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Abstract  

Laboratory blood testing is routinely used to assay biomarkers to provide information on 

physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We 

hypothesized that deep learning interpretation of echocardiogram videos can provide additional 

value in understanding disease states and can predict common biomarkers results. Using 70,066 

echocardiograms and associated biomarker results from 39,460 patients, we developed EchoNet-

Labs, a video-based deep learning algorithm to predict anemia, elevated B-type natriuretic peptide 

(BNP), troponin I, and blood urea nitrogen (BUN), and abnormal levels in ten additional lab tests. 

On held-out test data across different healthcare systems, EchoNet-Labs achieved an area under 

the curve (AUC) of 0.80 in predicting anemia, 0.82 in predicting elevated BNP, 0.75 in predicting 

elevated troponin I, and 0.69 in predicting elevated BUN. We further demonstrate the utility of the 

model in predicting abnormalities in 10 additional lab tests. We  investigate the features necessary 

for EchoNet-Labs to make successful predictions and identify potential prediction mechanisms for 

each biomarker using well-known and novel explainability techniques. These results show that 

deep learning applied to diagnostic imaging can provide additional clinical value and identify 

phenotypic information beyond current imaging interpretation methods. 
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Introduction 

 

Diagnostic medical testing provides insight into human physiology and disease conditions, with 

testing ranging from blood based biomarkers and genetics testing to imaging studies that provide 

deep insight into anatomy and changes over time1–3. Blood based laboratory testing is a 

fundamental tool for disease diagnosis and management as changes in assayable biomarkers can 

be some of the earliest signs of physiological perturbations5–7. Despite the frequent utilization of 

both laboratory testing and medical imaging in routine clinical practice, the deeper connections 

between medical images and biomarkers values are relatively underexplored4. It remains unknown 

whether routinely obtained imaging studies might contain information that can broadly predict 

common biomarker values and more deeply inform clinicians about the patient condition.  

 

Recent advances in Artificial Intelligence have shown that deep learning applied to medical images 

can identify phenotypes beyond what is currently possible by observation from human clinicians 

alone 8–11. Such discoveries have spanned across a variety of imaging modalities in many medical 

specialties and have uncovered imaging correlates for a wide range of disease states, molecular 

signatures, and physiologic conditions 12–15. Given that orthogonal and complimentary information 

is obtained from the many different forms of diagnostic testing, subtle associations and 

relationships can be missed in conventional clinical assessment.  

 

Echocardiograms, or cardiac ultrasounds, are the most common form of cardiovascular imaging, 

combining rapid image acquisition, lack of ionizing radiation, and high temporal resolution to 

capture spatiotemporal information on cardiac motion and function16,17. Previous works have 

shown deep learning based assessment of echocardiograms can identify physiological state and 

hints of both systemic as well as cardiac diseases 9,18,19. In the extremes, abnormal blood chemistry 

can influence cardiac function20, and over time, structure, but it is unknown whether transient or 

subtle variations biomarkers are reflected in the physiologic state that can be extracted from 

medical imaging. A deep learning assessment of frequently obtained, no radiation, low cost, and 

information dense imaging, such as echocardiogram videos, could provide additional diagnostic 

information that alleviates the need for other invasive, costly, or burdensome forms of testing. This 

is the first demonstration that echocardiograms can be used to detect abnormal blood biomarkers 
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through deep learning analysis of the ultrasound videos, and our artificial intelligence algorithms 

generalize imaging and biomarker results across healthcare systems.  

 

 

Results 

Data Curation 

We curated a dataset of 70,066 echocardiogram videos from 39,460 patients at Stanford Medicine 

and 1,300 videos from 819 patients from Cedars-Sinai Medical Center. The echocardiogram 

videos were matched with 14 associated blood-based biomarker tests. Both biomarker assays with 

particular relevance to cardiac function and myocyte damage, such as B-type Natriuretic Peptide 

(BNP) and troponin I, as well as biomarkers of systemic physiology such as hemoglobin and blood 

urea nitrogen (BUN), were paired with echocardiogram videos for model training. 

