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Quantifying how accurate epidemiological models of COVID-
19 forecast the number of future cases and deaths can help
frame how to incorporate mathematical models to inform public
health decisions. Here we analyze and score the predictive abil-
ity of publicly available COVID-19 epidemiological models on
the COVID-19 Forecast Hub. Our score uses the posted forecast
cumulative distributions to compute the log-likelihood for held-
out COVID-19 positive cases and deaths. Scores are updated
continuously as new data become available, and model perfor-
mance is tracked over time. We use model scores to construct
ensemble models based on past performance. Our publicly
available quantitative framework may aid in improving model-
ing frameworks, and assist policy makers in selecting modeling
paradigms to balance the delicate trade-offs between the econ-
omy and public health.
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Introduction
Epidemiological models of COVID-19 have proliferated
quickly but it is unclear how well they forecast true values
of key underlying variables: the number of infected and dead
individuals. Establishing the quality of inference and pre-
dictive power is essential to make data-driven public health
decisions, including those that manage the delicate trade-offs
between the economy and public health. Model evaluation is
therefore of critical importance (1, 2).
We have created a uniform objective scoring system for
COVID-19 models that assess their predictive performance.
A scoring system has previously been deployed to as-
sess Flu prediction models in the FLUSIGHT contest two
years ago (3, 4). For COVID-19, investigators have been
collating COVID-19 model epidemiological forecasts from
multiple research groups in the COVID-19 Forecast Hub
(covid19forecasthub.org). These results are concurrently pre-
sented on the CDC coronavirus forecasting website. While
this effort provides insight into various model forecasts and
their various assumptions, it stops short of providing an ac-
tual score for cumulative predictive performance.
There have been efforts to assess the accuracy of published
and unpublished COVID-19 models. Some have focused on
evaluating model performance on their weekly cumulative
predictions. For instance, two different studies (5, 6) as-
sessed the performance of different models with the median
absolute percent error (MAPE) of cumulative deaths. Fried-

man et al. (5), observed that the calculated MAPE increased
for longer forecasts, and the best performance model varied
by region. Others have focused on evaluating model per-
formance based on weekly incident case forecasts by rank-
ing them according to the mean weekly percentile (7), while
Leaderboard (8) uses the root mean squared error of weekly
new deaths and reporting recent and running average perfor-
mance of eight models. Another group evaluated ensemble
models strictly containing probabilistic forecasts by comput-
ing a weighted interval score (9). They found that combining
forecasts in various ways consistently leads to improved per-
formance over single model forecasts.
Here, we propose to score individual models using a Leave-
Forward-Out-Cross-Validation scheme. The score is com-
puted by taking the log of the likelihood of the model fore-
casts on current data using the model predictions from the
past. Each weekly projected quantity is scored separately,
making it possible to assess model accuracy by the forecasted
time increment. Thus, we have a matrix of scores where each
entry is the computed log-likelihood for a model fitted to ob-
served data up to a certain date of a quantity for each week
forward from that date. This matrix continually expands in
size as new weekly forecasts are made and new forecast-
ing teams join the COVID-19 Forecast Hub collaborative. A
global score is computed from the matrix by averaging over
the desired elements. Some models may do well for short
time predictions but not for longer ones and vice versa. Our
score keeps track of how models improve (or degrade) over
time and how far into the future they can reliably forecast.
Our score dashboard is available at www.covidforeca.st.

