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Abstract 

Background: Microbial sharing between humans and animals has been demonstrated in a 

variety of settings. However, the extent of microbial sharing that occurs within the healthcare 

setting during animal-assisted intervention programs, a validated and valuable part of holistic 

patient wellness, is unknown. Understanding microbial transmission between patients and 

therapy animals can provide important insights into potential health benefits for patients, in 

addition to addressing concerns regarding potential pathogen transmission that limits program 

utilization. This study evaluated the potential for microbial sharing between pediatric patients 

and therapy dogs, and tested whether patient-dog contact level and a dog decolonization 

protocol modified this sharing.  

Methods and Results: Patients, therapy animals, and the hospital environment were sampled 

before and after every group therapy session and samples underwent 16S rRNA sequencing to 

characterize microbial communities. Both patients and animals experienced changes in the 

relative abundance and overall diversity of their nasal microbiome, suggesting that exchange of 

microorganisms had occurred. Increased contact was associated with greater sharing between 

patients and therapy animals, as well as between patients. A topical chlorhexidine-based dog 

decolonization intervention was associated with decreased microbial sharing between therapy 

dogs and patients, particularly from the removal of rarer microbiota from the dog, but did not 

significantly affect sharing between patients.  

Conclusion: These data suggest that the therapy animal is both a potential source of and a 

vehicle for the transfer of microorganisms to patients but not necessarily the only source. The 

relative contribution of other potential sources (e.g., other patients, the hospital environment) 

should be further explored to determine their relative importance.  
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Introduction 

Animal-Assisted Intervention (AAI) therapy, the use of animals as an alternative or 

complementary treatment, can improve the physical, mental and social functions of patients 

within the healthcare setting. AAI has been widely implemented in a range of physio-social 

conditions in various settings in healthcare facilities and is increasingly popular, especially for 

pediatric patients. The most commonly reported patient benefits include a reduction in patients’ 

requirement for pain medication, enhanced socialization, and reduced stress and anxiety (Bert 

et al., 2016; Charry-Sanchez et al., 2018b, 2018a; Kamioka et al., 2014; Waite et al., 2018).  

Conversely, the potential risks of incorporating animals into a hospital setting, where patients 

with decreased immune function are treated, must be considered. Nosocomial transmission of 

infectious disease agents, such as methicillin-resistant Staphylococcus aureus (MRSA) is a 

serious problem exacerbated by close contact and antimicrobial selective pressure inherent to 

healthcare settings, and we were concerned that therapy animals may serve as mechanical 

vectors of transmission. While it is clear that therapy dogs can carry common hospital-

associated pathogens (Boyle et al., 2019; Dalton et al., 2020; Lefebvre et al., 2009), evidence is 

lacking on whether dogs transmit these microbiota to patients. 

Microbes, including pathogens, function in the context of a more global microbial community, 

and other non-pathogenic microbiota may similarly be transmitted during these AAI sessions. 

Specifically, dogs have unique compositions of their nasal, dermal, and gastrointestinal 

microbial communities (Hoffmann et al., 2014; Oh et al., 2015; Swanson et al., 2011), which, 

compared to humans, could result in a distinct ability to acquire, carry, and/or spread hospital-

associated pathogens. These distinct microbial communities could also uniquely influence the 

microbial composition of individuals that interact with the dogs, in a way that is fundamentally 

different than contact with other people or objects in the environment. This circumstance is best 

illustrated by data demonstrating the microbial shifts in humans resulting from pet ownership; 
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pet owners often have more diverse microbial compositions that are more frequently shared 

between them (Misic et al., 2015; Song et al., 2013). Early life pet ownership is associated with 

decreased incidence of immune dysfunction, and exposure to diverse microbes from farm 

environments, including animals, is protective against the development of asthma in children 

(Azad et al., 2013; Fall et al., 2015; Stein et al., 2016; Tun et al., 2017). However, these studies 

focus on chronic exposure from living with animals and pets. It is uncertain if these same 

microbial shifts will occur with transient exposure of patients to a therapy animal, which in our 

setting was often less than one hour. 

This study aimed to explore the potential for microbial sharing between pediatric patients, 

therapy animals, and the hospital environment during animal-assisted intervention programs. 

