1	The effect of Alzheimer's disease-associated genetic variants on longevity		
2			
3	Niccolò Tesi ^{1,2,3} , Marc Hulsman ^{1,2,3} , Sven J. van der Lee ^{1,2} , Iris E. Jansen ^{1,4} , Najada Stringa ⁵ , Natasja M. van Schoor ⁵ ,		
4	Philip Scheltens ¹ , Wiesje M. van der Flier ^{1,5} , Martijn Huisman ⁵ , Marcel J. T. Reinders ³ , and Henne Holstege ^{1,2,3}		
5			
6	¹ Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit		
7	Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands		
8	² Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam,		
9	Amsterdam UMC, Amsterdam, The Netherlands		
10	³ Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands		
11	⁴ Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU, Amsterdam, The		
12	Netherlands		
13	⁵ Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam,		
14	The Netherlands		
15			
16	Keywords: cognitively healthy, centenarians, aging, Alzheimer's disease, effect on aging, protective variants		
17			
18	Corresponding Author		
19	Dr. Henne Holstege		
20	Alzheimer's Center Amsterdam		
21	Amsterdam UMC		
22	De Boelelaan 1118		
23	1081 HZ, Amsterdam, The Netherlands		
24	Tel: +31 20 4440816		
25	Email: h.holstege@amsterdamumc.nl		
26			

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

27 Abstract

The genetics underlying human longevity is influenced by the genetic risk to develop -or escape- age-related diseases. As Alzheimer's disease (AD) represents one of the most common conditions at old age, an interplay between genetic factors for AD and longevity is expected.

We explored this interplay by studying the prevalence of 38 AD-associated single-nucleotide-polymorphisms
 (SNPs) identified in AD-GWAS, in self-reported cognitively healthy centenarians, and we replicated findings in the

33 largest GWAS on parental-longevity.

34 We found that 28/38 SNPs identified to associate with increased AD-risk also associated with decreased odds of longevity. For each SNP, we express the imbalance between AD- and longevity-risk as an effect-size distribution. 35 36 When grouping the SNPs based on these distributions, we found three groups: 17 variants increased AD-risk more 37 than they decreased the risk of longevity (AD-group): these variants were functionally enriched for β -amyloid 38 metabolism and immune signaling, and they were enriched in microglia. 11 variants reported a larger effect on 39 longevity as compared to their AD-effect (Longevity-group): these variants were enriched for endocytosis/immune 40 signaling, and at the cell-type level were enriched in microglia and endothelial cells. Next to AD, these variants 41 were previously associated with other aging-related diseases, including cardiovascular and autoimmune diseases, 42 and cancer. Unexpectedly, 10 variants associated with an increased risk of both AD and longevity (Unexpected-43 group). The effect of the SNPs in AD- and Longevity-groups replicated in the largest GWAS on parental-longevity, 44 while the effects on longevity of the SNPs in the Unexpected-group could not be replicated, suggesting that these 45 effects may not be robust across different studies.

46 Our study shows that some AD-associated variants negatively affect longevity primarily by their increased risk of

47 AD, while other variants negatively affect longevity through an increased risk of multiple age-related diseases,

48 including AD.

49 Introduction

50 The human lifespan is determined by a beneficial combination of environmental and genetic factors.^{1,2} Long-lived 51 individuals tend to cluster in families, suggesting that the role of the genetic factors is considerable,^{3,4} however, 52 the research of genetic variants that influence human lifespan has yielded contrasting results: only the longevity-53 association of the APOE alleles and few additional variants consistently replicated across studies (CDKN2B, ABO).^{5,6} 54 While the replication rate in independent studies is low, a large collection of genetic variants has been associated 55 with longevity through genome-wide association studies (GWAS).^{5,6} The majority of these variants was previously 56 identified to associate with other age-related conditions, including cardiovascular disease, autoimmune and 57 neurological disorders, suggesting that the genetics underlying human longevity depends on a low risk for several 58 age-related diseases.^{2,5,6}

59 Of all age-related diseases, late-onset Alzheimer's Disease (AD) is the most common type of dementia and one of 60 the most prevalent causes of death at old age.⁷ The largest risk factor for AD is aging: at 100 years of age, the 61 disease's incidence is about 40% per year.⁸ Genetic factors play a significant role in AD as heritability was estimated 62 to be 60-80%? the strongest common genetic risk factor for AD is the APOE- $\varepsilon 4$ allele, and large collaborative 63 GWAS have identified ~40 additional common variants associated with a slight modification of the risk of AD.¹⁰⁻¹³ 64 Despite high incidence rates of AD at very old ages, AD is not an inevitable consequence of aging, as demonstrated 65 by individuals who surpass the age of 100 years with high levels of cognitive health.¹⁴

66 As AD-associated variants increase the risk of AD, leading to earlier death, a negative effect on longevity for these 67 variants is to be expected. However, apart from APOE alleles, genetic variants that influence the risk of AD were 68 not found to affect the human lifespan in previous GWAS. When assuming that AD-associated variants affect AD 69 only and that these variants' effect is constant during aging, then the effect on longevity for these variants should 70 be proportional to their effect on AD, albeit in a different direction. In other words, if a variant increases the risk 71 of AD 2-fold, then carriers will have twice as much AD-related mortality as non-carriers, and as a consequence 72 (given the assumptions), they will have twice as little chance to age into a cognitively healthy centenarian. For 73 example, variant rs72824905 (Pro522Arg) in the PLCG2 gene was recently found to decrease the risk of AD 1.75-fold, 74 1.63-fold frontotemporal dementia, and 1.85-fold dementia with Lewy bodies, while being associated with a 1.49-75 fold increased likelihood of longevity.¹⁵ For a variant that is protective against multiple conditions, it might be 76 expected that the overall effect on longevity should be larger than the inverse of the effect on AD alone.

We have previously shown that cognitively healthy centenarians are depleted with genetic variants that increased the risk of AD compared to a general population; however, the extent of depletion was variant specific, suggesting that a subset of AD-variants may be specifically beneficial to reach extremely old ages in good cognitive health.^{16,17} There is, however, little evidence of an age-dependent effect for AD variants and the extent to which these variants affect other age-related diseases is mostly unknown.¹⁸ Using the assumption of effect-size proportionality, we set out to investigate the relationship between AD- and longevity- risk for genetic variants associated with AD.

83

84 Methods

85 **Populations and selection of genetic variants**

86 We included N=358 centenarians from the 100-plus Study cohort, which comprises Dutch-speaking individuals 87 aged 100 years or older who self-report to be cognitively healthy, which is confirmed by a proxy.¹⁴ As population 88 controls, we used population-matched, cognitively healthy individuals from five studies: (i) the Longitudinal Aging Study of Amsterdam (LASA, N=1,779),^{19,20} (*ii*) the memory clinic of the Alzheimer center Amsterdam and SCIENCe 89 project (N=1,206), 21,22 (iii) the Netherlands Brain Bank (N=40), 23 (iv) the twin study of Amsterdam (N=201)²⁴ and (v) 90 91 the 100-plus Study (partners of centenarian's children, N=86).¹⁴ See Supplementary Methods: Populations for a 92 detailed description of these cohorts. Throughout the manuscript, we will refer to the union of the individuals from 93 these five studies as population subjects. The Medical Ethics Committee of the Amsterdam UMC (METC) approved 94 all studies. All participants and/or their legal representatives provided written informed consent for participation 95 in clinical and genetic studies.

Genetic variants in our populations were determined by standard genotyping and imputation methods. After establishing quality control of the genetic data (see *Supplementary Methods: Quality control*), 2,905 population subjects and 343 cognitively healthy centenarians were left for the analyses (*Table 1*). We then selected 41 variants representing the current genetic landscape of AD (*Table S1*).¹³ We restricted our analysis to high-quality variants with a minor allele frequency >1% in our cohorts, which led to the exclusion of 3/41 variants (rare variants in the *TREM2* gene *rs143332484* and *rs75932628* and *ABI3* gene *rs616338*), leaving 38 variants for the analyses.

102

103 AD and longevity variant effect sizes

We first retrieved the effect-size on AD (E_{AD}^k) for each AD variant, k, from a large genome-wide meta-analysis of AD.¹³ To estimate a confidence interval, we bootstrapped the published effect-sizes (log of odds ratios) and their respective standard errors (*B*=10,000).

107 To calculate the effect-size on longevity (E_{LGV}^k) for the same variants, we used a logistic regression model with 108 cognitive healthy centenarians as cases and population subjects as controls while adjusting for population 109 stratification (PC 1-5). The number of principal components to include as covariates was arbitrarily chosen; 110 however, as all individuals were population-matched, we expected these components to correct all major 111 population effects. The resulting *p*-values were corrected for multiple testing (False Discovery Rate, FDR). To 112 calculate the confidence interval, we repeated this procedure for bootstraps (B=10,000) of the data. For 113 convenience, variant effect-sizes on AD and longevity were calculated with respect to the allele that increases the 114 risk of AD, such that $E_{AD}^k > 0$.