Methods

Obtaining COVID-19 Forecast Hub Data. Forecasts of
models are stored in the data-processed folder of the COVID-
19 Forecast Hub repository at github.com/reichlab/covid19-
forecast-hub. The repository contains forecasts of weekly
cumulative and incidental death counts, weekly incidental
COVID-19 positive case counts and daily incidental hospi-
talizations for the whole US and for the individual states.
Each forecast includes a ’target end date’, t, which is the date
when ground truth Gt is observed and a ’forecast date’, d,
which is the date when the forecast was made. The fore-
cast submissions include Forecast Hub standard quantiles for
the forecasted distributions. Death count forecasts need to
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Fig. 1. Scoring framework and analysis. A. Total number of teams which deployed US country-level epidemiological forecasts on COVID-19 Forecast Hub as of January
24, 2021. B. Scoring starts with reading forecast data available at COVID-19 Forecast Hub. An example forecast is shown for the model BPagano:RtDriven forecast made
on 2020-11-9 targeting cumulative number of deaths on target end date 2020-11-14 (as denoted by G). Each forecast has a set of quantiles q and a set of corresponding
values v. C. We calculate probability density functions using forecast data {q,v} (details in Methods). We apply our scoring function on every forecast available. The past
performances of models can be used to form score-weighted ensemble model forecasts.
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Fig. 2. COVID-19 Forecast Hub data general review and scores. A. Histogram of weekly incidental case count forecasts for the US. B. Histogram of cumulative deaths
forecasts for the US. C and D shows the scatter plot for all scores as a function of the forecast horizon. C. Weekly incidental case forecast scores. D. Cumulative death count
forecasts.
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contain 23 standard quantiles (i.e. c(0.01, 0.025, seq(0.05,
0.95, by = 0.05), 0.975, 0.99)) while weekly incidental case
counts require 7 (i.e. c(0.025, 0.100, 0.250, 0.500, 0.750,
0.900, 0.975)). We only evaluate forecast entries that obey
these guidelines. We focused on weekly cumulative death
counts and weekly incidental case counts for the US (Fig.
S1). Ground truth data (G) for case counts, deaths, and hos-
pitalizations are also available in the Forecast Hub reposi-
tory through JHU CSSE Group (10) and HealthData.gov. For
week-ahead forecasts, a week runs from Sunday through Sat-
urday by definition, and we download the Forecast Hub data
every Sunday evening and update the model scores. Some-
times a modeling team deploys multiple forecast entries on
different dates targeting the same future target end date and
in such cases, we use only the forecast with the latest forecast
date.

Calculation of model forecast scores. To calculate scores
of epidemiological forecasts on the COVID-19 Forecast Hub,
we first converted the reported quantiles into approximate
probability density functions (PDFs) and then computed the
log-likelihood of the held-out future observation as depicted
in Figure 1.

Computation of model likelihood. The model predictions for
a model, Md,t, are provided as standard quantiles q of the
forecasted cumulative distributions for the case and death
counts, v, computed using data up to a forecast date, d, for
a prediction at a target end date, t. We convert this to a model
likelihood by computing the PDF and evaluating at the cor-
responding ground truth value, Gt. From the quantile data,
we upsample v to create a regularized one dimensional grid
V such that V = [floor(vmin)+0.5 : ceil(vmax)-0.5] and thus
each grid point is separated by a distance ∆V = 1. This
∆V is held constant across all models. Next, we calculate
Q = F (Vi), the cumulative probabilities corresponding to V,
based on Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) interpolation of q. Using Python NumPy gradient
function we find the derivative of V, F ′(V ) = f(V ), which
is the approximate PDF. Finally, we find the grid point in-
terval [Vi,Vi+1] in V containing the true value, Gt (an in-
teger). If both grid points of the PDF are available, then
we define the probability of having Gt given the model as
p(Gt|Md) = ∆V

(
f(Vi)+f(Vi+1)

2

)
. Otherwise, if the actual

data falls outside of the forecast prediction interval, we as-
sign p(Gt|Md) = 0 (even though this probability is non-zero
for a distribution on semi-infinite support, it is insignificantly
small). We validated our algorithm by finding small error
between the integrated p(Gt|Md) values and the forecaster
provided maximum quantile ranges (Fig. S2).

Scoring function. We constructed a scoring function that re-
warded models for assigning high probabilities to the true
values. Thus, models with broad predictive distributions are
penalized compared to models with narrower distributions
even if the true values are at the mode in both distributions.
Conversely, models with narrow distributions are severely pe-

nalized if the true value falls outside of their predicted distri-
bution.
To this end, we start with the log-likelihood for a modelMd,t

given the held-out forecast target Gt. However, the problem
with the log-likelihood alone is that the score will vary de-
pending on the distribution of Gt, which can vary over time.
To alleviate this problem, we normalize the score by subtract-
ing away an "optimal log-likelihood" so that

Sd(Gt) = 2(logp(Gt|Md)− logpO(Gt)) . (1)

This is similar to the negative of the deviance used for gen-
eralized linear models. In place of a saturated model predic-
tion, we assume a normal likelihood (for large rates a Poisson
distribution is near normal), then we can write

2logpO (Gt) =−
(
Gt−µ
σ

)2
− log2πσ2.

with an expectation of

IE[2 logPO] =−Var(Gt)
σ2 − logσ2− log2π.