We hypothesized that therapy dogs could serve as intermediary mechanical vectors in the 

transmission of microbes between the hospital environment and patients, and interaction with 

the therapy animal would increase patients’ risk of microbial exposure (Figure 1). We further 

examined whether the level of contact between patients and therapy dogs modifies this 

microbial sharing. This study used a topical antiseptic treatment on the therapy animal as a 

targeted intervention to mitigate potential risks from exposure to infectious agents to patients 

participating in AAI. We secondarily hypothesized that this topical disinfectant, aimed at 

decreasing the bacterial colonization in the therapy animal, would have downstream effects on 

microbial composition in patients. Improving our understanding of microbial dynamics that occur 

during an AAI session will contribute to our knowledge base regarding human-animal microbial 

exchange research in a novel setting and have practical implications to AAI program 

implementation.  
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Methods 
 
I. Experimental Design and Sample Collection 

This study was conducted at a pediatric oncology outpatient unit in a mid-Atlantic hospital 

between July 2016 and May 2017. The study protocol was approved by all applicable 

institutional review boards, institutional animal care and use committees, and scientific review 

committees prior to data collection. All therapy dog handlers and patients’ parents provided 

written consent to participate in the study and approved having the findings published. The 

therapy dog and handler were scheduled for one hour in a shared space, during which multiple 

patients interacted with the dog at the same time. Microbial samples were collected from the 

nasal mucosa of pediatric patients and therapy dogs with a sterile flocked swab (Puritan, 

Guilford, ME, USA) before and after the AAI visit, as well as the shared floor space with a 

vacuum dust filter (Ludwig et al., 2017). Trained research staff performed all sample collection. 

During the visit, we observed interactions of the study participants with the dog, recording the 

total duration and frequencies of certain behaviors (petting, hugging, etc.). Blank sterile flocked 

swabs were collected at every visit as a negative control. Sample swabs were stored at -80ºC 

until processing.  

The therapy dog team, consisting of the dog and its handler, completed two observational 

control visits abiding by established hospital protocol, then crossed-over to two intervention 

visits with modifications to the hospital therapy dog protocol, as shown in Supplemental Figure 

1. Prior to the first intervention visit, the handler was given a 4% chlorhexidine-based veterinary 

prescription shampoo (DUOXO Ceva, Libourne, France) to use 24 hours before the study visit. 

During the therapy visit, the dog was wiped down along the head and back, the “petting zone”, 

with 3% chlorhexidine wet cloths (DUOXO Ceva, Libourne, France) every 5 to 10 minutes.  

II. Laboratory Processing 
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 II.a. 16S rRNA Gene Amplification and Sequencing  

Sample swabs and vacuum filter dust were thawed prior to DNA extraction. DNA sequencing 

was performed as previously described (Misic et al., 2015); see also Supplemental Methods 

for additional details. For each set of extractions, one blank swab exposed to laboratory air was 

processed as a negative laboratory control. Prior to sequencing, the total DNA concentration 

was obtained from a Qubit instrument, and the 16S rRNA gene copies per unit DNA were 

evaluated using quantitative PCR. The V1-3 region of the 16S rRNA gene was amplified using 

barcoded primers (27F, 534R) for the Illumina platform as previously described (Fadrosh et al., 

2014). Sequencing was performed on the MiSeq instrument (Illumina, San Diego, CA) using 

300 base paired-end chemistry at the University of Pennsylvania Next Generation Sequencing 

Core. Microbial Mock Communities B (Even-Low v5.1, BEI Resources, NIAID NIH HMP) were 

amplified and sequenced as positive controls.  

 II.b. Bioinformatics and Quality Control 

QIIMEv2.7 was used for paired-end read assembly and quality filtering for the sequences from 

all samples (Bolyen et al., 2019). The DADA2 plug-in for QIIME2.7 was used to remove 

chimeric sequences and sequences greater than 300bp in length, and cluster sequences into 

amplicon sequence variants (ASVs) (Callahan et al., 2016). ASVs were matched to phylogeny 

using mafft program for multiple masked sequence alignment (Katoh et al., 2002) and FastTree 

to generate a phylogenetic tree from the masked alignment (Price et al., 2010). Taxonomy 

assignment used a Naive-Bayes classifier (Wang et al., 2007) that was trained on our dataset 

(trimmed to 300bp and matched to our primers), applying Greengenes13.8 99% OTU match 

(McDonald et al., 2012). Taxonomic classification was confirmed by comparing the identification 

of the known Mock Community samples. For quality control purposes, suspected contaminants 

were identified and removed from the resulting feature table using the ‘decontam’ R package, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.21250541doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21250541


8 

based on the prevalence of taxa in the negative controls and the frequency of taxa as a function 

of the total DNA concentration and the 16S rRNA copies from qPCR (Davis et al., 2018). 

