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Abstract
Scores for identifying patients at high risk of progression of the coronavirus disease
2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), are discussed as key instruments for clinical decision-making and
patient management during the current pandemic.
Here we used the patient data from the multicenter Lean European Open Survey on
SARS-CoV-2 - Infected Patients (LEOSS) and applied a technique of variable
selection in order to develop a simplified score to identify patients at increased risk of
critical illness or death.
A total of 1,946 patients, who were tested positive for SARS-CoV-2 were included in
the initial analysis. They were split into a derivation and a validation cohort (n=1,297
and 649, respectively). A stability selection among a total of 105 baseline predictors
for the combined endpoint of progression to critical phase or COVID-19-related death
allowed us to develop a simplified score consisting of five predictors: CRP, Age,
clinical disease phase (uncomplicated vs. complicated), serum urea and D-dimer
(abbreviated as CAPS-D score). This score showed an AUC of 0.81 (CI95%: 0.77-
0.85) in the validation cohort for predicting the combined endpoint within 7 days of
diagnosis and 0.81 (CI95%: 0.77-0.85) during the full follow-up. Finally, we used an
additional prospective cohort of 682 patients, who were diagnosed largely after the
“first wave” of the pandemic to validate predictive accuracy of the score, observing
similar results (AUC for an event within 7 days: 0.83, CI95%, 0.78-0.87; for full follow-
up: 0.82, CI95%, 0.78-0.86).
We thus successfully establish and validate an easily applicable score to calculate the
risk of disease progression of COVID-19 to critical illness or death.

Introduction
The first human cases of Coronavirus disease 2019 (COVID-19) were described in
December 2019 in Wuhan1. From that on, COVID-19 has developed to one of the most
disastrous pandemics that we have experienced in our civilization since the Spanish
flu in the beginning of 20th century2,3. Exponential spread of the disease-causing
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as has happened
throughout Europe during the first wave of the pandemic, can result in an excessive
hospital overload and a shortage of healthcare resources, which may lead to a
negative impact on patient outcomes4. This experience underpinned the importance
of an effective process to allocate limited health care resources towards COVID-19
patients who most likely benefit from them. Consequently, to guarantee functional
patient care, disease severity assessment for patients presenting to the emergency
department (ED) may prove very helpful and guide frontline physicians in the decision-
making process. On the one hand, a high number of patients deteriorate rapidly after
hospital admission and require transfer to the Intensive care unit (ICU), while on the
other hand clinical conditions of other COVID-19 patients improve quite fast. In this
respect, a prediction model can support physicians at determining if patients require
hospital admission or can be can be followed up in outpatient care.
A risk assessment score may additionally prove to be a helpful tool for estimating the
individual risk benefit tradeoff for therapeutic interventions.
The aim of the current study was to develop a simplified risk prediction model based
on clinical and demographic characteristics and laboratory findings present at the time
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point of COVID-19 diagnosis to estimate the risk for clinical deterioration to critical
illness. To this end we use data from the Lean European Open Survey on SARS-CoV-
2 (LEOSS) project – a prospective European multi-center cohort study5.

Methods
Study design and patient cohort
This analysis includes patients who received care at a LEOSS partner site (as inpatient
or outpatient) starting March 16, 2020. Cases documented in the LEOSS registry up
to August 6, 2020 contributed to the initial cohort, which was split into a derivation and
validation sets. Cases entered from August 7, 2020 to November 18, 2020 contributed
to additional test sets (Figure 2A). The design of the LEOSS study and data acquisition
have been described previously5.
Data were recorded anonymously and no patient-identifying data were stored. Written
patient informed consent was waived. Continuous parameters were categorized. In
order to ensure anonymity in all steps of the analysis process, an individual LEOSS
Scientific Use File (SUF) was created, which is based on the LEOSS Public Use File
(PUF) principles, as described previously5. Following these principles, for a minor
portion of patients and variables values were removed from the dataset and set to
missing to ensure anonymization. Approval for LEOSS was obtained by the applicable
local ethics committees of all participating centers and the study was registered at the
publicly accessible German Clinical Trails Register (DRKS, No. DRKS00021145).
All predictors included in the stability selection are listed in the Table 1 and
Supplementary Table 1. We predefined a combined endpoint of progression to critical
disease or COVID-19-related death. Definition of the disease phases is summarized
in Figure 1. Baseline (day 0) was defined as the day of the first positive SARS-CoV-2
testing. Only baseline predictors were included in the analysis (for lab values collected
within 48 hours of diagnosis). If no CT was conducted within 48 hours of positive
testing, we made an exception and included those CT-scan variables collected after
this time but during the same clinical phase which was present at baseline. For the
analysis we additionally calculated a separate predictor describing if the patient has
any cardiovascular (CV) comorbidity, defined as any of the following being present:
history of (H/O) myocardial infarction, aortic stenosis, atrioventricular (AV) block,
carotid artery disease, chronic heart failure, peripheral vascular disease, hypertension,
atrial fibrillation (AF) or coronary artery disease. An additional variable was also
calculated for any neurologic comorbidity, defined as any of the following being
reported for the patient: hemiplegia, dementia, cerebrovascular disease or stroke,
multiple sclerosis, myasthenia gravis, neuromyelitis optica spectrum disorder
(NMOSD), movement disorder (e.g. Parkinson's disease, Dystonia, Ataxia, Tremor),
motoneuron diseases (e.g. amyotrophic lateral sclerosis, spinal muscular atrophy),
other neurological autoimmune diseases, other prior neurological diagnosis. Lastly,
we defined a predictor for any malignant neoplastic disease as any of the following
being reported: H/O lymphoma, leukemia, solid tumor, solid metastasized tumor, stem
cell transplantation.

