
Maximum likelihood perimetric progression analysis     Page 1 of 6 

Preprint: Not Peer Reviewed  05/02/2021 

TITLE  

Maximum likelihood perimetric progression analysis: Using raw (trial-by-trial) response data to 

estimate progression more robustly 

RUNNING TITLE  

Maximum likelihood perimetric progression analysis  

LIST OF AUTHORS 

Pete R. Jones
1
 

1

Division of Optometry and Visual Sciences, School of Health Science, City, University of London, London, England, EC1V 

0HB. 

CORRESPONDENCE 
*
Pete R Jones, Division of Optometry and Visual Sciences, School of Health Sciences, City, University 

of London, Northampton Square EC1V 0HB, London, UK; peter.jones@city.ac.uk 

SUPPLEMENTAL MATERIAL 

1 item of supplemental code: MLprogressionAnalysis_SuplCode.m 

MEETING PRESENTATION(S) 

⟨ none ⟩ 

FINANCIAL SUPPORT 

⟨ none ⟩ 

CONFLICTS OF INTEREST 

No conflicting relationship exists for any author.  

DISCLOSURES 

P.R. Jones, None  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.21251210doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.02.05.21251210
http://creativecommons.org/licenses/by/4.0/


Maximum likelihood perimetric progression analysis     Page 2 of 6 

Preprint: Not Peer Reviewed  05/02/2021 

ABSTRACT 

Purpose: To describe and demonstrate a more efficient (Maximum Likelihood) method for 1 

quantifying visual field progression. 2 

Design: Monte Carlo simulation. 3 

Methods: Trial-by-trial response data were simulated using a stochastic psychometric model (a 4 

“simulated observer”). Simulated Differential Light Sensitivity (DLS) decreased between tests to 5 

mimic long-term visual field progression. Progression slopes were fitted, either by fitting a 6 

regression slope to independent DLS estimates from each test (conventional method), or by fitting 7 

all the raw data combined in a single model (proposed maximum likelihood method). 8 

Results: The proposed ML method seldom performed worse than a conventional, regression-based 9 

approach, and often performed better. For an idealized observer with a lapse (false negative) rate of 10 

0 and a guess (false positive) rate of 0, both methods were equally precise. However, as lapse rate 11 

increased, the ML method exhibited less random measurement error. For small numbers of trials 12 

this increase in precision translated to a negative progression slope being detected with 95% 13 

confidence at least one year/assessment sooner. The only time the ML method was observed to 14 

perform worse was when very few trials (N = 4) were combined with very high lapse rates (λ = 0.3): 15 

an unlikely but not inconceivable scenario. 16 

Conclusions: Combining raw, trial-by-trial response data in a single ML model can provide a more 17 

robust estimate of visual field progression than conventional methods (e.g., linear regression), at no 18 

additional cost to the patient or clinician (i.e., no additional trials). 19 

KEY WORDS: Visual Fields; Perimetry; Progression; Glaucoma; Psychophysics; Maximum Likelihood 20 
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Maximum likelihood perimetric progression analysis: Using raw (trial-by-trial) response data to 21 

estimate progression more robustly 22 

The ability to accurately monitor perimetric rate of change (‘progression’) is key for the effective 23 

management of glaucoma. Typically, rate of progression (e.g., change in Differential Light Sensitivity, 24 

DLS, at a specific retinal location, or in some overall summary metric, such as Mean Deviation, MD) 25 

is estimated by fitting a curve through a series of point-estimates (scalar 'best guess' values), with 26 

each value representing a single assessment/hospital-visit. This approach is suboptimal, however, 27 

since there is additional information contained in the raw, trial-by-trial, test data; information that is 28 

effectively discarded when a point-estimate is generated at the end of each assessment. 29 

In principle, this additional information could also be factored in when estimating rate of 30 

progression. Thus, rather than using the raw data from each test to compute independent point-31 

estimates, �DLS0, DLS1, …, DLSn�, and then fitting a line through this time-series (a 'two step' 32 

solution, illustrated in Fig 1A), all of the raw data from every test could instead be used together to 33 

fit a single, maximum likelihood (ML) model, consisting of a single psychometric function whose 34 

threshold is determined by two parameters: an initial value, DLS0, and a rate of progression value, 35 

DLSΔ (a 'one step' solution, illustrated in Fig 1B). MATLAB code instantiating both of these methods is 36 

given as Supplemental Code, and this same code was used to generate the simulations reported 37 

below. 38 
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Figure 1. Methods and Results. (A) Schematic illustrations of conventional progression analysis: a two-step approach, in 40 

which DLS thresholds are first estimated independently for each assessment (e.g., using a maximum likelihood 41 

algorithm or adaptive staircase), and then a curve is fitted to this series of point-estimates (e.g., a least-squares linear 42 

regression slope). (B) Our proposed maximum likelihood method: a one-step approach in which the raw, trial-by-trial 43 

data from every test are used together to fit a single psychometric function, the threshold/location parameter of which,44 

DLSdB, is determined by a starting value, DLSS, and rate of progression value, DLSΔ. (C) Simulation Results: variability in 45 

estimated rate of change, σDLSΔ, for the conventional method (blue crosses) and proposed ML method (red circles), as a 46 

function of lapse rate. Each datapoint represents 10,000 simulations (2.8M simulations in total), with a given N Trials pe47 

assessment, �4, 8, 12, or 16 trials�, N Assessments, �3, 4, …, or 12 years�, and Lapse Rate, �0.05, 0.10, …, 0.30�. (D)48 