Contaminants were identified independently at each processing step (field sampling, DNA 

extraction, and sequencing) and were sequentially removed.  Information on the sequencing 

library and quality control measures can be found in Supplemental Tables 1A&B.  

III. Statistical Analysis 
 

Statistical analysis was performed in RStudio v1.1.423 (R Development Core Team, 2010). To 

maintain the maximum number of samples for comparison, the sequencing data was not 

rarefied for statistical analysis (McMurdie & Holmes, 2013; Willis, 2019). Taxa tables, and 

matching phylogeny and taxonomy, were analyzed using the phyloseq pipeline to calculate 

alpha and beta diversity metrics (McMurdie & Holmes, 2013). The primary analysis was the 

change in microbial composition comparing pre and post visit overall and by host (human and 

dog), then stratifying by contact level and visit type (control versus intervention). Differential 

abundance of specific taxa between groups were analyzed using DESeq2 (Love et al., 2014). 

The Kruskal-Wallis nonparametric one-way analysis of variance test examined differential alpha 

diversity between all groups, and the Wilcoxon rank-sum test was used for pair-wise 

comparisons between groups; both tests were adjusted for multiple comparisons using the 

Benjamini-Hochberg false discovery rate (FDR) correction. To test which factors were most 

important in determining microbial composition, analyses were performed using the non-

parametric permutational multivariate analysis of variance (PERMANOVA) with weighted and 

unweighted UniFrac distance metrics.  
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Results 

I. Study Population and Samples 

A total of four dogs were studied over 13 AAI visits (2-4 visits per dog team), with 5 (38%) being 

intervention study visits. Forty-five unique pediatric oncology subjects enrolled in the study 

(Table 1), with a mean age of 11.7 years old (SD 4.7). Four participants re-enrolled in the study, 

resulting in data from 49 study participants. Each therapy visit had a mean of 3.8 participants 

(SD 1.4, range 2-6). Thirty-nine participants (79.6%) reported having a pet at home, with 30 

(61.2%) having a dog.   

Individual contact behaviors and total patient-dog interaction times are presented in 

Supplemental Table 2. The frequency of key behaviors and total time spent with the therapy 

dog were aggregated to create an ordinal contact score. The median contact score was used as 

a threshold to create a binary contact level of “High” or “Low” contact. Fifty one percent of 

patients were classified as “High” contact, and this was evenly distributed across control and 

intervention visits.   

A total of 129 sample swabs were collected for microbial analysis (Table 1). An additional 33 

samples were processed for microbiome quality control. Swab samples were not collected from 

8 participants either due to the patient’s fear of the swabbing process or scheduling conflicts 

Two subjects did not have pre-visit culture swabs collected, and three subjects did not have 

post-visit swabs collected.  

II. Relative Abundance 

The abundance of microorganisms differed across both host and sample location; Figure 2A 

shows the percent relative abundance of the top 25 most abundant genera. Certain bacterial 

species had significantly different abundance when comparing across sites, including 
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Staphylococcus species in the nasal samples of both pediatric subjects and dogs (Figure 2). 

Subject and dog nasal samples had similar microbial compositions, with Staphylococcus 

species being dominant, but dog nasal samples had a greater abundance of Moraxella 

compared to the subjects’ greater abundance of Streptococcus. These data are summarized in 

Supplemental Table 3.  

The degree of alteration of patients’ microbial communities varied with contact level and visit 

type (Figures 2B&C). Within control visits, subjects with low contact had a higher abundance of 

Streptococcus species after the visits compared to before. In contrast, there was no difference 

in the abundance of any genera between pre- or post-visit samples in high-contact subjects. 

Within the intervention visits, both high and low contact subjects had greater abundance of 

Streptococcus species before the visit and greater abundance of Staphylococcus species after 

the visit, specifically S. epidermidis and not S. aureus (Supplemental Figure 2).  

III. Alpha Diversity 

Alpha rarefaction curves are presented in Supplemental Figure 3. Alpha diversity significantly 

differed between hosts (humans versus dogs versus environment), as measured by the 

observed total taxa, Shannon, and Faith’s Phylogenetic metrics (Wilcoxon rank-sum test 

p<0.001). This was a consistent observation when stratifying by pre or post visit, and by control 

or intervention visit type. 