Given a variant k, with a relative effect-size on AD (E_{AD}^k) and on longevity (E_{LGV}^k), we defined that the variant has an *expected direction* if the variant increases the risk of AD, *i.e.* $E_{AD}^k > 0$, and at the same time decreases the risk of longevity, *i.e.* $E_{LGV}^k < 0$. Inversely, we define that the longevity effect has an *unexpected direction* if the allele that increased AD risk also increased the risk of longevity, *i.e.* $E_{AD}^k > 0$ and $E_{LGV}^k > 0$. The probability of observing an *expected direction* was considered a Bernoulli variable with p=0.5 (*i.e.* equal chance of having an *expected/unexpected* direction), thus the number of variants with an *expected direction* follows a binomial distribution.

122

123 Imbalance of variant effect direction

We represented each variant as a data point whose coordinates were defined by the variant's effect on AD (E_{AD}^{k} , on the y-axis) and its effect on longevity (E_{LGV}^{k} , on the x-axis). See *Figure S1* for an example. For each variant, we then calculated the normalized angle, α_{k} , of the vector representing the data point with the x-axis: $\alpha_{k} = \frac{atan2(E_{AD}^{k}, E_{LGV}^{k})}{\pi/2} + 1$, with $\alpha_{k} \in [-1; 1]$. This normalized angle relates to the imbalance between the risk of AD and the risk of longevity. That is, for $\alpha_{k} < 0$ the variant has an expected direction, while for $\alpha_{k} > 0$ the variant has an unexpected direction.

As the effect-sizes are sample estimates, we subsequently took their confidence interval into account to create,
for each variant, a distribution of the imbalance in the effect direction (*IED*). Hereto, we assumed a Gaussian

density for both E_{AD}^k and E_{LGV}^k , centered around \overline{E}_{AD}^k and \overline{E}_{LGV}^k and with a variance equal to the estimated 132 133 confidence interval for both effect sizes, respectively. We sampled 10,000 times from these distributions and 134 calculated the corresponding imbalance (α_k) , to get a (non-Gaussian) distribution of the *IED* for that variant, *IED*_k. 135 To group variants with similar patterns of their *IED* distributions, we ordered the *IED* by their median value $I\widetilde{ED}_k$, 136 and defined a group of variants in which the effect sizes were in the expected direction ($I\tilde{E}D_k \leq 0$), which we 137 subsequently split in those that have (i) a larger effect on longevity as compared to the effect on AD ($I\tilde{E}D_k \leq -1/2$, 138 Longevity-group), and those that have (ii) a larger effect on AD as compared to the effect on longevity 139 $(-1/2 < I\widetilde{ED}_k \le 0, AD$ -group). We defined a third group of variants that have an effect in the unexpected direction 140 $(I\widetilde{E}D_k > 0, Unexpected-group).$

141

142 Linking variants with functional clusters

143 To investigate each variant's functional consequences, we calculated the variant-pathway mapping, which 144 indicates the degree of involvement of each genetic variant in AD-associated pathways (Figure S2). See 145 Supplementary Methods: variant-pathway mapping for a detailed explanation of our approach. Briefly, the variant-146 pathway mapping depends on (i) the number of genes each variant was associated with and (ii) the biological 147 pathways each gene was associated with. We calculated the variant-pathway mapping for all 38 AD-associated 148 variants. Finally, we compared the variant-pathway mapping within each group of variants defined based on the 149 *IEDs* (Longevity-, AD- and Unexpected-groups) using Wilcoxon sum rank tests and correcting *p*-values using FDR: 150 this was indicative of whether a group of variants was enriched for a specific functional cluster (Figure S2).

151

152 Cell-type annotation at the level of each cluster

To further explore the biological basis of the different groups of variants (Longevity-, AD- and Unexpected-groups), we calculated the degree of enrichment of each group for specific brain cell-types (see *Supplementary Methods: cell-type annotation* for a detailed description). This annotation depends on the number of genes each variant was associated with, and the expression of these genes in the different brain cell-types, *i.e.* astrocytes, oligodendrocytes, microglia, endothelial cells, and neurons. We finally compared the cell-specific annotations within each group of variants (Longevity-, AD- and Unexpected-groups) using Wilcoxon sum rank tests and correcting *p-values* using FDR, which indicated whether a group of variants was enriched for specific brain cell-types (*Figure S2*).

160

6

161 **Replication of findings in large GWAS cohorts**

162 To find additional evidence for our findings, we inspected the association statistics of the 38 AD-associated 163 variants in the largest GWAS on parental longevity.⁶ Briefly, in this study offspring's genotypes were used to model 164 parental age at death. In this dataset, we looked at the significance of association with longevity for the 38 variants 165 (p-values were corrected with FDR) and their direction of effect. Finally, we tested the consistency in the 166 expected/unexpected directions between our study and the GWAS on parental longevity using binomial tests.

167

168 Implementation

- 169 Quality control of genotype data, population stratification analysis and relatedness analysis were performed with 170 PLINK (v2.0 and v1.9). All subsequent analyses were performed with R (v3.6.3), Bash, and Python (v3.6) scripts. All 171 scripts are freely available at https://github.com/TesiNicco/Disentangle AD Age. Variant-gene annotation and 172 gene-set enrichment implemented in stand-alone package available at analyses are а 173 https://github.com/TesiNicco/AnnotateMe. Annotation and gene-set enrichment analysis of SNP-sets can also be 174 run on our web-server at https://snpxplorer.eu.ngrok.io.
- 175

176 Results

177 AD-associated variants also associate with longevity

178 We explored the association with longevity of 38 genetic variants previously associated with AD in GWAS (Table 179 *S1*). We tested these variants in 343 centenarians who self-reported to be cognitively healthy (mean age at inclusion 180 101.4±1.3, 74.7% females), as opposed to 2,905 population subjects (mean age at inclusion 68.3±11.5, 50.7% 181 females). We found a significant association with longevity for two variants after multiple testing correction 182 (FDR<5%, variants in the APOE gene; rs429358 and rs7412, Table S2). We compared the direction of effect on 183 longevity with that on AD as found in literature: of the 38 variants, 28 showed an association in the expected 184 direction, *i.e.* alleles that increased AD risk were associated with lower odds of longevity, and this was significantly 185 more than expected by chance (p=0.005 including APOE variants, p=0.01 excluding APOE variants, see Methods).

186

187 Distributions of the imbalance in the effect direction (IED)

188 To study the relationship between the effect on AD and longevity for all 38 AD-associated variants in more detail,

189 we created distributions of the imbalance in the variant effect direction (IED): Figure 1. The IED of a variant

190 indicates whether the effects on AD and longevity are in the expected direction (values<0) or in the unexpected 191 direction (values>0). A variant with an IED value approaching 0 has a pure AD effect (AD-end), while a variant 192 with values IED value close to -1 has a pure longevity effect (Longevity-end); see Methods for a detailed 193 explanation. Based on the median value of each IED distributions, IED_k , we grouped the variants into (i) a 194 Longevity-group (variants with a IED_k skewed towards the longevity-end of the spectrum), (ii) an AD-group 195 (variants with a $I\widetilde{ED}_k$ skewed towards the AD-end of the spectrum), and (iii) an Unexpected-group (variants with 196 a \widetilde{IED}_k in the unexpected direction). The AD-group included 17 variants (APOE (1), APOE (2), SCIMP, PLCG2 (1), 197 MS4A6A, BIN1, PILRA, APP, PLCG2 (2), CR1, SLC24A4, TREML2, ACE, APH1B, FERMT2, PICALM, CD33) and the 198 longevity-group included 11 variants (SHARPIN (1), SHARPIN (2), HS3ST1, EPAH1, IQCK, PRKD3, CD2AP, PLCG2 (3), 199 SPI1, HLA, EDHDC3), such that the effect of 28/38 (74%) of all variants was in the expected direction. The effect of 200 10 variants was in the unexpected direction, the Unexpected-group: (PTK2B, CLU, KANSL1, INPP5D, ABCA7, CHRNE, 201 SORL1, IL34, ADAM10, CASS4) (Figure 1).