Echocardiogram videos from Stanford Medicine were preprocessed and curated for apical 4-

chamber view videos and divided based on patient into 59,434 training, 5,319 validation, and 5,313 

internal test examples. An additional dataset of 1,301 apical 4-chamber view videos from Cedars-

Sinai Medical Center were never seen during model training and served as an hold-out external 

test set for this study. The data is described in Supplemental Tables 1 and 2. 

 

Video-based deep learning model to predict biomarkers 

We developed a deep learning framework, EchoNet-Labs, to answer whether medical imaging 

might be able to predict biomarker values and whether these results generalize across different 

clinical settings and healthcare systems (Figure 1). EchoNet-Labs is a convolutional neural 

network with residual connections and spatiotemporal convolutions that provides a beat-by-beat 

estimate for biomarker values. Extending our prior work on deep learning applied to 

echocardiogram videos19, EchoNet-Labs incorporates both spatial and temporal information to 

perform both regression and classification tasks.  

 

Evaluation of model performance  

On the held-out test set of patients from Stanford Medicine that was not previously seen during 

model training, EchoNet-Labs predicted biomarker values from echocardiogram videos with high 

sensitivity and specificity (Figure 2). EchoNet-Labs achieved an area under the curve (AUC) of 
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0.80 (0.79-0.81) in predicting anemia (low hemoglobin), of 0.86 (0.85-0.88) in predicting elevated 

BNP, of 0.75 (0.73-0.78) in predicting elevated troponin I, of 0.74 (0.72-0.76) in predicting 

elevated BUN, and up to 0.72 in predicting abnormalities in ten other common laboratory tests 

(Supplementary Table 3). To provide context for these results, we also trained a model to predict 

each biomarker using demographics and standard quantitative metrics from echocardiograms, such 

as left ventricular ejection fraction. This baseline model achieved AUC of 0.60, 0.72, 0.69, and 

0.62 for predicting anemia, BNP, troponin I, and BUN respectively, which is substantially lower 

than EchoNet-Labs’ performance. This comparison suggests that EchoNet-Labs captures novel 

features in the videos beyond correlates of patient demographics and commonly annotated cardiac 

features.  

 

External testing on cross-health system data.  

To assess the cross-healthcare-system reliability of the model, EchoNet-Labs was additionally 

tested, without any tuning, on an external test dataset of 1,301 patients from Cedars-Sinai Medical 

Center. On the external test dataset, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in 

predicting anemia, of 0.82 (0.79-0.84) in predicting elevated BNP, of 0.75 (0.72-0.78) in predicting 

elevated troponin I, and of 0.69 (0.66-0.71) in predicting elevated BUN, which is similar to the 

model’s accuracy on the Stanford test patients. This analysis further supports the generalizability 

of EchoNet-Labs across different settings.  

 

Analyzing model performance and understanding high importance imaging features 

To clarify which features are most relevant to EchoNet-Labs’ prediction of each biomarker, we 

trained a series of models on various transformations of the input data to remove different types 

of information (Figure 3). EchoNet-Labs achieved high performance in predicting elevated BNP, 

Troponin I, and BUN based on video of only the region around the left ventricle (AUCs of 0.88, 

0.74, and 0.74 respectively, compared to 0.89, 0.73, and 0.75 on the full video), suggesting 

information from that region alone might be sufficient for biomarker prediction. EchoNet-Labs’ 

performance was slightly worse but still quite accurate when making predictions based on video 

of only the tracing of the left ventricle endothelium (AUCs of 0.84, 0.71, and 0.71), and based on 

a single randomly selected frame of video (AUCs of 0.84, 0.69, and 0.71). This demonstrates that 

both the motion of the ventricle in the absence of fine-grained pixel and texture, and the fine-
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grained pixel and texture in the absence of motion information, each contain a large amount of the 

information. When evaluating results of predicting anemia, model performance depended more on 

texture information as performance was greatly limited by restricting input to the left ventricular 

border (AUC dropped from 0.81 to 0.67, versus 0.73 on single frame). Finally, we performed 

sensitivity analysis with regard to training sample size (Supp. Figure 1). Even with large sample 

sizes of up to 58,000 training examples, we do not see an inflection in improvement in 

performance, suggesting EchoNet-Labs can be improved with additional training examples.    