When examining individual level changes in alpha diversity that occur during a therapy visit, in 

high-contact subjects there was an overall increase in within-sample diversity during control 

visits, and an overall decrease during intervention visits; either no difference or the opposite 

difference occurred in low-contact subjects (Figures 3A and 3B). The change in alpha diversity 

between pre- and post-visit samples was significantly different in control versus intervention 

visits in high contact patients when measured with Faith’s metric (Kruskal Wallis p<0.05), but 
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not the Shannon metric or observed total taxa. A similar significant effect could be seen in 

therapy dog samples when using Faith’s metric (Kruskal Wallis p<0.01), with an overall increase 

in alpha diversity following control visits, and a decrease following intervention visits (Figure 

3.D-F). 

IV. Beta Diversity 

IV.a. Beta Diversity Distribution 

Supplemental Figure 4 shows the overall distribution of samples in principal coordinate 

analysis plots for both unweighted and weighted UniFrac beta diversity metrics, by hosts 

(pediatric subjects, dog or hospital environment), site, and pre- and post-visit status. Loose 

clustering was observed by host and sample site, but not by sample timing (pre vs. post). 

Clustering was also not observed by individual subject or visit date. Overall the axes accounted 

for a maximum of 7.8% variation in unweighted UniFrac and 33.5% variation in weighted 

UniFrac.  

IV.b. Beta Diversity Distance 

Pediatric subjects were more similar to other subjects after the visits, as evidenced by their 

reduced microbial composition beta diversity distance (PERMANOVA pre vs. post FDR-

p<0.001). Patients were also more similar to therapy dogs after the visits (PERMANOVA pre vs. 

post FDR-p<0.001). See example calculations in Supplemental Figure 5, and results in 

Supplemental Figure 6 and Supplemental Table 4.  

Subjects with high contact were more similar to other subjects (Figure 4A) and to the therapy 

dog (Figure 4C) after the visits, than to low contact subjects (unweighted UniFrac metric 

PERMANOVA FDR-p=0.0001-0.0003). The same pattern was observed in both control and 

intervention visits. Using a weighted UniFrac metric, high contact subjects were more similar to 
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other subjects in control visits (p=0.0005), but not in intervention visit (Figure 4B). The reverse 

trend was observed between patients and the dog, with both high and low contact patients more 

similar in microbial composition to the therapy dog following intervention visits (p=0.0001, 

0.0005) but not control visits (Figure 4D).   
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Discussion 

This study explored microbial transmission among pediatric oncology subjects and therapy 

animals in a hospital-based AAI program. This study is the first to report on sampling patients, 

therapy animals, and the hospital environment before and after a group AAI session, and the 

first to explore microbial community dynamics in this setting. Our data suggest that microbial 

sharing occurred during the AAI sessions, as microbial compositions of subjects were altered, 

both in overall diversity levels and relative abundance of specific taxa. We further explored the 

effect of contact level between patients and therapy dogs on the alteration of nasal microbial 

communities following visits, and logically found that higher contact was associated with 

increased sharing between subjects and therapy animals, and among subjects. Finally, we 

determined that an antiseptic decolonization intervention targeted to the therapy dog modifies 

the association between contact level and microbial sharing between therapy animals and 

subjects, and between subjects as well.  

I. Distinct Microbial Profiles and Shifts in Patients and Therapy Dogs 

Patients, therapy dogs, and the hospital environment had distinct microbial communities, as 

evidenced by differences in the relative abundance of key species, differences in alpha 

diversity, and unique clustering of microbial composition in beta diversity. Human and dog nasal 

sites tended to be dominated by a few taxa at relatively high abundance (namely 

Staphylococcus, Streptococcus, and Moraxella), and had distinct beta diversity clusters on 

PCoA plots. These data are confirmed from other studies that have evaluated the microbiome of 

human skin and nasal samples (Brooks 2017, Lax 2015, Adams 2015, Oberauner 2013).  