202

203 AD-associated variants in large GWAS of longevity

204 To find additional evidence for longevity associations, we inspected the AD-associated variants' effect in the 205 largest GWAS on parental longevity.⁶ Of the 38 AD-associated variants, association statistics were available for 34 206 of the variants (missing from longevity-group: PLCG2 (3), SPI1; missing from Unexpected-group: KANSL1, INPP5D). 207 Overall, 21/26 (81%) of the variants in the expected direction in our study (of which 6/9 variants in Longevity- and 208 15/17 variants in the AD-group), were also in the expected direction in the independent parental longevity dataset. 209 Variants in the expected direction in the first analysis are significantly more likely to be in the expected direction 210 in the replication analysis than in the unexpected direction (p=0.01, based on a binomial test, Figure 3). Six AD-211 associated variants reached significance in the parental-longevity GWAS after correcting for multiple comparisons 212 (FDR<5%): variants in the APOE gene (rs429358 and rs7412) and variants in/near PRKD3 (rs8764613), CD2AP 213 (rs9381564), APH1B (rs117618017) and BIN1 (rs6733839). Of these, variants in/near PRKD3 and CD2AP belonged to the 214 Longevity-group in our analysis.

Conversely, only 2/8 (25%) variants that we observed in the unexpected direction in our study were also in the unexpected direction in the parental-longevity GWAS, such that these variants were *not* more likely to be in the unexpected direction (p=0.29, based on a binomial test, *Figure 3*).

218

219 **Functional characterization of variants**

220 The 38 AD-associated variants included coding variants (N=10), intronic variants (N=20), and intergenic variants 221 (N=8) (Table S3). 12/28 of the intronic/intergenic variants had eQTL associations. In total, the 38 variants mapped 222 to 68 unique genes, with most variants mapping to one gene (N=21) and fewer mapping to 2 genes (N=10), 3 genes 223 (N=2), 4 genes (N=1), 5 genes (N=2), 6 and 7 genes (N=1, respectively) (Figure S3 and Table S3). 224 We performed gene-set enrichment analysis using a sampling-based approach to explore the biological processes 225 enriched in the 68 genes associated with AD-variants (see *Methods* and *Figure S2*). We found 115 significantly 226 enriched biological processes after correction for multiple tests (FDR<5%, *Table S4*). After clustering these terms 227 based on their semantic similarity, we found four main clusters of biological processes: (i) β -amyloid metabolism, 228 (ii) lipid/cholesterol metabolism, (iii) endocytosis/immune signaling and (iv) synaptic plasticity (Figure 1, Figure S4 229 and Table S5). 230 Next, we calculated the variant-pathway mapping score (see Methods and Figure S2), which indicates how well a 231 variant is associated with each of the 4 functional clusters. In total, we calculated the variant-pathway mapping 232 for 30 variants; we imputed the annotation of 6 variants (Table S5 and Table S5), while 2 variants could not be 233 annotated (variants rs7185636 and rs1582763 in/near IQCK and MS4A6A genes), because the associated genes were 234 not annotated with any biological process function (*Table S5*). Finally, we tested whether the Longevity-, AD- and 235 Unexpected-groups were enriched for specific functional clusters by comparing the distribution of variant-236 pathway mapping within each group (see *Methods, Figure 2*, and *Figure S2*). The Longevity-group was significantly 237 (FDR<10%) enriched for the endocytosis/immune signaling functional cluster; the AD-group for the 238 endocytosis/immune signaling, β -amyloid metabolism and to a smaller extent for the synaptic plasticity

239 functional clusters; the Unexpected-group was mainly enriched for the endocytosis and β -amyloid metabolism 240 functional clusters.

241

242 Expression of AD-associated genes in brain cell-types

243 We explored whether specific brain cell types, *i.e.* astrocytes, oligodendrocytes, microglia, endothelial cells and 244 neurons, were enriched within each group of variants (see Methods, Table S5, and Table S6). Figure 1 shows the 245 collapsed cell-type expression for all 38 AD-associated variants. We then tested the enrichment for cell-type 246 expression within the Longevity-, AD- and Unexpected-groups. The Longevity-group was significantly enriched for

247 myeloid and endothelial cells, the *AD*-group for myeloid cells, while the Unexpected-group was significantly
248 enriched for endothelial cells (FDR<10%).

249

250 Discussion

251 Summary of the findings

252 We studied the effect on longevity of 38 genetic variants previously associated with AD through GWAS.¹³ We found 253 that a majority of 74% of the alleles that increase the risk of AD is associated with lower odds of becoming a 254 centenarian (expected direction). Overall, most variants (N=17) had a larger effect on AD than on longevity: these 255 variants were associated with β -amyloid metabolism and endocytosis/immune signaling, and were primarily 256 expressed in microglia. A subset of variants (N=11) had a larger effect on longevity than their effect on AD. These 257 variants were associated mostly with endocytosis and immune signaling, and they were expressed in microglia and 258 endothelial cells. These variant-effects were confirmed for 81% of the alleles in an independent dataset, the largest 259 GWAS on parental longevity. In contrast, 26% of the variants increased both the risk of developing AD and the risk 260 of becoming a centenarian (n=10), (unexpected direction). These unexpected effects could only be replicated for 2 261 of the variants in the independent dataset, suggesting that the expected effects were more robust across studies 262 than the unexpected effects. Together, our findings suggest that variants associated with AD-risk may also be 263 linked with the risk of other age-related diseases, and that survival/longevity is affected by these variants.

264

265 AD-associated variants and their effect on healthy aging

266 A single study previously explored the extent to which 10 AD-associated variants affect longevity: apart from APOE 267 locus, none of the other 10 tested AD-associated variants significantly associated with longevity.²⁵ In addition to 268 APOE, four variants showed a negative effect on longevity while increasing AD-risk (in/near ABCA7, EPHA1, CD2AP, 269 and CLU). In agreement with these findings, we also found that only the APOE variants significantly associated 270 with longevity, and variants in/near EPHA1 and CD2AP belong to the Longevity-group. However, in our study, we 271 found that most alleles associated with an increased risk of AD associated with a decreased chance of longevity. 272 The inability to observe such an inverse relationship between variant effects on AD and longevity in the previous 273 study may be explained by the relatively small sample sizes, combined with a low number of (well-established) AD 274 variants analyzed (N=10). In our study, groups sizes were also relatively small, but the centenarians had a relatively

high level of cognitive health, which might have contributed to an increased effect size of AD-associated genetic

276 variants in our comparison.^{16,17}

277

278 Different trajectories of effect of AD-associated variants on healthy aging

279 Variants with a larger effect on AD than longevity:

280 For most variants with effects in the expected direction, the risk-increasing effect on AD was more extensive than 281 the negative effect on survival/longevity. These variants, which include both APOE alleles, might negatively affect 282 lifespan because carriers are removed from the population with increasing age due to AD-associated mortality. For 283 the APOE variants specifically, the distribution of the imbalance in the effect directions suggests a nearly similar proportion of the increased risk of AD and decreased risk of longevity for both APOE variants ($I\tilde{E}D_k \approx -1/2$). This 284 285 explains why multiple previous studies have associated APOE variants with longevity. In our cohort of centenarians, 286 the frequency of the deleterious $\varepsilon 4$ allele is half of that of the population controls (8% vs. 16%, respectively). In 287 comparison, the frequency of the protective ε_2 allele is nearly two-fold increased (16% vs. 9%).¹⁶ Note, however, 288 that inclusion criteria of the centenarian cohort required them to self-report to be cognitively healthy, which might 289 have increased the observed longevity effect. Apart from the APOE variants, the AD-group included 15 variants, all 290 of which were among the first to be associated with AD through GWAS (CR1, CD33, BIN1, MS4A6A, PICALM, and 291 *SLC24A4*).^{26,27} These common variants have the strongest associations with AD: largest odds ratios (OR) leading to 292 lowest p-values. Functional annotation showed significant enrichment of β -amyloid metabolism, which aligns 293 with the importance of functional APP metabolism in maintaining brain health. We also observed functional 294 enrichment of endocytosis and immune signaling, and a specific cell-type enrichment for microglia. This is in line 295 with the currently growing hypothesis of the involvement of immune dysfunction in the etiology underlying AD.28,29 296