The maximum is given by σ2 = Var(Gt), and setting
Var(Gt) = Gt, as expected for a Poisson distribution (al-
though the actual data is often overdispersed) we define our
score as

Sd (Gt) = 2logp(Gt|Md) + logGt+ log2π+ 1 (2)

We note that Sd(Gt) is−∞ ifGt falls outside of the forecast
prediction interval of a model M at any {t,d} pair, since we
assign p(G|M) = 0 in such cases.

Overall model performance evaluation. Model scores depend
on many intrinsic (e.g. changes to model assumptions) and
extrinsic (e.g. epidemiology) factors, and most importantly
on time. Thus, an overall model performance evaluation
spanning through the entirety of available data of the pan-
demic can provide insight into all of these components (albeit
in aggregate). To make fair comparisons, we analyze groups
of models whose forecasts have the same target time hori-
zon (e.g. 1 week ahead or 6 weeks ahead) together and have
separate leader boards for each time horizon. We evaluate a
model’s performance on date t using two metrics: (1) median
past score MS and (2) mean past model score performance
ranking among other comparable models Rt such that

MS(nW ) =
Median[St−nW (Gt), St−(n+1)W (Gt−W ), ...]

(3)

and

R(nW ) =
Mean[Rt−nW (Gt), Rt−(n+1)W (Gt−W ), ...]

(4)

where nW is the n-Week forecast horizon. The leader board
considers the time frame starting from July 4, 2020. We do
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not include models with number of forecasts less than 50% of
the number of possible weeks in the time frame in the leader
boards (Fig. S7).
Additionally, we used Median Absolute Deviation (MAD) to
measure score variability of the models over time. For each
forecast type (case or death) and each forecast horizon, we
have a set of scores for a model’s forecasts from July 4, 2020
onward. We find the median of the set. Then, we find the
absolute difference between the elements of the set and the
calculated median. This results in a set of absolute deviations.
We report the median of that set for each forecast type and
each forecast horizon.

Score-weighted Ensemble Formation. We generate the
ensemble model forecast values ve corresponding to the stan-
dard set of quantiles q by using weights informed by past
model scores (Fig. S4). Assuming there are n models avail-
able at a given forecast date d with a particular target end
date t, to obtain ve, we weigh the constituent model forecast
values vM corresponding to the ith quantile qi (see (11))

ve(qi) =
∑
M

wMvM(qi), M = 1,2...n (5)

wherewM is the normalized weight of each model. There are
many ways of formulating model weights in an ensemble, but
we used median of exponentiated past scores of a model up
to the date of forecast d as weight such that

w′M = Median[e
1
2Sd−nW (Gd), e

1
2Sd−(n+1)W (Gd−W ), ...].

We normalize w′M over all available model weights to calcu-
late wM .

wM =
w′M
n∑
i=1

w′i

Hence, an unweighted ensemble has all wM equal to 1/n.
Also, we note that when forming time horizon-specific en-
sembles (e.g. 4-week ahead ensemble), we use scores and
averages of that particular time-horizon only and do not in-
volve others (e.g. 1-week ahead or 6-week ahead). We call
our score-weighted ensemble model Sweight with the mod-
eler team name FDANIHASU.

Development of the Web-based User-Interface. All
model forecasts (including those of the ensemble described
above) are scored using Equation 2. We have developed
leader boards based on running median scores and running
average rankings of the models. We have developed a Python
Plotly/Dash-based dashboard for the leader board and model
score analysis along with various plots. The dashboard is up-
dated every Sunday of the week and is available at the website
www.covidforeca.st.

Median Difference in Scores (Ensemble - Average Model)
Weeks-Ahead Case Forecasts Death Forecasts

1 0.766683 2.084539
2 1.144867 1.171649
3 1.612646 1.031703
4 1.317739 1.180398
5 2.280982 2.074885
6 2.034455 2.743361

Table 1. Performance evaluation of the score-weighted ensemble model (FDANI-
HASU:Sweight) forecasts over time for US cumulative death and weekly incidental
cases. We compared median difference in scores (Ensemble - Average Model) for
different forecast horizons (i.e. 1- through 6-weeks-ahead). Across all horizons and
forecast target types the score-weighted ensemble model performed better based
on this measure (i.e. positive values).