We observed microbial community shifts in pediatric subjects and therapy dogs during an AAI 

therapy session. This was demonstrated by the increase in within-sample alpha diversity levels 

in subjects and dogs, more similar microbial compositions between groups following the visits, 
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and changes in the relative abundance of certain taxa, specifically Staphylococcus. Beta 

diversity distance, represented by both unweighted and weighted UniFrac metric, was 

calculated as the difference in beta diversity between subject samples and between subject and 

dog samples. We then used these metrics as a proxy for the degree of microbial sharing 

between these hosts, as these metrics best indicated shifts in the microbial community structure 

that occurred during the visits. From these data, we found that subjects had more similar nasal 

microbial structure as other subjects and therapy dogs after the therapy visit compared to 

before, suggesting that sharing of microbiota occurred. Such sharing has been demonstrated in 

other human-animal microbiome studies, particularly those that evaluated pets in the home 

(Song 2013, Misic 2015). 

II. Closer Contact Between the Patient and Therapy Dog Increased Microbial Sharing 

Our data also suggest that patient-dog contact level modifies microbial sharing between 

subjects and therapy dogs, as well as between subjects. While contact level was primarily an 

indicator of the degree of interaction between a subject and a therapy animal, by extension it 

can also reflect the degree of contact that occurs between a patient and the hospital 

environment, other patients, and other aspects of the therapy visits (model shown in Figure 1). 

In other words, a subject with a high contact score will have higher contact with the therapy dog, 

as well as with other patients and individuals, including the therapy dog handler, and with the 

hospital environment. Thus, it is logical that high contact with the therapy animal suggests 

higher contact with the more general environment, and this was reflected in our data as being 

positively associated with increased microbial sharing.  

Our data suggest that high-contact patients with more interaction with various aspects of the 

therapy programs shared more microbes both with other patients and with the therapy dogs. 

This was demonstrated by an increase in within-sample alpha diversity and more similar beta 
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composition between samples. Interestingly, there were differences using phylogenetically 

weighted versus unweighted metrics. Faith’s Phylogenetic alpha diversity changes were greater 

than Shannon alpha diversity, suggesting that more phylogenetically distinct microbiota are 

driving the increased alpha diversity in subject samples. Our unweighted UniFrac distance 

appeared to show stronger microbial sharing between high contact patients and therapy dogs, 

and among high contact patients, while the phylogenetically weighted UniFrac distance 

appeared to show significant sharing of rare taxa among high-contact subjects, but not between 

humans and dogs.  

Taken together, these data suggest that bacteria are shared among humans, and between 

humans and dogs, in the AAI setting, but rare bacteria are less commonly shared between 

humans and dogs. Our PCoA distributions and relative abundance results, in addition to 

previous studies on pet dogs (Davis, 2016; Oh et al., 2015; Ross et al., 2018; Song et al., 2013), 

have shown that dogs have distinct microbial communities compared to humans. These 

differences could possibly drive the differences we observed in weighted beta metrics 

comparing subject-to-dog composition difference to subject-to-subject composition difference. 

These data therefore support the hypothesis that dogs can serve as intermediary vectors in the 

spread of human-origin common microbiota between patients, but may not be sharing their own 

unique microbiota with patients. However, significant sharing of rare taxa occurred among 

subjects in the AAI setting. These additional data suggest that the therapy animal is only one 

potential pathway by which microbes can be transmitted during these group AAI therapy 

sessions, with other pathways shown in Figure 1 potentially being more influential.  

III. Canine Decolonization Intervention Modified Microbial Sharing 

We tested a novel application of a topical chlorhexidine to therapy dogs and assessed how this 

canine decolonization intervention influenced microbial sharing between patients and dogs and 
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among patients. Our data preliminarily demonstrate that the dog microbial decolonization 

intervention modifies the observed relationship between contact level and microbial sharing. 

The decolonization intervention appeared to have influenced more phylogenetically distinct, rare 

taxa, as different outcomes were obtained using phylogenetically weighted versus 

phylogenetically unweighted diversity models. Within the intervention visits, microbial sharing of 

common taxa was still observed among subjects and between subjects and therapy dogs, as 

evaluated by the unweighted UniFrac distances. However, unlike in control visits, the weighted 

UniFrac distances suggest that rare taxa were not shared among subjects. Thus, the 

intervention appears to have blocked the sharing of rare phylogenetically diverse taxa between 

humans. High-contact subjects had more significantly decreased alpha diversity levels following 

intervention visits than in control visits, indicating that our canine-centered decolonization had 

indirect effects on the microbial diversity levels of human subject samples. These data are 

consistent with previous data on the effects of the hospital built-environment microbiome on 

patient microbial composition, and particularly those data regarding the influence of 

environmental cleaning regimens on patient microbiota (Brooks 2014, Ramos 2015, Dalton 

2020).  