297

298 Variants with a larger effect on longevity than AD

The second-largest group of variants constituted a subset of 11 variants with a larger effect on longevity than the effect on AD, which suggests that these variants may be involved in other age-related diseases or general agerelated processes. The AD-association of most of these variants is relatively recent, likely due to small effect sizes (ORs) or variants rareness (low minor allele frequency, MAF); both features necessitate a very large number of samples to identify these variants as significantly associating with the disease. The variants within this group were

specifically enriched for immune response and endocytosis, which are known hallmarks of longevity.^{1,30,31} In 304 305 addition to the rare non-synonymous variant in the PLCG2 gene (rs72824905, MAF: 0.6%), which was recently 306 observed to be protective against AD, frontotemporal dementia (FTD) and dementia with Lewy bodies, other 307 variants within this group were previously linked with disease risk factors. One of the two non-synonymous 308 variants in the SHARPIN gene, variant rs34173062 (MAF: 5.7%), has been associated with respiratory system 309 diseases in GWAS.³²⁻³⁴ Variant rs7185636 (MAF: 17.1%), intronic of the IQCK gene, is in complete linkage with a 310 variant (rs7191155, R²=0.95), which was previously associated with body-mass index (BMI).³⁵ The variant rs876461 311 (MAF: 13.0%) near the *PRKD3* gene is in linkage with variant rs13420463 (R²=0.42), which has been associated with 312 systolic blood pressure.³⁶ Further, the variant near CD2AP gene associates with the development and maintenance 313 of the blood-brain barrier, a specialized vascular structure of the central nervous system which, when disrupted, has been linked with epilepsy, stroke and AD.³⁷ Variant rs9275152 (MAF: 10.4%) maps to the complex Human-314 315 Leukocyte-Antigen (HLA) region, which codes for cell-surface proteins responsible for the regulation of the 316 adaptive immune system. In numerous GWAS, variants in the HLA region were associated with autoimmune 317 diseases, cancer, and longevity.^{6,38} The AD-associated variant in this region (rs9275152) is also a risk variant for 318 Parkinson's disease.³⁹ Finally, the genomic region surrounding the SPI1 gene (in which variant rs3740688 maps) has been previously associated with cognitive traits (intelligence, depression)^{40(p300)} and, with lower evidence, with 319 320 kidney disease and cancer.^{41,42} The remaining variants rs56402156, rs7920721, and rs4351014 (in/near EPHA1, ECHDC3, 321 and HS3ST1) have not been directly associated with other traits, although their associated genes were implicated 322 in systemic lupus erythematosus (HS3ST1) and cancer (EPHA1, ECHDC3).^{43,44(p1),45} Together, these findings suggest 323 that the counterpart of each risk-increasing allele, the AD-protective alleles, might give a survival advantage that 324 is not only specific to AD. Their functional and cell-type annotations suggest that they contribute to the 325 maintenance of regulatory stimuli in the immune and endosomal systems, which may be essential to maintain 326 brain and overall physical health, necessary to reach extremely old ages in good cognitive health.¹⁷

327

328 Variants associated with increased risk of AD and increased longevity risk: unexpected group.

329 Unexpectedly, ten variants increased the risk of AD while at the same time increasing the chance to reach ages 330 over 100 in good cognitive health, which is an unexpected balance. We note that the IED distributions of these 331 variants were broad, and in some cases even showed a bimodal behavior (in/near KANSL1, IL34, CHRNE): this is 332 attributable to the small effect-sizes (and large standard errors) on longevity for these variants, which caused data

points to easily flip between the expected and unexpected direction during the sampling procedure. Replication of the direction of the variant effect in an independent dataset of parental longevity indicated that the unexpected direction was replicated in only the *CLU* and *CHRNE* variants, suggesting that future studies will have to further explore (the robustness of) these unexpected effects.

337 One explanation for such counter-intuitive effects may be a variant interaction with other variants, which was 338 shown for the variant in the *KANSL1* and *CLU* gene with respect to the *APOE* genotype.⁴⁶ Therefore, carrying the 339 risk allele of such variants may specifically affect the risk of AD in *APOE* $\varepsilon 4$ allele carriers, which are not prevalent 340 among cognitively healthy centenarians.

341 An alternative explanation may be that these variants have age-dependent effects: for example, high blood 342 pressure at midlife increases the risk of AD, but after the age of 85 a high blood pressure protects against AD.⁴⁷ Similarly, a high body-mass-index (BMI) increases the risk of AD at midlife, while being protective at older ages.⁴⁸ 343 344 In line with this hypothesis, the AD variant in/near IL34 gene codes for a cytokine that is crucial for the 345 differentiation and the maintenance of microglia.⁴⁹ Although further studies are needed, an excessive 346 differentiation in middle-age individuals may increase brain-related inflammation and AD-risk, while it might 347 compensate for the slower differentiation and immune activity at very old ages. Indeed, next to IL34, several genes 348 that may be affected by these Unexpected-variants, such as PTK2B and INPP5D, play a role in aging-associated 349 processes, such as cellular senescence or immunity.^{50,51}

350

351 Strengths and weaknesses

352 We acknowledge that our findings are based on relatively small sample sizes, especially for the cognitively healthy 353 centenarian group. This phenotype is rare, and individuals need to be individually approached for study inclusion,¹⁴ 354 which is prohibitive for large sample collection. As population subjects in our comparison, we used individuals from 355 five different cohorts: all from the same (Dutch) population, all tested cognitively intact, and did not convert to 356 dementia at the time of analyses. Analyses of variants with low sample sizes in small samples lead to effect sizes 357 large confidence intervals: we took this uncertainty into account by bootstrapping effect sizes, causing the 358 distributions of the imbalance in the variant effect direction of several variants to be widely spread. Although our 359 work represents a first step towards understanding the effect of AD-associated variants on longevity, similar 360 analyses in larger oldest-old or centenarian samples are necessary to support our findings further. Secondly, we 361 had to deal with the problem in GWAS studies, that the driving effect underlying the AD-association of each

362 variant is unclear. Several genes usually map to a specific GWAS locus, represented by one variant. Therefore, to 363 accommodate this uncertainty, we allowed multiple genes mapping to the GWAS locus to be associated with each 364 variant. The subsequent functional annotation of these genes is mainly dependent on the current (limited) 365 knowledge about variant effect and genes function. It is thus likely that our variant-function annotation will 366 change as we gain more understanding about these variant-gene-effects, as well as annotations of gene-functions. 367 When we inspected the parental-longevity GWAS, most of the variants that were in the expected direction in our 368 study were also in the same direction in the GWAS; however, this was not true for all variants. The variant that 369 deviated the most between our study and the parental-longevity GWAS was rs9275152 in the HLA region: while we 370 clustered this variant in the Longevity-group, in the parental-longevity GWAS the direction of effect was opposite 371 (*i.e. unexpected*), suggesting that the variant increased the risk of AD and at the same time the chance of a long 372 lifespan.⁶ The genomic region to which HLA maps is biologically known to be affected by many recombination events and may be population- and environment-dependent, which may explain this divergence.⁵² In addition to 373 374 HLA-variant, variant rs34674752 in the SHARPIN gene reported the second-largest effect-size in our study (after 375 APOE- ϵ 4), while the effect-size of this variant in the GWAS was very small, yet in the expected direction. To this 376 end, we note that the individuals used in the parental-longevity GWAS were themselves not extremely old 377 individuals, such that possible pleiotropic effects at very old ages, as described earlier, may not be observable in 378 this GWAS. However, while we observed overall consistency in effect-size direction for variants in the expected 379 direction, 6/8 of the variants in the unexpected direction were in the expected direction in the GWAS, with variants 380 near SORL1, IL34, and ADAM10 having the most noticeable differences. We speculate that the relatively young ages 381 of the GWAS samples, together with the small sample size of our centenarian cohort may be the cause of such 382 discrepancy.

383

384 Conclusions

Each AD-associated variant has a different effect on longevity. Variants that have a larger effect on longevity than on AD were previously associated as disease risk-factors, and associated genes are selectively enriched for endocytosis and immune signaling functions.

388

Acknowledgments: The following studies and consortia have contributed to this manuscript. Amsterdam Dementia Cohort
 (ADC): Research at the Alzheimer center Amsterdam is part of the neurodegeneration research program of Amsterdam

391 Neuroscience. 100-plus Study: we are grateful for the collaborative efforts of all participating centenarians and their family 392 members and/or relatives. Wiesje van der Flier holds the Pasman chair. Longitudinal Aging Study of Amsterdam (LASA): the 393 authors are grateful to all LASA participants, the fieldwork team and all researchers for their ongoing commitment to the study. 394 Funding: The Alzheimer center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. The 395 clinical database structure was developed with funding from Stichting Dioraphte. The SCIENCe project is supported by a 396 research grant from Gieskes-Strijbis fonds and stichting Dioraphte. Genotyping of the Dutch case-control samples was 397 performed in the context of EADB (European Alzheimer DNA biobank), funded by the JPco-fuND FP-829-029 (ZonMW 398 projectnumber 733051061). The 100-plus Study was supported by Stichting Alzheimer Nederland (WE09.2014-03), Stichting 399 Diorapthe, horstingstuit foundation, Memorabel (ZonMW projectnumber 733050814), and Stichting VUmc fonds. Genotyping 400 of the 100-plus study was performed in the context of EADB (European Alzheimer DNA biobank) funded by the JPco-fuND FP-401 829-029 (ZonMW projectnumber 733051061). Longitudinal Aging Study Amsterdam (LASA) is largely supported by a grant from 402 the Netherlands Ministry of Health, Welfare and Sports, Directorate of Long-Term Care. 403 Author contributions: Conceptualization, N.T., M.Hul., S.L., M.R. and H.H.; Data curation, S.L., M.Hul., I.J., N.S., N.Sc., P.S., W.F., 404 M.Hui. and H.H.; Formal analysis, N.T.; Funding acquisition, P.S., W.F., M.Hui., M.R. and H.H.; Methodology, N.T., M.Hul., S.L., 405 M.R. and H.H.; Project administration, P.S., W.F., M.Hui., M.R. and H.H.; Software, N.T., S.L., M.Hul., M.R.; Supervision, N.T., S.L., 406 M.Hul., M.R. and H.H.; Visualization, N.T.; Writing - original draft, N.T., S.L., M.Hul., M.R. and H.H.; Writing - review & editing, 407 N.T., S.L., M.Hul., I.J., N.S., N.Sc., P.S., W.F., M.Hui., M.R. and H.H. 408 Conflicts of Interest: All the authors in the study declared no conflict of interest. The funders had no role in the study's design

409 at any stage.