 

Discussion 

EchoNet-Labs is a video-based deep learning algorithm that achieves state-of-the-art prediction of 

biomarkers from echocardiogram videos. Using 70,066 echocardiogram videos and paired 

biomarker results, EchoNet-Labs has high accuracy in predicting abnormal hemoglobin, BNP, 

troponin I, and BUN, and this performance was superior to a model using traditional risk factors. 

The model performance was robust to changing the clinical environment, and experiments 

degrading the input data show EchoNet-Labs incorporates both motion and texture based 

information for its assessment. The results of this study support a growing body of literature 

highlighting that deep learning analysis of medical imaging can identify correlative findings of 

systemic physiology that was previously thought to be only obtained from orthogonal diagnostic 

testing8,23.  

 

With deep learning models and model interpretation techniques, our study highlights the 

association between imaging phenotypes and biomarkers of both cardiovascular and systemic 

disease. Echocardiogram videos are commonly used to diagnose heart failure, which has a strong 

association with some biomarkers (e.g. BNP) and can help explain the strong performance of 

EchoNet-Labs for BNP. Similarly troponin I is most abundantly found in cardiac myocardium and 

is frequently used as a marker of myocardial injury and myocardial infarction.  

 

Surprisingly, we show disease states and biomarkers not directly related to cardiovascular function 

can be readily predicted from echocardiogram videos, extending prior work in other modalities 

that show medical imaging might have additional value in understanding the patient condition21,22. 

Other biomarkers, such as hemoglobin and BUN, are associated with systemic disease but now 
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shown convincingly to be predicted accurately both by imaging and electrical signals of the 

cardiovascular system23. How hemoglobin and BUN values are associated with cardiac motion has 

not been previously characterized. Our findings provide the first evidence that variation in these 

values are visually detectable in heart motion. The physiological response to anemia includes 

tachycardia and compensatory changes in cardiac function which could be picked up by deep 

learning models in the prediction of abnormal hemoglobin. Improved understanding of the close 

relationships between imaging and laboratory testing can lead to further understanding of the 

relationship between imaging phenotypes and disease processes. 

 

Performance in deep learning prediction of biomarkers varied considerably by biomarker, with the 

highest AUCs for some biomarkers associated with cardiovascular disease (troponin I and BNP) 

while other blood chemistries had less dynamic range and were not able to be predicted 

confidently. Integrating echocardiograms and lab values can help inform the interpretation of both 

tests and in doing so provide an overall more accurate picture of disease. It may also help clarify 

how certain lab abnormalities might correspond to changes in cardiac structure and function. 

Additionally, our experiments suggest EchoNet-Labs can continue to be improved with additional 

training examples, which suggest a promising direction of further exploration.    

 

If proven to be reliable, laboratory prediction from fast, cheap imaging could be useful in numerous 

clinical contexts. In the emergency room, point-of-care echocardiography is already used to triage 

procedures and assist medical decision-making in medical emergencies. While laboratory testing 

requires phlebotomy and processing, often offsite, ultrasound is often readily available and rapidly 

attained, even in resource-limited settings. As a rapid adjunct to conventional testing, EchoNet-

Labs can help stratify patients by risk or guide medical decision making in obtaining expensive 

laboratory testing when there is low clinical suspicion and low probability for abnormal testing 

results.  

 

Methods 

Data curation details. From the population of patients who received at least one lab test and one 

echocardiogram at Stanford in the last 20 years, we randomly selected 70,066 echocardiogram 

studies. A single apical-4-chamber 2D gray-scale video was identified from each study and used 
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to represent the study for mapping to laboratory values. Previously described methods 19 were used 

to preprocess echocardiogram videos to standard resolution and remove extra information outside 

of the ultrasound sector such as text, ECG and respirometer data, as well as identifying 

information. Laboratory values were extracted from the electronic health record and paired with 

the representative echocardiogram video. The 70,066 videos were split by patient identifier into 

59,434 videos for training, 5319 videos for validation, and 5313 videos for internal testing, such 

that the same patient never appeared in multiple splits of the data. During training, if there are 

multiple videos from the same patient, we treat them as individual samples for training.  An 

additional external test dataset of 1,301 videos with corresponding biomarker results was obtained 

from Cedars-Sinai Medical Center and processed using the same pipeline without further fine 

tuning. Binary thresholds for model performance assessment were determined by the reference 

range of the particular laboratory’s assay, and for biomarkers with significant variance (BNP, 

Troponin I, CRP, ALT, AST), model training was performed on the logarithm of the result value.  