Further analysis. Same underlying data as (C), but here showing the number of years until 95% of simulations (i.e., 9,50049 

simulations) produced a negative slope estimate: DLSΔ < 0. This can be thought of as the number of years until the 50 

negative progression slope was detected with 95% confidence. 51 

6 

 

, 

r 

) 

0 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.21251210doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.05.21251210
http://creativecommons.org/licenses/by/4.0/


Maximum likelihood perimetric progression analysis     Page 5 of 6

To assess whether this 'one step' (ML) solution has the potential to meaningfully reduce 52 

measurement error, we ran Monte Carlo simulations using a simulated observer, whose probability 53 

of responding correctly to a stimulus of magnitude dB was determined, in the typical fashion, by a 54 

psychometric function of the form: 55 

, ( Eq. 1 ) 

where Φ is a Gaussian cumulative density function (CDF); DLS0 is the initial threshold sensitivity at 56 

first assessment, fixed at 30 dB; DLSΔ is the rate of progression, fixed at -1 dB/year (i.e., DLS = 25 dB 57 

after 5 years; Note that the sum of DLS0 and DLSΔ together constituted the mean/location 58 

parameter of the CDF); γ is the guess rate (0 to 1), fixed at 0; β is the psychometric slope parameter 59 

(the standard deviation of the CDF), fixed at 2 dB (Note, not be confused with the rate of 60 

progression slope parameter: DLSΔ); and λ is the lapse rate (0 to 1), which was systematically 61 

manipulated across simulations as follows: �0, 0.05, …, 0.3�.  62 

Each simulated observer was used to generate �3, 4, …, or 12� ‘years’ of DLS estimates (1 63 

assessment per year), with each assessment consisting of a single DLS estimate (a ‘1 point grid’) 64 

made using either �8, 16, 32, or 64� trials. This resulted in 280 unique conditions (7 Lapse Rates X 65 

10 N Years/Assessments X 4 N Trials Per Assessment). Each of these 280 conditions was 66 

independently simulated 10,000 times, yielding 2.8M simulated ‘patients’ in total (each of whom 67 

performed 3—12 DLS assessments). Within each assessment, stimulus selection was determined 68 

by a conventional QUEST+ routine
1
 (in this instance equivalent to ZEST

2
), using a bimodal prior taken69 

from Vingrys & Pianta (1999)
3
. The final threshold estimate (i.e., DLS, in dB) was computed as the 70 

mean of the probability mass function. See Supplemental Code for full technical details. 71 

For each simulated patient, rate of progression was then computed, post hoc, in two ways: First, 72 

using a conventional two-step linear regression procedure (Fig 1A). Second, by refitting all of the 73 

raw, trial-by-trial data from every assessment using the proposed ML procedure (Fig 1B). This ML 74 

procedure differed from the conventional QUEST+/ZEST procedure used within each individual 75 

assessment only inasmuch as the stimulus domain had two dimensions (Stimulus Intensity in dB, 76 

and N Years) rather than one (Stimulus Intensity) and the model free-parameters domain had two 77 

dimensions (DLS0 and DLSΔ) rather than one (DLS). 78 

For each set of 10,000 rate of progression estimates, the standard deviation, σDLSΔ, was computed 79 

as an index of random measurement error. Ideally, σ DLSΔ would be 0 (same estimated rate of 80 

progression on every simulation), with higher values indicating lower precision.  81 

6 
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The results are shown in Figure 1C,D. In brief, the proposed ML method seldom performed worse 82 

than a conventional, regression-based approach, and often performed better. For an idealized 83 

observer with a lapse (false negative) rate of 0 and a guess (false positive) rate of 0, both methods 84 

were equally precise (Fig 1C, leftmost data point in each panel). However, as lapse rate increased, 85 

the ML method exhibited less random measurement error. For small numbers of trials this increase 86 

in precision translated to a negative progression slope being detected with 95% confidence at least 87 

one year/assessment sooner (Fig 1D). Unsurprisingly, this difference between the two methods was 88 

attenuated when large, clinically unrealistic, numbers of trials were used to estimate thresholds, 89 

since in such circumstances measurement error for both methods converged towards zero (Fig 90 

1C,D, bottommost panels). Though some advantage for the ML method was still observed for very 91 

high lapse rates. The only time the ML method was observed to perform more poorly than the 92 

conventional method was when very few trials (N = 4) were combined with very high lapse rates (λ 93 

= 0.3): an unlikely but not inconceivable scenario. 94 

Other than the data shown in Figure 1, no other conditions (i.e., observer parameters or 95 

psychometric algorithm settings) were simulated: The goal was not to systematically assess the 96 

exact level of benefit under all possible scenarios, but to assess whether any meaningful benefit is 97 

possible under a single, broadly realistic scenario. Interested readers can, however, modify the 98 

Supplemental Code to simulate other scenarios.  99 

These simulations, though not comprehensive, illustrate that combining raw, trial-by-trial response 100 

data in a single ML model can provide a more robust estimate of visual field progression than a 101 

conventional ‘two-step’ (e.g., linear regression) approach, at no additional cost to the patient or 102 

clinician (i.e., without requiring any additional stimulus presentations, or varying current test 103 

durations or methods in any way). 104 
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