410 Data availability: data that support the findings of this study are available on request, if reasonable, from the corresponding

411 author. The data are not publicly available due to privacy or ethical restrictions.

412

medRxiv preprint doi: https://doi.org/10.1101/2021.02.02.21250991; this version posted February 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

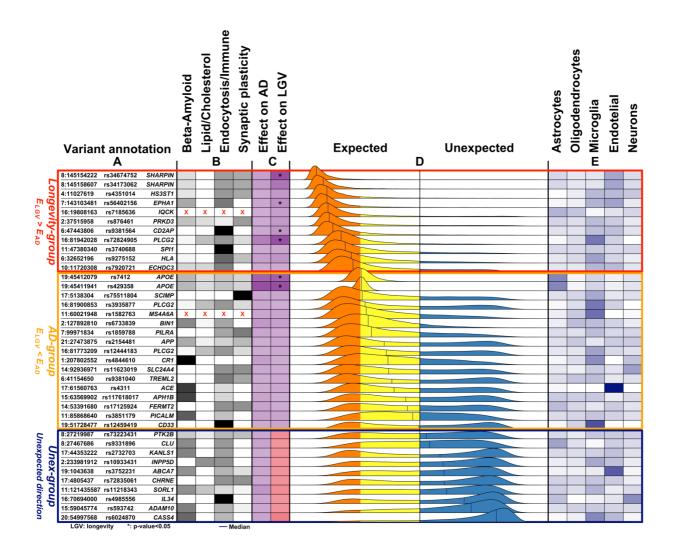
perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

413 References

414 1. Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561(7721):45-56. doi:10.1038/s41586-415 018-0457-8 416 Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. Nat Rev Genet. Published online November 2019. doi:10.1038/s41576-2. 417 019-0183-6 418 Perls TT, Wilmoth J, Levenson R, et al. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci U S A. 419 2002;99(12):8442-8447. doi:10.1073/pnas.122587599 420 Caselli G, Pozzi L, Vaupel JW, et al. Family clustering in Sardinian longevity: a genealogical approach. Exp Gerontol. 2006;41(8):727-421 736. doi:10.1016/j.exger.2006.05.009 422 Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat 423 Commun. 2019;10(1). doi:10.1038/s41467-019-11558-2 424 Timmers PR, Mounier N, Lall K, et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and 6. 425 distinguishes survival chances. eLife. 2019;8. doi:10.7554/eLife.39856 426 7. 2012 Alzheimer's disease facts and figures. Alzheimers Dement. 2012;8(2):131-168. doi:10.1016/j.jalz.2012.02.001 427 Corrada MM, Brookmeyer R, Paganini-Hill A, Berlau D, Kawas CH. Dementia incidence continues to increase with age in the oldest 8. 428 old: The 90+ study. Ann Neurol. 2010;67(1):114-121. doi:10.1002/ana.21915 429 Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 9. 430 2006;63(2):168-174. doi:10.1001/archpsyc.63.2.168 431 Alzheimer Disease Genetics Consortium (ADGC), The European Alzheimer's Disease Initiative (EADI), Cohorts for Heart and Aging 10. 432 Research in Genomic Epidemiology Consortium (CHARGE), et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk 433 loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414-430. doi:10.1038/s41588-019-0358-2 434 Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing 11. 435 Alzheimer's disease risk. Nat Genet. 2019;51(3):404-413. doi:10.1038/s41588-018-0311-9 436 Sims R, van der Lee SJ, Naj AC, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate 12. 437 immunity in Alzheimer's disease. Nat Genet. 2017;49(9):1373-1384. doi:10.1038/ng.3916 438 de Rojas I, Moreno-Grau S, Tesi N, et al. Common Variants in Alzheimer's Disease: Novel Association of Six Genetic Variants with AD 13. 439 and Risk Stratification by Polygenic Risk Scores. Genetic and Genomic Medicine; 2019. doi:10.1101/19012021 440 Holstege H, Beker N, Dijkstra T, et al. The 100-plus Study of cognitively healthy centenarians: rationale, design and cohort 14. 441 description. Eur J Epidemiol. Published online October 25, 2018. doi:10.1007/s10654-018-0451-3 442 DESGESCO (Dementia Genetics Spanish Consortium), EADB (Alzheimer Disease European DNA biobank), EADB (Alzheimer Disease 15. 443 European DNA biobank), IFGC (International FTD-Genomics Consortium), IPDGC (The International Parkinson Disease Genomics 444 Consortium), et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and 445 frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol (Berl). Published online May 27, 2019. 446 doi:10.1007/s00401-019-02026-8 447 Tesi N, van der Lee SJ, Hulsman M, et al. Centenarian controls increase variant effect sizes by an average twofold in an extreme 16. 448 case-extreme control analysis of Alzheimer's disease. Eur J Hum Genet. Published online September 26, 2018. doi:10.1038/s41431-018-0273-5 449 17. Tesi N, van der Lee SJ, Hulsman M, et al. Immune response and endocytosis pathways are associated with the resilience against 450 Alzheimer's disease. Transl Psychiatry. 2020;10(1):332. doi:10.1038/s41398-020-01018-7 451 18. Ponomareva N, Andreeva T, Protasova M, et al. Age-dependent effect of Alzheimer's risk variant of CLU on EEG alpha rhythm in 452 non-demented adults. Front Aging Neurosci. 2013;5. doi:10.3389/fnagi.2013.00086 453 Hoogendijk EO, Deeg DJH, Poppelaars J, et al. The Longitudinal Aging Study Amsterdam: cohort update 2016 and major findings. Eur 19. 454 J Epidemiol. 2016;31(9):927-945. doi:10.1007/s10654-016-0192-0 455 Huisman M, Poppelaars J, van der Horst M, et al. Cohort Profile: The Longitudinal Aging Study Amsterdam. Int J Epidemiol. 20. 456 2011;40(4):868-876. doi:10.1093/ije/dyq219 457 Slot RER, Verfaillie SCJ, Overbeek JM, et al. Subjective Cognitive Impairment Cohort (SCIENCe): study design and first results. 21. 458 Alzheimers Res Ther. 2018;10(1). doi:10.1186/s13195-018-0390-y 459 22. van der Flier WM, Scheltens P. Amsterdam Dementia Cohort: Performing Research to Optimize Care. Perry G, Avila J, Zhu X, eds. J 460 Alzheimers Dis. 2018;62(3):1091-1111. doi:10.3233/JAD-170850 461 Rademaker MC, de Lange GM, Palmen SJMC. The Netherlands Brain Bank for Psychiatry. In: Handbook of Clinical Neurology. Vol 150. 23. 462 Elsevier; 2018:3-16. doi:10.1016/B978-0-444-63639-3.00001-3 463 Willemsen G, de Geus EJC, Bartels M, et al. The Netherlands Twin Register Biobank: A Resource for Genetic Epidemiological Studies. 24. 464 Twin Res Hum Genet. 2010;13(3):231-245. doi:10.1375/twin.13.3.231 465 Shi H, Belbin O, Medway C, et al. Genetic variants influencing human aging from late-onset Alzheimer's disease (LOAD) genome-25. 466 wide association studies (GWAS). Neurobiol Aging. 2012;33(8):1849.e5-1849.e18. doi:10.1016/j.neurobiolaging.2012.02.014 467 26. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with 468 Alzheimer's disease. Nat Genet. 2009;41(10):1088-1093. doi:10.1038/ng.440 469 Lambert J-C, Heath S, Even G, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's 27. 470 disease. Nat Genet. 2009;41(10):1094-1099. doi:10.1038/ng.439 471 Efthymiou AG, Goate AM. Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk. Mol 28. 472 Neurodegener. 2017:12(1). doi:10.1186/s13024-017-0184-x 473 29. Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease. J Cell Biol. 2018;217(2):459-472. doi:10.1083/jcb.201709069 474 30. Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods. 2018;463:21-26. doi:10.1016/j.jim.2018.08.005