Systematic review of model types. To assess model per-
formance based on similarity between model types and as-
sumptions, we performed a meta-analysis of the models
available on the COVID-19 Forecast Hub. As of January 24,
2021, there were 90 models deployed, and we reviewed 63 of
those models which reported whole US population forecasts
(weekly cases and cumulative deaths) along with the required
pre-designated quantiles to perform scoring. In order to re-
view each model, we first classify them under: deterministic,
stochastic or statistical. A model was classified as determin-
istic if it is built using macro-level compartments represent-
ing a group of individuals and the dynamics are defined using
average transition rates between compartments. A stochastic
model is built at micro-level states occupied by discrete indi-
vidual persons, randomness is introduced, and the transitions
are defined with probabilities. A model was classified as sta-
tistical if statistical techniques were applied to analyze a data
set and regression-type models were utilized. Determinis-
tic models were categorized further into compartmental and
metapopulation. Compartmental models assume a continu-
ous population that is divided into a number of states (e.g.
susceptible, infected, and recovered) (12). Metapopulation
models are usually in the form of connected compartment
models of subpopulations defined in terms of geographical
regions and incorporating random mixing within these sub-
populations (12), therefore adding complexity to compart-
mental types.

Results
COVID-19 Forecast Hub data characterization. The
number of models on the COVID-19 Forecast Hub increased
substantially since March 2020 (Figure 1). We focused on
weekly incidental case forecasts and cumulative death counts
(Fig. S1). We identified 39 models for the weekly case
counts and 54 models for cumulative death counts. The ma-
jority of the forecasts target less than 4-week ahead COVID-
19 epidemiology. There are 7402 unique entries for cumula-
tive death count forecasts and 3759 for the weekly incidental
case counts as of January 24, 2021 and the cumulative death
counts forecasts span a much larger time frame (up to 21
weeks ahead). When we look at the distribution of scores, we
see that scores decrease for long-term forecasts substantially
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Fig. 3. Average 1-week- and 4-week-ahead forecasting performances shown for the top 10 models based on running average scores (Eq. 3) (blue color for the best
performing on average and dark red for number 10). FDANIHASU:Sweight model is the score-weighted ensemble presented in this work. A. Average scores for Weekly
incidental COVID-19 Cases forecasts (1-week-ahead performance). B. Average scores for cumulative death count forecasts (1-week-ahead performance). C. Average scores
for Weekly incidental COVID-19 Cases forecasts (4-week-ahead performance). D. Average scores for cumulative death count forecasts (4-week-ahead performance).

and models are in general much better (higher score) at fore-
casting cumulative death counts than in forecasting weekly
incidental case counts (Figure 2 panels C and D and Figure
S3). We also noticed that the models failed to capture abrupt
changes in the observed case counts, specifically first week
of July 2020 and mid November 2020 (Figure S3 and 3).

Score-Weighted Ensemble Forecasting. We formed un-
weighted and score-weighted ensemble models which fore-
cast US weekly incidental case counts and US cumulative
death counts over the horizon of 1-week to 6-weeks (see

Methods). We calculated the scores of the unweighted and
weighted ensembles at each target end date. In general the
score-weighted ensemble performed better for 1-week ahead
forecasts (Fig. 4). In the early phases of the ensemble (i.e.
the first two weeks of July 2020) the number of models within
the ensemble for cases was small (less than 5). Addition-
ally, the number of past score samples were limited, which
reduced the score-based model credibility for the ensemble.
However, as we reached December 2020, we see that changes
in the epidemiological dynamics did not impact the score-
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Fig. 4. Comparison of scores of unweighted and score-weighted ensemble models
for the cumulative death counts. For comparison purposes we plot the leading
model’s score (based on past performance as of the last target end date, by ranking
and by median scores). Model forecasts that do not encompass the ground truth
G would have a score −∞ and this scenario is shown at the bottom of the figure
panels. A. 1-week-ahead scores. B. 4-week-ahead scores.

