, or
odds, of an individual being recently infected (recent QFT+). This reflects the relationship that
was seen in the raw data plots, where individuals recently infected with M.tb had significantly
higher values of these features compared to remotely infected individuals. The performance of
the LR model built to these two biomarkers was assessed via an internal validation procedure
and, given the small sample size, was considered sufficiently high to justify further evaluation of
these biomarkers.

A diagnostic test made up of a single biomarker would be simpler and more cost effective.
Therefore, the ability of M.tb-specific T cell activation (HLA-DR expression) to successfully
distinguish between the two stages of M.tb infection as a biomarker on its own was tested. Mov-
ing forward with HLA-DR as a single diagnostic measure was justified by substantial literature
showing excellent performance of this biomarker to distinguish different stages of the TB spec-
trum [30][31][32][33][14], and the small number of markers necessary to measure this biomarker
(as few as four [29]). Further, frequencies of the Esp-specific IL2+CD107-CD154-IFN-γ-TNF+
CD4+ T cells were extremely low (values range between 0 and 0.006), which is challenging to
measure in a robust and reproducible way. Lastly, because the discriminatory ability of Esp-
specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells was in fact dependent the subset being
negative for CD107, CD154 and IFN-γ, the flow cytometry antibody panel for a diagnostic test
including all these markers would be complex. Although the final LR model included frequen-
cies of Esp-specific IL2+CD107-CD154-IFN-γ-TNF+ CD4+ T cells as an additional biomarker
of recent infection, further analyses showed that E6C10-specific HLA-DR expression alone is an
equally strong single biomarker to distinguish recent from remote M.tb infection.

The top performance of M.tb-specific T cell activation over all other immune features as a
biomarker of recent infection was further confirmed in both the simple decision tree and ran-
dom forest model.

Lastly, in contrast to our hypothesis, variables from the innate dataset did not improve model
fit and were unable to outperform the strongest candidate biomarkers from the adaptive dataset.
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To our knowledge, this study includes the most comprehensive integrated evaluation of adap-
tive and innate immune responses induced by recent M.tb infection in humans published to date.
Our results show that the innate immune responses were poor predictors of recent M.tb infection,
and did not improve the performance of the integrated model. Based on the results reported here,
the expression of HLA- DR on E6C10-specific T cells was the strongest candidate biomarker for
recent M.tb infection, and its performance has now been validated in a separate test cohort [14].
This biomarker holds the potential to identify individuals at high risk of TB progression, who
would benefit from preventive TB treatment. However, due to the small sample size in this study,
further validation in a large independent cohort is required.

4 Materials and methods

4.1 Study design and participants

An epidemiological study was carried out from July 2005 through February 2009, in which
healthy, 12 to 18-year-old adolescents were recruited from local high schools in the Worcester
area, Western Cape, South Africa [11][12]. The study was approved by the University of Cape
Town Human Research Ethics Committee (protocol references: 045/2005). Written assent from
participating adolescents and written consent from their parents or legal guardians was obtained
prior to the study start. Participants who tested human immunodeficiency virus (HIV) positive,
were diagnosed with TB, or had any other acute or chronic medical diseases that resulted in hos-
pitalization during the study period, were excluded from the study. Pregnant or lactating females
were also excluded. Peripheral blood mononuclear cells (PBMCs) were collected at enrolment
and at 6-monthly intervals during the 2-years of follow-up (termed months 0, 6, 12 and 18) when
the QFT tests were performed to determine M.tb infection. The QFT tests were performed and
interpreted according to the manufacturer’s instructions. Two cohorts of participants were de-
fined based on their longitudinal QFT results and taking into account our proposed uncertainty
zone to interpret quantitative values [13]: recent QFT converters (two consecutive QFT negative
results, of which at least one is < 0.2 IU/mL, followed by consecutive two QFT positive results,
of which at least one is > 0.7 IU/mL) and persistent QFT positives (QFT positive results ≥ 0.35
IU/mL at four consecutive visits) (Supplementary Figure 7). Raw QFT results and participant
demographics have been described in detail elsewhere (training cohort in [14]).

4.2 Definition of recent and remote M.tb infection

Infection with M.tb likely occurred between the second and third sampling occasions in the re-
cent QFT+ individuals, indicated by a QFT test conversion from negative to positive. After
testing that there was no difference over time using Wilcoxon’s signed rank test, we calculated
the median value of the two QFT positive time points for each variable in recent QFT+ individ-
uals (n = 29 for the adaptive dataset and n = 16 for the innate dataset).