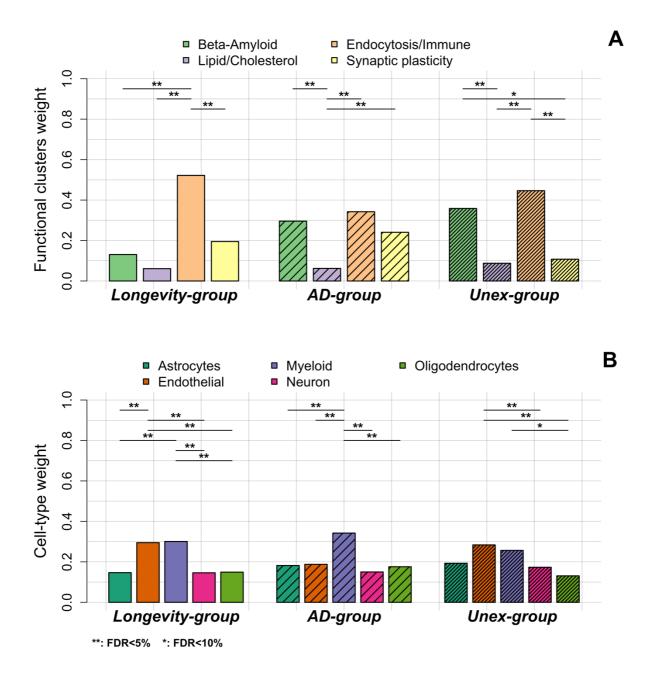
medRxiv preprint doi: https://doi.org/10.1101/2021.02.02.21250991; this version posted February 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

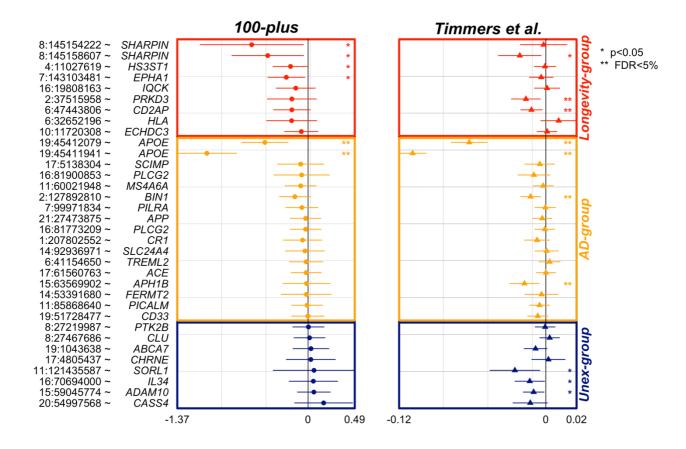

475 Solé-Domènech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and 31. 476 Alzheimer's disease. Ageing Res Rev. 2016;32:89-103. doi:10.1016/j.arr.2016.07.002 477 Astle WJ, Elding H, Jiang T, et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. 32. 478 Cell. 2016;167(5):1415-1429.e19. doi:10.1016/j.cell.2016.10.042 479 33. Olafsdottir TA, Theodors F, Bjarnadottir K, et al. Eighty-eight variants highlight the role of T cell regulation and airway remodeling 480 in asthma pathogenesis. Nat Commun. 2020;11(1):393. doi:10.1038/s41467-019-14144-8 481 34. Kichaev G, Bhatia G, Loh P-R, et al. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet. 482 2019;104(1):65-75. doi:10.1016/j.ajhg.2018.11.008 483 35. Hoffmann TJ, Choquet H, Yin J, et al. A Large Multiethnic Genome-Wide Association Study of Adult Body Mass Index Identifies 484 Novel Loci. Genetics. 2018;210(2):499-515. doi:10.1534/genetics.118.301479 485 Warren HR, Evangelou E, Cabrera CP, et al. Genome-wide association analysis identifies novel blood pressure loci and offers 36. 486 biological insights into cardiovascular risk. Nat Genet. 2017;49(3):403-415. doi:10.1038/ng.3768 487 Cochran JN, Rush T, Buckingham SC, Roberson ED. The Alzheimer's disease risk factor CD2AP maintains blood-brain barrier 37. 488 integrity. Hum Mol Genet. 2015;24(23):6667-6674. doi:10.1093/hmg/ddv371 489 Bodis G, Toth V, Schwarting A. Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases. Rheumatol Ther. 2018;5(1):5-20. 38 490 doi:10.1007/s40744-018-0100-z 491 Bandres-Ciga S, Ahmed S, Sabir MS, et al. The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-39. 492 Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Mov Disord Off J Mov Disord Soc. 2019;34(12):1851-1863. 493 doi:10.1002/mds.27864 494 Davies G, Lam M, Harris SE, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive 40 495 function. Nat Commun. 2018;9(1). doi:10.1038/s41467-018-04362-x 496 Pattaro C, Teumer A, Gorski M, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney 41. 497 function. Nat Commun. 2016;7:10023. doi:10.1038/ncomms10023 498 42. Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-499 94. doi:10.1038/nature24284 500 Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus 43. 501 ervthematosus. Nat Commun. 2017:8:16021. doi:10.1038/ncomms16021 502 Herath NI, Doecke J, Spanevello MD, Leggett BA, Boyd AW. Epigenetic silencing of EphA1 expression in colorectal cancer is 44 503 correlated with poor survival. Br J Cancer. 2009;100(7):1095-1102. doi:10.1038/sj.bjc.6604970 504 45 Rafiq S, Khan S, Tapper W, et al. A genome wide meta-analysis study for identification of common variation associated with breast 505 cancer prognosis. PloS One. 2014;9(12):e101488. doi:10.1371/journal.pone.0101488 506 46. Jun G, Ibrahim-Verbaas CA, Vronskaya M, et al. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol 507 Psychiatry. 2016;21(1):108-117. doi:10.1038/mp.2015.23 508 47. McGrath ER, Beiser AS, DeCarli C, et al. Blood pressure from mid- to late life and risk of incident dementia. Neurology. 509 2017;89(24):2447-2454. doi:10.1212/WNL.000000000004741 510 48. Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a 511 population-based twin study. Neurology. 2011;76(18):1568-1574. doi:10.1212/WNL.0b013e3182190d09 512 49. Wang Y, Colonna M. Interkeukin-34, a cytokine crucial for the differentiation and maintenance of tissue resident macrophages and 513 Langerhans cells: Highlights. Eur J Immunol. 2014;44(6):1575-1581. doi:10.1002/eji.201344365 514 50. Ryu SJ, Cho KA, Oh YS, Park SC. Role of Src-specific phosphorylation site on focal adhesion kinase for senescence-associated 515 apoptosis resistance. Apoptosis. 2006;11(3):303-313. doi:10.1007/s10495-006-3978-9 516 51. Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic 517 target. Eur J Immunol. 2017;47(6):932-945. doi:10.1002/eji.201646795 518 52. Jinam TA. Human Leukocyte Antigen (HLA) Region in Human Population Studies. In: Saitou N, ed. Evolution of the Human Genome I. 519 Evolutionary Studies. Springer Japan; 2017:173-179. doi:10.1007/978-4-431-56603-8 9 520 53. McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 521 2016;48(10):1279-1283. doi:10.1038/ng.3643 522 54. Durbin R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinforma Oxf Engl. 523 2014;30(9):1266-1272. doi:10.1093/bioinformatics/btu014 524 55. Loh P-R, Danecek P, Palamara PF, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 525 2016;48(11):1443-1448. doi:10.1038/ng.3679 526 Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human 56. 527 genome. Nucleic Acids Res. 2019;47(D1):D886-D894. doi:10.1093/nar/gky1016 528 O'Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and 57. 529 functional annotation. Nucleic Acids Res. 2016;44(D1):D733-745. doi:10.1093/nar/gkv1189 530 58. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-585. doi:10.1038/ng.2653 531 59. McInnes BT, Pedersen T. Evaluating measures of semantic similarity and relatedness to disambiguate terms in biomedical text. J 532 Biomed Inform. 2013;46(6):1116-1124. doi:10.1016/j.jbi.2013.08.008 533