weighted ensemble as much as the unweighted ensemble (see
the declines in scores in December 2020, for 4-week-ahead
forecasts, 4B). The differences between the weighted and un-
weighted ensemble forecast scores are less significant for the
weekly incidental case counts (Fig. S6). Moreover, as an
alternative quantitative measure of forecast performance of
our ensemble model, we calculated the median of the differ-
ence between Sweight’s scores and the median of all avail-
able scores across the pandemic over different forecast hori-
zons (large positive difference means better ensemble model
performance). Based on our calculations, Sweight performed
consistently better and had a higher score than the average

A

B

Fig. 5. Distribution of the model types. A. General breakdown according to the
main framework of the type of models. B. Breakdown by the overarching modeling
theme.

model for 1 through 6-weeks-ahead horizon (Table 1). We
also observed that Sweight ensemble model tends to make
more stable forecasts based on the MAD calculations (Fig.
S5).

Modeling strategies score comparably despite vary-
ing assumptions. Based on our literature review of models,
about 54% of the models used the well-known epidemiolog-
ical SIR model and its variations (i.e. SIR, SEIR, etc.) as the
main framework in both deterministic and statistical models.
About 43% of the models used statistical and probabilistic
approaches, and about 3% of the models used other types
such as combination of statistical and logistic growth model
or by averaging the predictions of several models (Fig. 5A).
Among these classifications, modelers implemented other
methods/theories such as spatio-temporal dynamics, season-
ality, ground truth reporting periodicities and delays, mobil-
ity, and age-structure to increase specificity and complex-
ity. When we analyze the approach the modelers took to
drive their main modeling framework, we see that 27% used
purely compartmental modeling, 19% used metapopulation
approaches to model the spatial/population network interac-
tions, 38% used statistical/stochastic approaches such as deep
learning, and about 16% used ensemble forecasting (Fig.
5B). Although model performances change with time, we
have not observed dominance in performance of one mod-
eling category over the others (Fig. 6). Our detailed method-
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Fig. 6. Average 4-week ahead forecast performances shown for different overar-
ching modeling themes. A. Median of the scores of models which belong to four
different themes shown for Weekly incidental COVID-19 Cases forecasts over time.
B. Median of the scores of models which belong to four different themes shown for
cumulative death counts forecasts over time.

ological review of models on COVID-19 Forecast Hub can
be found in the Supplementary Materials.

Conclusions and Discussions
We developed a scoring framework for the forecasts of
COVID-19 epidemiological models using forecast and ob-
served data available at COVID-19 Forecast Hub. Scores can
be used to evaluate past performances of all models. Ad-
ditionally, quantitatively evaluating model forecasts enable
score-weighted ensemble model forecasting. We provide
a systematic review of available model types which show

what type of modeling efforts are more successful in fore-
casting the COVID-19 epidemiology in the US. Our results
suggest that models are unable to capture abrupt changes in
COVID-19 epidemiology (e.g. the first two weeks of July
and the first two weeks of November in US). Death count
forecasts so far have been more accurate than weekly case
counts. That could be because incidental case count curves
are much higher than death counts and non-monotonic in
behavior and may have varying reporting practices across
health institutions, counties, and states. We refer the reader
to www.covidtracking.com/data for an overview of such vari-
abilities.

Our work has some notable limitations. We only consider
models on the COVID-19 forecast hub and this may inad-
vertently lend to selection bias of groups willing to format
their model output according to required metrics and upload
to the hub. Currently, our scoring framework considers only
the US national data and scores on the individual US state
model forecasts can be made available. We have also only
considered weekly incidental case numbers and number of
cumulative deaths, which does not take into account model-
ing efforts that predict hospital capacity and utilization. Ad-
ditionally, our ensemble model formation may be optimized.
When reporting average forward score for a model, we give
equal weights to forecasts made earlier in time to the more re-
cent forecasts. The score-weighted ensemble forecasts might
have performed better, if we had focused on the recent fore-
casts instead of the entire set of longitudinal data pertaining
to the pandemic.

This work supplements the COVID-19 Forecast Hub effort
by taking the modeler provided probability distributions and
computing the score for each week the research groups up-
date their forecasts. This can be implemented quickly, but
does not standardize how the model uncertainty is computed.
This, in particular, can be important if the model is a mecha-
nistic one with multiple parameters. In such a case, the per-
formance of the model should depend on the mechanisms in-
cluded, the priors on the parameters in the model, and the
chosen likelihood function for the noise on the data. Separat-
ing these effects might be useful in informing which mech-
anisms, priors, and noise models are important in obtaining
accurate forecasts.