Time of M.tb infection was unknown in persistent QFT+ individuals (n = 30 for the adaptive

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.27.21250605doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250605
http://creativecommons.org/licenses/by-nd/4.0/


dataset and n = 17 for the innate dataset). Since the Friedman’s test [15] did not reveal any
significant changes over time, we included median values of each variable measured at all four
QFT+ time points available as representative of remote M.tb infection (Supplementary Figure 7).

4.3 Immune measurements

Innate and adaptive effector responses were measured in stimulated PBMCs using flow cytome-
try (Supplementary Methods S1 and [16]). Five stimulations were used to induce M.tb and non-
specific T cell responses in the adaptive dataset: peptide pools spanning E6C10; peptide pools
spanning EspC, EspF and Rv2348c (collectively termed Esp), which are both are specific for
M.tb; M.tb-lysate, which is a mixture of M.tb-specific antigens, some of which are cross-reactive
with other mycobacteria; Staphylococcus Enterotoxin B (SEB), the positive control; or the cells
were left unstimulated as negative control. This dataset consisted of 259 variables including
a combination of 5 effector functions, namely interleukin-2 (IL2), CD107, CD154, IFN-γ and
tumor necrosis factor (TNF) produced by CD4+ and CD8+ T cells upon stimulation. Com-
binations of the phenotypic markers CD45RA, CCR7, CD27, KLRG1, HLA-DR and CXCR3
were further measured on IFN-γ, IL2 or TNF producing T cells (total Th1). Effector responses
were background subtracted (subtracting the frequencies detected in corresponding unstimulated
samples from frequencies in stimulated samples), while the phenotypic markers were expressed
as proportions of Th1 cells. Further, phenotypes were only measured in ”responding” samples
(Supplementary Method S3.2).

In the innate dataset, effector responses were measured in unstimulated PBMC or after stim-
ulation with M.tb-lysate or Escherichia coli (E. coli), which served as the positive control. The
innate dataset consisted of 304 variables, including a combination of 6 functions, Granzyme B
(GB), IL6, IL10, IL12, IFN-γ and TNF produced by NK cells, B cells, monocytes, and DURT
cells: mucosal associated invariant T (MAIT) cells, γδ T cells and NKT cells.

4.4 Data integration

Integration was performed by aligning each dataset according to participant ID, QFT status (pos-
itive or negative) and month of sample collection (months 0, 6, 12, and 18).

4.5 Data pre-filtering

Due to the high dimensionality of the dataset post-integration, we opted to pre-filter the dataset
to identify and exclude biologically irrelevant cell subsets. For the adaptive dataset, we em-
ployed COMPASS (Combinatorial Polyfunctionality analysis of Antigen-Specific T cell Sub-
sets) to filter the effector functions ([17]; Supplementary Method S2.1), while the phenotypic
markers expressed on T cells were only measured in stimulated samples from responding indi-
viduals identified by MIMOSA (Mixture Models for Single Cell Assays [18]; Supplementary
Method S2.2). Since COMPASS could not be used to filter the innate immune cells and DURT
cells, which have high background (unstimulated) values, we designed a novel filtering method
to identify biologically meaningful cell subsets from this dataset (Supplementary Method S2.3).
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All analyses were performed on the pre-filtered dataset. An outline of the data pre-processing
steps is provided in Figure 1A.

4.6 Data standardization

We employed variance stabilizing (vast) scaling to standardize the datasets. Vast scaling is
achieved by multiplying the Z-score by a coefficient of variation (cv) as a scaling factor. Mul-
tiplying by the cv, which is the sample mean divided by the sample standard deviation of each
variable, gives higher importance to those variables with small relative standard deviations. Vast
scaling method aims to be robust and is typically used on variables that show small fluctuations
[19].

4.7 Missing value imputation

Several imputation methods (Supplementary Table 2) were considered to meaningfully replace
the missing values in the filtered and vast scaled dataset. The performance of each method was
evaluated based on how well the imputed data could replicate the density of the vast scaled,
incomplete data.