Interestingly, following intervention visits, both high and low contact patients appeared to have 

more similar microbial compositions as therapy dogs, using the phylogenetically weighted 

UniFrac metric. This contrasts to control visits where subjects of both contact levels had less 

similar microbial communities to dogs. This difference is explained less by microbial sharing, as 

the effect of the disinfectant intervention on the dog’s microbiota. The decolonization selectively 

removes unique dog taxa from the dog itself, perhaps more easily allowing recolonization with 

the microbial community of the subjects. 

The intervention was also associated with changes in the abundance of specific taxa. High-

contact patients had higher relative abundance of staphylococcal species following intervention 
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visits compared to high contact patients following control visits. This change was primarily 

driven by S. epidermidis, a predominant human nasal and skin commensal, rather than S. 

aureus that can be more pathogenic. Because this metric compares relative rather than 

absolute abundance within each sample group, it is not surprising that human commensals are 

of greater relative abundance in intervention visits than control visits, since the subjects were 

exposed to fewer taxa from the therapy dog.  

Overall, while the intervention influenced microbial composition, diversity levels, and sharing 

among humans, it primarily exerted these effects by modulating the therapy dog’s microbial 

composition. If the therapy dog was the only or primary source of microbes that were transferred 

to patients during AAI sessions, we would expect to see reduced sharing of both common and 

rare taxa between patients and dogs following intervention visits when the therapy dog pathway 

is blocked. Since we only see this pattern with phylogenetically distinct, rare taxa, not common 

taxa, it appears more likely that the therapy dog serves as an intermediary point of microbial 

sharing, rather than a source of microbes. Thus, the dog is only one of many possible pathways 

of microbial sharing (Figure 1), and these other pathways may contribute more to microbial 

changes seen in subjects attending AAI visits. 

IV. Strengths, Limitations, and Future Directions 

While designed as a pilot study to assess feasibility, this study expressly targets microbial 

transmission that occurs during hospital AAI programs and the first to report on sampling 

multiple components before and after each visit. As such, these data provide a critical 

foundation for larger studies in this area. Previous studies have focused exclusively on carriage 

in the therapy animal or have assessed aggregated rates of infection diagnosis in departments 

with or without AAI programs (Dalton et al., 2020). By sampling multiple components—the 

patients, the therapy animals, and the hospital environment—we can begin to elucidate 
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exposure pathways from these individual data points. In addition to our novel sampling strategy, 

this is the first study to assess the effect of patient-dog contact on microbial sharing. Human-

animal contact level has been previously described as a risk factor for exposure and acquisition 

of pathogens in the case of pet ownership (Morris et al., 2012; Rodrigues et al., 2018). 

However, it was unknown if the same positive association would occur with the transient contact 

between patients and therapy animals. This study also benefits from the novel deployment of an 

established canine decolonization procedure, adapted from veterinary clinical protocols for 

canine patients with dermatopathologies. The intervention appeared to limit the spread of the 

therapy dog’s own unique microbiota to patients, and also reduced the therapy dog’s role as an 

intermediary vector in the spread of microorganisms between patients or other individuals and 

the hospital environment.  

This study does have practical limitations. As a feasibility study in preparation for a larger 

infection control trial, including the implementation of the decolonization intervention, it is limited 

by small sample size, particularly when considering the number of unique dogs. While our 

sampling was fairly extensive, sampling other sites, both on the subjects and in the hospital 

environment, as well as other individuals, such as healthcare workers and the handlers, may 

have provided additional data that supported alternative hypotheses. Multiple pathways 

depicted in Figure 1 are, in fact, quite challenging to examine, and blanket statements inferring 

directionality of transmission from therapy dogs to patients or vice-versa should be taken with 

appropriate caution. Finally, this experiment assessed microbial exposure and composition at 

one time point. Our data do not address if the changes observed during the visit will persist and, 

if so, for how long. These data also do not support claims regarding the health outcomes related 

to these microbial community shifts, particularly related to the exposure of potentially pathogenic 

microorganisms and to rare taxa from the therapy dog.    
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Future work on this topic will expand to studying AAI sessions that involve only one child per 

dog, thus providing more controlled insight into potential microbial transmission pathways, and 

increase the generalizability of findings to other situations. Studies that sample within different 

hospital departments with varying compositions of patients, and various hospitals will also be 

required to increased generalizability. Lastly, longitudinal studies are required to explore the 

temporal stability of these microbial shifts observed in patients and determine if it leads to 

clinically significant outcomes. Such longitudinal studies are especially important when 

considering the exposure to rare dog taxa, given that early-life exposure to pets is associated 

with decreased incidence of allergic and atopic diseases in children (Havstad et al., 2011; 