A more ambitious scoring framework would be to perform
a Bayesian scoring analysis on all models in-house. This
would be made easier if model codes were to adhere to a
universal standard. The universal standard idea has already
been implemented by the FDA for results of clinical trials
using Biocompute Objects (13), which standardize the data
processing pipeline. Universal model scoring would be op-
tional but groups would be incentivized to obtain a score in
order for their model to be considered as part of an ensemble.
The standard could also be made less invasive by using the
concept of the Unit test, which is an executable code snip-
pet that verifies the intended behavior of a program. This is
widely used in complex software projects. Google alone ex-
ecutes 4.2 million unit tests daily to verify the behavior of
its core products. The analogue would be code snippets for
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computing the model score.
SciUnit (http://sciunit.io) is a Python package for construct-
ing, executing, and reviewing the outcomes of model vali-
dation tests (14). The core design principle is the program-
ming adage “separate the implementation from the interface”.
Tests are not required to know anything about how a model
works; instead, models expose functions that a test calls
through an interface called a capability. The implementation
of capabilities is left to downstream libraries, where SciU-
nit underlies libraries for a variety of projects, including The
Human Brain Project (1000+ investigators) and OpenWorm
(80 investigators across 17 countries). We could integrate
public epidemiological models with SciUnit to rapidly, pro-
grammatically, and objectively assess the inferential and pre-
dictive performance of competing models across a number of
relevant public health dimensions.

Data and Code Availability
The code for the scoreboard is available at
github.com/ONYLAB/Scoreboard.Our scores are updated
every Sunday evening and available at www.covidforeca.st.
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Supplementary 1: Supplementary Figures for "A Quantitative Evaluation of COVID-19 Epidemi-
ological Models"

Fig. S1. COVID-19 in the US.

A B

Fig. S2. Overall quality of CDF to PDF Conversion.
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Fig. S3. Model forecast performances over time. A. Black solid curve represents the observed US weekly incidental case counts. Other
curves represent the median of the forecasts for the target end date made from 1 to 6-weeks prior to the target end dates. B. Black
solid curve represents the observed US cumulative death counts. Other curves represent the median of the forecasts for the target end
date made from 1 to 6-weeks prior to the target end dates. C. Curves represent the median of the forecast scores colored based on
their forecasting horizon (1-week prior to 6-weeks prior color-matching to sub-panel A). D. Curves represent the median of the forecast
scores colored based on their forecasting horizon (1 to 6-weeks prior, with colors matching to sub-panel B). Discontinuities in the score
plots imply that the median value of the scores for a particular time-horizon is −∞, demonstrating the poor performance especially on
the inflection points of the epidemiological curves.
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Fig. S4. Ensemble forecast formation.

Fig. S5. Median absolute deviation (MAD) as a score variability measure for the models. A. MAD for weekly incidental case forecasts
over 1-4-week-ahead forecasting horizon. B. MAD for cumulative death count forecasts over 1-4-week-ahead forecasting horizon.
FDANIHASU model is the score-weighted ensemble presented in this work. Note: Models that have at least one∞ as their MAD in 1-
to 4-week-ahead forecasts are not shown in these plots.
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Fig. S6. Comparison of scores of unweighted and score-weighted ensemble models for the weekly incidental case counts. For
comparison purposes we plot the leading model’s score (based on past performance as of the last target end date, by ranking and by
median scores). Model forecasts that do not encompass the ground truth G would have a score −∞ and this scenario is shown at the
bottom of the figure panels. A. 1-week-ahead scores. B. 4-week-ahead scores.
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Fig. S7. Example score and rank matrices for n-Week forecast horizon. Cells in the matrices with NA represent the absence of a
forecast for that date. There are 12 categories and each category has its own leader board: 2 for targets (weekly cases, cum deaths)
and 6 for time horizons (1-week-ahead,.., 6-week-ahead). We have two conditions in place when forming the leader boards using these
matrices. First, the leader boards consider the time frame July 4, 2020 onward. Second, in the leader boards, we do not include models
with number of forecasts less than 50% of the number of possible weeks in the time frame.
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Statistics on word count. 4021 words
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