4.8 Standard elastic net model and elastic net model with multiple tuning parameters

A standard EN penalty is given byN(β) = α
∑p

j=1 |βj|+(1−α)1
2

∑p
j=1 β

2
j , where 0 ≤ α ≤ 1 is

the weight given to the L1 penalty (the LASSO model) and 1−α the weight to L2 penalty (ridge
regression). The EN logistic regression model then aims to solve minβ∈Rp − l(y,X; β0, β) +
λN(β) where l(y,X; β0, β) is the log-likelihood for a logistic regression model, λ ≥ 0 is the
shrinkage parameter, and the parameters α and λ are found via cross validation (CV). As the
value of λ increases, the more coefficients of features are shrunk to zero, and their effect in the
model is negligible.

The MTP-EN, proposed by Liu and colleagues in 2018 [7] for improving the predictive per-
formance of a model fitted to an integrated dataset, extends the standard EN model by imposing
separate penalties to the coefficients from different data types. The integrated dataset in this study
was comprised of two different data types and the tuning parameters λ1 and λ2 were applied the
coefficients from the adaptive and innate datasets separately. The MTP-EN model aims to solve
the penalized regression problem given by

minβ∈Rp − l(y,X; β0, β) + λ1N(β(1)) + λ2N(β(2)).

The model was built to the variables in the integrated dataset using the glmnet R package [20]
via the ”penalty.factor” argument. This allows a weighted EN penalty of the form

Nω(β) = α

p∑
j=1

ωj|βj|+ (1− α)
p∑
j=1

ωjβ
2
j
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where ω is p-dimensional weight vector with 1 in the first p1 = 132 entries corresponding to the
variables in the first dataset, and κ = λ2

λ1
for the p2 = 61 entries in the second dataset. Conse-

quently, λ = λ1 controls the overall degree of shrinkage for both data types and κ controls the
shrinkage of one data type relative to the other.

An outline of the workflow for the modeling portion of this study is summarized in Figure 1B.
For each candidate weight parameter κ ∈ [0.2, 1.8], 10-fold CV was used to tune optimal val-
ues for λ and α for a specific value of κ. The CV procedure was repeated 500 times for stable
estimates and the area under the receiver operating curve (AUROC) was used as a measure of
performance. The highest AUROC values after 10-fold CV were stored for each of the 500 re-
peats, and the performance of the MTP-EN model for each value of κ was reported as an average
of the 500 AUROC values. A parameter value of κ = 1 is equivalent to a standard EN model, and
so we could directly compare the performance of the standard EN model to MTP-EN models
with varying penalties applied to each dataset. The result of this experiment was used to deter-
mine whether an MTP-EN or standard EN model would be the most suitable for the integrated
dataset.

We further built two EN models using the glmnet package to the individual datasets separately.
Parameters were tuned using the same CV protocol as the MTP-EN, and the average of the se-
lected parameters across the 500 searches were thereafter defined as the ”optimal” parameter
values. Relevant candidate biomarkers (CB) for classifying M.tb infection were identified as
features with non-zero coefficients in the final model, and predictive performances in terms of
AUROC values of the models were then compared.

4.9 Logistic regression

The CBs identified from the innate and adaptive EN models were used to build LR models. One
LR model was built using the biomarkers identified in the adaptive model, and another using
a combination of the biomarkers identified from both the adaptive and innate data EN models.
A LRT was used to assess whether adding the innate biomarkers to the LR model resulted in a
statistically significant improvement in the fit of the model. Backwards variable selection was
performed on the preferred LR model, as established by the LRT in the previous step, to identify
the best subset of predictors and build the final LR model.

4.10 Tree-based machine learning algorithms

4.10.1 Decision trees

A simple classification was built to all of the observations in the integrated dataset using the R
package rpart [21]. The decision tree was used to visualize the relationship between the variables
in the integrated dataset and assess feature importance in stratifying the recent from persistent
QFT+ individuals.
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4.10.2 Random forest models

We built the RF model to our data using the randomForest R library [22], and tuned the model
using 500x10-fold CV. Similar to the EN models, the ”optimal” hyperparameters were taken as
the average across the 500 repeats and used to build the final RF model. We then used the final
RF model to identify the 10 most important features corresponding to the largest mean decrease
in the Gini Index.

4.11 Internal validation

The predictive performance of the final LR model, and subsequently the set of biomarkers, as
well as the final RF models was assessed via an internal validation procedure. We employed
10-fold CV repeated 500 times and used the AUROC and the Brier score [23] as performance
metrics. Results reported are an average of the performance metrics across the 500 CV repeats.

For all instances in this study when CV was performed, the missing values in the dataset was
imputed separately for the training and testing sets using MFA imputation. Therefore, the dataset
was imputed several times to ensure that any results found were not just a consequence of the
imputation method.
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