534 Table 1: Population characteristics

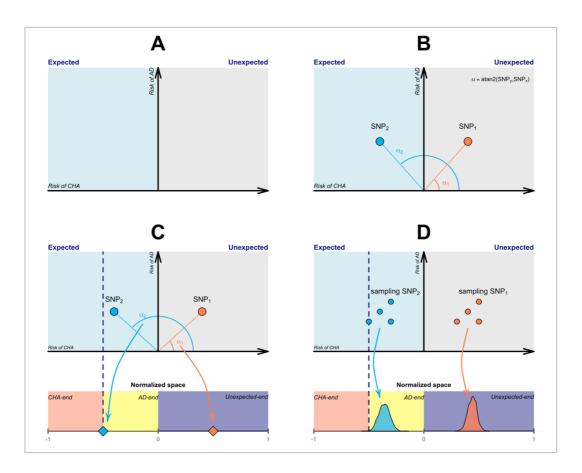
	Population controls	Cognitively healthy centenarians
Number of individuals	2,905	343
Females (%)	1400 (48.2)	246 (71.7)
Age (SD) ^a	68.3 (11.5)	101.4 (1.8)
ApoΕ ε4 (%)	1,012 (17.38)	48 (7.15)
ΑροΕ ε2 (%)	523 (9.00)	91 (13.26)


^a Age at study inclusion; SD, standard deviation; *ApoE*, Apolipoprotein E allele count for ε4 and ε2, and relative allele frequency

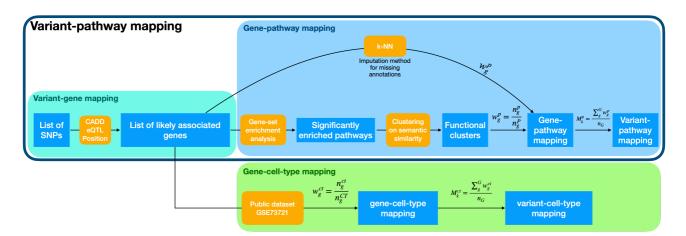
536 in population controls and cognitively healthy centenarians. Reference to the cohorts reported in this table are: ^{14,20-24}


537

538 Figure 1: Overview of the 38 genetic variants associated with Alzheimer's disease. A. The genomic position of 539 the variants (chromosome: position), variant identifier, and closest gene. Genomic positions are with respect to 540 GRCh37 (hg19). B. The variant-pathway mapping score of association with the four functional clusters (darker 541 colors representing stronger associations). Variants annotated with red crosses could not be annotated to any one 542 of the functional clusters as no biological processes are associated with the related genes. C. The effect size on AD 543 (from literature) and the observed effect size on longevity (LGV) for each variant (darker color indicating stronger 544 effect). The same color indicates expected direction (i.e. increased risk of AD and decreased chance of longevity), 545 while different colors, visible in the Unex-group of variants, indicates unexpected direction. For the longevity effects, 546 we also annotate variants for which we observed a significant association (unadjusted p-value<0.05). **D.** The 547 distribution of the imbalance direction of variant effect (IED) in AD-risk as compared to cognitive health aging 548 (see Methods for details). The longevity-, AD- and Unex-groups were derived based on the median value of the IED. 549 The median value is reported for each IED as a blue vertical line. **E.** Average gene expression of the genes associated 550 with the variant in five different brain cell-types (the darker, the higher the expression).

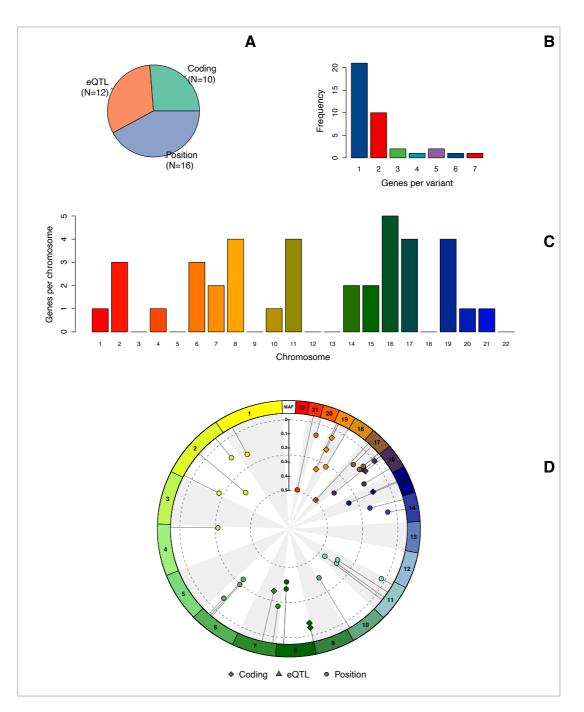


Effect size on longevity of AD risk-increasing alleles

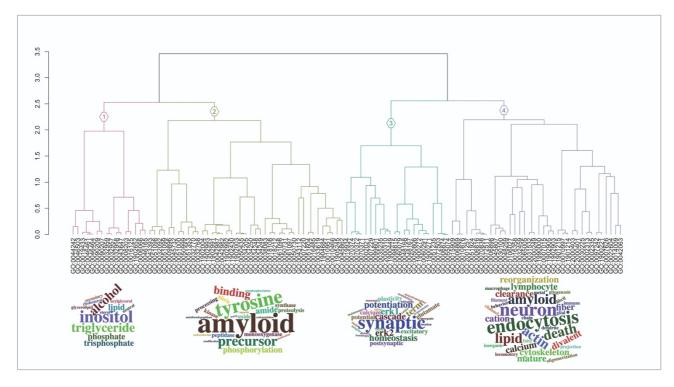

556

557 Figure 3: Forest plot of association statistics of AD-variants in our study and the largest GWAS of parental 558 longevity. The plot shows the association of AD-variants in our study and the largest by-proxy GWAS on parental 559 longevity.⁶ The association statistics of 34/38 variants were available from publicly available summary statistics of 560 Timmers et al. study. Plotted effect-sizes are with respect to the AD-risk increasing allele. Thus, an expected 561 direction of effect is shown for variants with a negative estimate. Nominally significant associations with AD 562 (p<0.05) are annotated with an asterisk (*), and significant associations after FDR correction are annotated with 563 two asterisks (**).

564


565 Figure S1: Explanation of the distribution of imbalance variant effect direction (IED). The figure shows the 566 sequential steps for constructing the distribution of the expected direction of variant effect for AD-risk compared 567 to longevity for two toy variants (SNP₁ and SNP₂). A. Axes definition, with the y-axis being the effect-size for AD-568 risk (log of odds ratio) of a variant, derived from literature and set positive by definition. The x-axis identifies the 569 effect-size of a variant on longevity. This can be either positive or negative depending on the variant's association 570 in cognitively healthy centenarians as opposed to population subjects. The blue area represents that the two 571 effects are in the expected direction with respect to each other, *i.e.* a variant increases the risk of AD and at the 572 same time decreases the chance of longevity. Oppositely, the grey area refers to the unexpected direction of effect. 573 **B.** Two toy variants (SNP₁ and SNP₂) are shown as data points. α_{1-2} represents the angle of the data point vector 574 with the x-axis. **C.** Normalization of the α_{1-2} value into an arbitrary space. Here, we used [-1; 1]. **D.** Repeating this 575 procedure for each bootstrap iteration of each variant, we obtained the distribution of imbalance effect direction 576 for each variant (*IED*). Values smaller than 0 indicate the *expected direction* of effect, whereas values larger than 577 0 refer to the unexpected direction of effects. Additionally, values close to 0 indicate a larger AD effect than 578 longevity effect, and values close to -1 suggest that the variant's longevity effect is larger than the AD effect.

579


580 Figure S2: Schematic representation of the variant-pathway and variant-cell-type mapping. The figure shows 581 a schematic representation of the annotation framework used to functionally annotate AD-associated variants 582 and perform cell-type enrichment. Outputs are represented as blue squares, while methods are represented in 583 orange. In the variant-gene mapping, showed in the grey box, we start from a list of variants and, through the 584 integration of predicted variant consequences (CADD), eQTL and position, we obtain a list of genes. Note that here 585 multiple genes may be associated with each variant. The yellow box shows the gene-pathway mapping: briefly, we 586 perform gene-set enrichment analysis followed by clustering of the significantly enriched pathways to obtain 587 functional clusters. We then calculate the gene-pathway mapping by looking at the (enriched) pathways 588 associated with each gene and their associated functional clusters to get a weight for each gene-functional cluster 589 association. Finally, we average the gene-pathway mapping of each gene associated with the same variant. 590 Imputation methods (k-NN) are implemented for genes with missing annotation to obtain the gene-pathway 591 mapping. Together, the grey box and the yellow box form the variant-pathway mapping. At the bottom, the green 592 box shows the gene-cell-type enrichment using the public dataset GSE73721 of gene expression in different brain 593 cell-types. Similar to the gene-pathway mapping, we calculate a weight of association of each gene to each cell-594 type, and we average these weights in case multiple genes mapped to the same variant (variant-cell-type mapping).