During model training, the lab closest in time to each video was used as the training label, and 

videos were excluded from training if the patient did not have a corresponding video-laboratory 

value pair.  In the validation and test sets, the same process was applied with the additional 

constraint that only labels acquired within 30 days of the echocardiogram were included. In the 

case of CRP, a window of 365 days was used to increase sample size. This research was approved 

by the Stanford University and Cedars-Sinai Medical Center Institutional Review Boards. 

 

Model development and training. Models were built using Python 3.8 and PyTorch 1.4. 

Extending on previous work19, EchoNet-Labs uses a (2+1)D-ResNet consisting of 34 layers of 

alternating spatial and temporal convolutions in a ResNet structure24. We chose the same 

hyperparameter configuration as in previous work19 and found that architecture choice (e.g. R3D 

and MC3) and temporal step size (e.g. 1/1, 1/2, or 1/4 the sampling rate of the original video) do 

not significantly affect results. All models were pretrained on the Kinetics-400 dataset25. 

Independent video regression models were trained for each lab value, taking as input a randomly 

selected 32x112x112 sub-video and predicting the lab value. We also explored training a single 

model to predict all values through multi-task learning, but found for key lab values that training 

individual models performed better. Log values were predicted for BNP, CRP, ALT, and AST due 

to skewed distributions. Abnormal values were defined using reference thresholds for the 
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particular assay in the calculating area under receiver operating characteristic (AUC) curve. 

Notably, the EchoNet-Labs prediction for BNP was trained on paired echocardiogram videos and 

NT-proBNP results from Stanford Medicine, and tested on BNP data from Cedars-Sinai, which 

uses a different assay. Videos were augmented during training by randomly shifting by up to 12 

pixels. 

 

The models were trained to minimize the mean squared error between the prediction and true lab 

value. Model training used a stochastic gradient descent optimizer with an initial learning rate of 

0.001, momentum of 0.9, and batch size of 20 for 45 epochs. The learning rate was decayed by a 

factor of 0.1 every 15 epochs. Prediction was set up as a binary classification task, predicting 

normal versus abnormal lab value, based on standard thresholds. For these biomarkers, clinicians 

recognize inherent heterogeneity on retesting and often make clinical decisions on whether broadly 

these biomarkers are either normal or abnormal. To understand model generalization, each model 

was evaluated on a held-out test set not used in any way during model development, from a set of 

patients completely disjoint from those used during training. Finally, for the four most successful 

biomarkers we report results on the Cedars-Sinai external validation dataset. For each lab, we 

report the AUC on the validation and test sets, with bootstrapped 95% confidence intervals.  

 

For all models, the weights from the epoch with the lowest validation AUC was selected for final 

testing. Our final model averaged predictions across the entire echocardiogram video over all 

possible 32 frame sub-videos rather than randomly selecting one to account for potential variance 

between beats. We report area under the receiver operator characteristic curve (AUC) as the 

primary performance metric in figure 2 and supplementary figure 3. All confidence intervals are 

95% confidence intervals generated by bootstrapping on the relevant test set. Predicting a single 

lab value with EchoNet-Labs, with all test-time augmentation, takes less than 5 seconds.  

 

Video content transformation. To further understand the features needed to make classifications, 

we retrained models for anemia, BNP, troponin I, and BUN on differently ablated inputs. For each 

transformation, we trained and tested on identically ablated data. To understand if motion-based 

features are necessary for classification, we trained and tested a model on a single randomly 

selected frame of each echo, repeated 32 times in a video to fairly compare to other 3D resnet 
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models. To understand if the motion of the left ventricle on its own is sufficient for classification, 

we trained and tested a model on a video of the segmented outline of the left ventricle generated 

by Echonet-Dynamic, with none of the original video data present. To understand if only the 

information in and around the left ventricle is sufficient to classify, we trained and tested a model 

with all data outside of a bounding box around the left ventricle obscured. To produce a video of 

just the left ventricle, we found the smallest bounding box which contained the left ventricle in all 

frames, expanded it by 5 pixels, and set all pixels outside of that region to 0.  