Mandhane et al., 2009), and having a diverse microbiome is protective against numerous health 

outcomes and can be protective against colonization from pathogens (Grice & Segre, 2011; 

Naik et al., 2012). If such data suggest that exposure to therapy animals, even briefly during AAI 

programs, can benefit microbial diversity and microbial community resilience over a longer-term, 

this will be a previously undescribed benefit to AAI and may increase its utilization in patient 

care.  
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Conclusion 

These findings indicate that, while there is presumed microbial sharing between pediatric 

patients and therapy dogs, and while the therapy dog has the potential to serve as an 

intermediary vector of microbial spread, other potential transmission pathways (patient-to-

patient, and environment-to-patient) also appear to contribute to microbial sharing during group 

AAI visits. Our results also suggest that the therapy dog could be a source of more unique 

microbes to patients. As hospital exposure and certain therapies decrease microbial diversity in 

patients, therapy dog exposure may provide a novel way to mitigate this imbalance and transmit 

potentially beneficial microorganisms that could be protective against hospital pathogen 

colonization and infection. This study shows that microbial community alterations in patients and 

therapy dogs during these therapy programs warrants additional research, which will make 

these programs safer and more sustainable.  
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Table 1: Study Population and Samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

*45 patients with microbial samples collected, 23 in control and 22 in intervention 
  

  All Visits Control Visits 
Intervention 

Visits 

Study Population       

Patients   N (% total) N (% total) 

N total sampled 49 *45 26 (53%) *23 23 (47%) *22 

Male (%) 31 (63%) 15 (58%) 16 (69%) 

Age (y), mean (range) 11.68 (1.9-20.4) 11.07 (1.9-18.4) 12.41 (3.5-20.4) 

High Contact (%) 25 (51%) 12 (46%) 13 (56%) 

Visits   N (% total)   N (% total)   

Total 13 8 (62%) 5 (38%) 
Patients per visit, 
mean (range) 3.77 (2-6) 3.25 (2-5) 4.6 (3-6) 

Therapy Dogs       

N Unique Dogs 4     

Male (%) 1 (25%)     

Age (y), mean (range) 6.43 (1.5-12)     

Samples       

From Patients 79 43 (54%) 36 (46%) 

From Dogs 26 16 (62%) 10 (38%) 

From Environment 24 14 (58%) 10 (42%) 

Total Samples 129 73 (57%) 56 (43%) 

Field Blanks 12 7 (58%) 5 (42%) 

Laboratory Controls 21     

Total Controls 33   
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Figure 2: Relative Abundance of Top 20 Genera   

 

*** Benjamini-Hochberg adjusted p-values <0.001 for differential abundant genera using a 
negative binomial model (DESeq) between sample sites   
Within Patients: Blue *** = higher in post samples, Red *** = higher in pre samples 
Mean total DNA concentration in patients in control = 6.28, in intervention = 4.42 (ng/ul) 
Mean qPCR 16S gene copies in patients in control = 22254, in intervention = 8691 (/ul DNA) 
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Figure 3: Alpha Diversity by Sample Host and Site, and Within Patient Samples  

 

Thin lines = within subject changes, bold lines = aggregated group means 
** Kruskal-Wallis test p<0.05 for median difference in change in alpha diversity level (post-pre) 
in control vs intervention (in high contact patients and dogs) 
 

 

 

 

  

** 

** 

** 

** 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.21250541doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21250541


Figure 4: Beta Distance for Microbial Composition Difference, by Contact Level and Visit 
Type (post – pre visit) 

 
  
PERMANOVA model p value results for difference in microbial composition beta distance 
between patients pre compared microbial composition beta distance between patients post visit 
(kid-kid) or difference in microbial composition beta distance between patients and therapy dogs 
pre compared microbial composition beta distance between patients and therapy dogs post visit 
(kid-dog), within each stratification (visit type and contact level). 
Refer to Supplement Figure 3&4 for example calculations and pre/post distances 
BOLD FDR-corrected p <0.005 
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