595

597

598 Figure S3: Variant-gene mapping for the 38 AD-associated variants. A. The sources used to annotate each 599 variant to the likely affected genes. Coding: variants located in the coding region of a gene (e.g. synonymous or 600 non-synonymous variants). eQTL: variants associated with RNA expression changes in blood from the GTEx 601 consortium. Position: variants intronic or intergenic without evidence of eQTL associations that were annotated 602 based on neighboring genes. B. Barplot of the number of genes associated with each variant. C. Distribution of 603 genes across the chromosomes. D. Distribution of the previously identified variants along the genome together 604 with each variant's minor allele frequency and annotation.

606 Figure S4: Hierarchical clustering of the semantic similarity matrix and the 4 functional clusters' definition. 607 Dendrogram of the hierarchical clustering analysis and the 4 functional clusters, along with word-clouds of the 608 most frequent terms per cluster. Hierarchical clustering was performed on the semantic similarity distance matrix 609 (using Lin as semantic similarity metric). We used the dynamic tree-cut method to define the number of functional 610 clusters, specifying 15 as the minimum number of terms per cluster. We then used word-cloud visualization as well 611 as manual interpretation of the biological processes underlying each functional cluster to label each cluster to 612 Lipid/Cholesterol metabolism (cluster 1), β -Amyloid metabolism (cluster 2), Synaptic plasticity (cluster 3) and 613 Endocytosis/Immune signaling (cluster 4).

605

614 Supplementary Methods

615 **Populations**

616 The 100-plus Study focuses on the biomolecular aspect of preserved cognitive health until extremely old ages. This 617 study includes (1) Dutch-speaking centenarians who can (2) provide official evidence for being aged 100 years or 618 older, (3) self-report to be cognitively healthy, which is confirmed by an informant (*i.e.* a child or close relation), (4) 619 consent to donation of a blood sample and (5) consent to (at least) two home-visits from a researcher, which 620 includes an interview and neuropsychological testing.¹⁴ This study also includes (1) siblings or children from 621 centenarians who participate in the 100-plus Study, or partners thereof who (2) agree to donate a blood sample, 622 (3) agree to fill in a family history, lifestyle history, and disease history questionnaire. The Longitudinal Aging Study 623 of Amsterdam (LASA) is an ongoing longitudinal study of older adults initiated in 1991, with the main objective to 624 determine predictors and consequences of aging.^{19,20} The SCIENCe is a prospective cohort study of subjective cognitive decline (SCD) patients.^{21,22} Participants undergo extensive assessment, including cerebrospinal fluid 625 626 collection (CSF) and optional amyloid positron emission tomography scan (PET), with annual follow-up. The 627 primary outcome measure is clinical progression. All individuals were labeled cognitively intact. The Netherlands 628 Brain Bank (NBB) cohort is a prospective donor program for psychiatric diseases. All subjects were labeled 629 cognitively intact after neuropathological examination.²³ The Netherland Twin Registry study (NTR) was 630 established in 2004 to collect biological and environmental data in twin families to create a resource for genetic 631 studies on health, lifestyle, and personality.²⁴

632

633 Genotyping and imputation

634 Genetic variants in our populations were determined by standard genotyping and imputation methods, and we 635 applied established quality control methods: we genotyped all individuals with the Illumina Global Screening Array 636 (GSAsharedCUSTOM 20018389 A2) and excluded individuals with low-quality genotypes (individual call rate 637 <98%, variant call rate <98%), individuals with sex mismatches and variants deviating from Hardy-Weinberg 638 equilibrium ($p < 1x10^{-6}$). Genotypes were prepared for imputation comparing variants identifiers, strand and allele 639 frequencies to the Haplotype Reference Panel (HRC v1.1, April 2016), and all remaining variants were submitted to 640 the Sanger imputation server (https://imputation.sanger.ac.uk).⁵³ The server uses EAGLE2 (v2.0.5) to phase the 641 data, and imputation to the reference panel was performed with PBWT.^{54,55} Before analysis, we excluded

642 individuals of non-European ancestry and individuals with a family relation, leaving 2,905 population subjects and
643 343 cognitively healthy centenarians for the analysis.

644

645 Variant-gene mapping

We annotated each variant to the likely affected gene(s), so-called variant-gene mapping, combining annotation from *Combined Annotation Dependent Depletion* (CADD, v1.3), *expression-quantitative-trait-loci* in the blood (eQTL from GTEx v8), and positional mapping (from RefSeq build 98).⁵⁶⁻⁵⁸ In the case of coding variants, we confidently associated the variant with the corresponding gene. Alternatively, we first considered possible eQTL associations. When these were not available, we included all genes at increasing distance *d* from the variant (starting with $d \le$ 50*kb*, up to $d \le$ 500*kb*, increasing by 50*kb* until at least 1 gene was found). Our procedure allows the association of each variant with one or multiple genes (*Figure S2*).

653

654 Gene-pathway mapping

655 The resulting list of genes was used to find the molecular pathways enriched in the AD variants. See Figure S2 for a 656 schematic representation of our annotation framework. We realized that allowing multiple genes to associate with 657 each variant could result in an enrichment bias, as neighboring genes are often functionally related. To control this, 658 we implemented a sampling technique: at each iteration, we (i) sampled one gene from the pool of genes associated with each variant, and (ii) performed a gene-set enrichment analysis with the resulting list of genes. The 659 660 gene-set enrichment analysis was performed considering biological processes (BP) and implemented with the 661 enrichGO function of the R package clusterProfiler, with all genes as background and correcting p-values controlling 662 the False Discovery Rate (FDR). Finally, we averaged p-values for each enriched term over the iterations (N=1,000). 663 To facilitate interpretation, we merged significantly enriched biological processes. First, we calculated the 664 semantic similarity between all significant biological processes (*i.e.* FDR<5%) using *Lin* as a distance measure.⁵⁹ We 665 then applied hierarchical clustering on the resulting distance matrix and selected the number of functional clusters 666 using the dynamic tree-cut method as implemented in cutreeDynamic function from the R package WGCNA, 667 specifying 15 as the minimum number of terms per cluster (using the default value of 20 resulted in 2 functional 668 clusters only). To provide an interpretation of each functional cluster, we selected the most frequent words 669 describing the biological processes underlying each cluster, and show this as word-clouds as implemented in R 670 package wordcloud2. Finally, by counting how often a functional cluster was associated with a gene, we could

671 calculate a weighted annotation of each gene to the 4 functional clusters, so-called gene-pathway mapping (*Figure*672 S2).

673 Due to the initial selection of significantly enriched BP, not every gene in the list of variant-associated genes is 674 annotated with (at least one of) these terms. Consequently, these genes could not be related to the final functional 675 clusters. To overcome this, we connect these genes to the functional clusters using a k-nearest neighbor (k-NN) 676 imputation. The k-NN model was initially trained using the functional clusters as classes and the semantic 677 similarity matrix between the enriched biological processes as features (*feature terms*). Then, for each gene with 678 missing annotation, we (i) extracted all the biological processes the gene is involved in (input biological processes), 679 and (ii) calculated the semantic similarity matrix between these terms and the *feature terms*, which defines the 680 similarity between the input biological processes and the feature terms. Finally, we (iii) predicted the probability of 681 classification of the similarity matrix to the classes (functional clusters), and used this as weight for the gene-682 pathway mapping (Figure S2).

683

684 Variant-pathway mapping

The variant-pathway mapping represents the combined annotation of each variant to the different functional clusters. As such, it depends on the variant-gene mapping and the gene-pathways mapping. Briefly, given a variant k, we (i) retrieved all the genes that were associated with the variant in the variant-gene mapping, G_k , and (ii) retrieved all the biological processes (gene ontology term identifiers) that were associated with these genes, GO_G . Because we clustered biological processes into functional clusters, by looking at which functional clusters the GO_G belonged to, we could assign a weight of association for variant k to each of the functional clusters.

691

692 Variant-cell-type mapping

To study brain-specific cell-types and their relationship with AD-associated variants, we used the publicly available gene expression dataset GSE73721: this dataset includes gene expression values of 6 fetal astrocyte samples, 12 adult astrocyte samples, 8 sclerotic hippocampal samples, 4 whole human cortex samples, 4 adult mouse astrocyte samples, and 11 human samples of other purified central-nervous-system (CNS) cell-types. We restricted to the gene expression of 12 astrocyte samples and 11 samples of purified CNS cell-types from the cortex of adult humans (total N=23, mean age of 41.5±19.6 years). To calculate the variant-cell-type mapping, we averaged the gene expression of the genes mapping to the same variant.