 

Comparison to benchmark model. One way a model might learn to predict a biomarker value 

would be to use covariates which are known to be contained in echocardiogram data, and use those 

covariates as well as discrete demographic information to predict the biomarker value. Age and 

sex have been previously shown to be predictable from echocardiogram videos with high 

accuaracy9,19, and echocardiogram videos contain information about left ventricular ejection 

fraction, heart rate, and right ventricular systolic pressure. To determine if the model truly learned 

novel features, we trained a linear regression model using these demographics and 

echocardiography derived metrics to compare with EchoNet-Labs.  

 

Effect of Dataset Size. To understand the impact of input sample size on EchoNet-Labs, we 

trained separate models with datasets at different sized subsets for each biomarker. Models were 

trained by randomly selecting 1000, 2000, 4000, and 8000 training examples for each model. 

Upward trends were observed for all values as dataset size increased without a clear inflection 

point, suggesting that further growth in the dataset size could further increase accuracy. In 

particular, doubling the size of the datasets consistently leads to uniform increases, suggesting that 

partnering with other healthcare systems to produce multiplicatively larger datasets would lead to 

further gains in accuracy.  

 

Data and Code availability. All of the code for EchoNet-Labs will be available at 

https://github.com/echonet/ after publication. Matched laboratory values will be provided through 

our publicly available EchoNet dataset at https://echonet.github.io/. 
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Figures 

 

 

 

 

 

Figure 1: Overview of EchoNet-Labs system and study design. A. A training dataset of over 

seventy thousand echocardiogram videos and paired biomarker values from the same patient were 

used to train a video-based AI system for prediction of laboratory values. B. Our deep learning 

based AI system used spatio-temporal convolutions to infer biomarker values from both anatomic 

(spatial) and physiologic (temporal) information contained with echocardiogram videos. C. To 

understand the relative importance of spatial and temporal information, ablation datasets removing 

texture, motion, and extracardiac structures were adopted to perform interpretations experiments.   
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Figure 2: Performance of EchoNet-Labs on Internal and External Test Datasets. A-D. 

Scatterplots (top) and receiver-operating characteristic (ROC) curves (bottom) for prediction of 

(A) hemoglobin, (B) B-Type Natriuretic Peptide, (C) Blood Urea Nitrogen, and (D) Troponin I. 

Blue points and curves denote to a held-out test set of patients from Stanford Medicine not 

previously seen during model training. Red points and curves denote to performance on the 

external test set from Cedars-Sinai Medical Center. Black curves denote a benchmark with linear 

regression using demographics and echocardiogram features (LVEF, RVSP, Heart Rate) on the 

Stanford test set. 
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Figure 3: EchoNet-Labs input ablations and impact on model performance. Experiments 

showing performance of models trained on ablated input data that hides specific information. (A) 

Results on standard video input. (B) Results with input where region outside of the left ventricle 

are obscured. (C) Results with removing temporal information with single frame input. (D) Results 

with removing texture information and showing location of the left ventricle. For each ablation 

setting, a separate model was trained on that type of ablated data to quantify the information 

content in the data. The width of each bar indicates the bootstrap 95% CI for each prediction AUC.  
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Supplementary Information  

 

Supplementary Table 1. Lab statistics. Summary statistics for each dataset and biomarker. The 

number of patients and mean (standard deviation) of the laboratory value is provided for the train, 

validation, Stanford test and the external Cedars-Sinai test cohorts. *Model was trained on the 

logarithm of the value given high variance of the biomarker values.   
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Supplementary Table 2. Lab cutoffs and number of patients above cutoff. Each lab value was 

binarized to be above or below the given threshold for the prediction purpose.  For purposes of 

classification of abnormal results, biomarkers were classified based on the reference range of 

assay.  
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Supplementary Table 3: EchoNet-Labs performance on internal and external test data. Area 

under ROC curve for each lab value on the internal Stanford test set and the external Cedars-Sinai 

test sets. *CRP results are based on a 365 day window to increase sample size. 
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Supplementary Figure 1: Performance of EchoNet-Labs when varying training dataset size. 

Training samples refers to the number of unique video-biomarker pairs used during training, where 

All represents the maximum sample size for the entire curated dataset.  
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