Statistical analysis
All analyses were carried out in R (version 3.6.3). Random forest analyses (including
missing value imputations and individual Boruta stability selection steps) were
calculated using the “randomForestSRC” package by Ishwaran et Kogalur6.
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Among the available baseline variables of the LEOSS dataset (≈170 predictors) we
selected those with less than 50%missing values among the combined derivation and
validation dataset (n=1946 patients, as shown in Figure 2), with an exception made
for Troponin T (52% missing) and pancreas lipase (56% missing). This resulted in a
total of 105 predictors (as listed in the Table 1 and Supplementary Table 1). Since the
time to event data in the anonymized LEOSS cohort was grouped for patients
experiencing an event at ≥8 days after study inclusion, the time variable was coded
accordingly as 1 to 7 days and ≥8 days, resulting in 8 bins for the time variable
(Supplementary Table 1). These were used for the time-to-event approaches: random
survival forest and Cox models and for C-index calculation. Continuous predictors are
binned as value ranges in the LEOSS cohort due to anonymization and for the analysis
the ranges were coded as consecutively increasing integers.
We performed unsupervised random forest missing value imputation using either the
data of the combined derivation and validation datasets (n=1946 patients) or,
separately, the full test set (n=682 patients, Figure 2), while withholding the outcome
variables. We thus generated 20 imputed datasets for each of the cohorts.
We performed a split into a derivation and a validation cohort with similar
characteristics based on the following predefined potential confounders: age, sex,
presence of dyspnoe, neutrophil count, lymphocyte count, lactate dehydrogenase
(LDH), bilirubin, CRP, PCT, D-dimer, H/O malignant neoplasia, presence of any CV
comorbidity (as defined above) and the number of events. To this end we performed
1000 random splits at a 2/3 and 1/3 ratio and calculated for each split and variable the
standardized mean difference, selecting the split with the smallest maximal
standardized mean difference between these predictors.
Variable selection was carried out using the Boruta algorithm7 at 100 iterations using
equal proportions of the 20 imputed derivation datasets and a p-value of 0.01 for
selection. For classification random forests we used the presence of an event (critical
phase or COVID-19-related death) within 7 days of diagnosis as the outcome of
interest during Boruta selection. We used the balanced method by Chen at al.8 both
during Boruta selection and modelling with the selected variables. Likewise, we used
survival random forest as described by Ishwaran et al.9 both during Boruta selection
and during final modelling of time to event data. For survival random forests, since
they take time to event into account, also events occurring longer than 7 days after
diagnosis were included. Variable importance was calculated using permutation. For
Cox and logistic (binomial) regression models we performed ridge (L2) penalization
optimized using 20x fold cross-validation on the imputed derivation datasets. Score
values were calculated from the ridge penalized binomial regression coefficients of the
model containing the five selected predictors on the derivation dataset with missing
values replaced with the most common value of the 20 imputed datasets for this patient
and predictor and event within 7 days as outcome. Finally, the regression coefficients
were divided by the smallest one and rounded to the next whole integer. Two-sided p-
values for binomial ridge penalized coefficients were obtained as suggested by Cule
et al.10, by repeating the ridge regression procedure on a dataset with randomly
permuted outcomes 1000 times (using equal amounts of the 20 imputed datasets).
Area under the receiver operating characteristics curve (AUC) and (Harrell’s) C-
indices were calculated using linear predictors from the binomial and Cox ridge-
penalized regression models or out-of-bag (OOB) predictor estimates for the random
forest approaches. 95% confidence intervals for AUC and C-indices were calculated
using 1000 bootstraps of patients’ scores using equal contributions of the imputed
datasets.
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Results
Patient population
Important characteristics of the LEOSS cohort were described previously5. More
diagnosed SARS-CoV-2 cases were available for the current analysis compared to
this previous report (2,969 in the first dataset, patients from the first wave of the
pandemic, and 1,233 patients in a second test set, Figure 2)5. Based on the predefined
disease phase (Figure 1) and the availability of laboratory values, a total of 1,946
patients were included in the first round of analysis and split into a derivation and
validation groups with similar characteristics (Figure 2). Important characteristics are
summarized in Table 1 with a summary of the remaining predictors provided in
Supplementary Table 1.
The age distribution in the first dataset was centered, with about equal contribution of
patients of ≤65 and >65 years. There were more men than women at 55-59% to 41-
45%. At least 56% presented with a known CV comorbidity. The incidence of the
combined endpoint, critical phase or COVID-19-related death, within 7 days was 14-
16%, and 20% when including any time point during the follow-up (Table 1).
From the second test set (patients whose cases were entered into the registry after
the first data export for score derivation) 682 patients passed selection criteria. This
set largely consisted of patients diagnosed after June 2020 (Figure 2). Compared to
the derivation/validation cohorts, the patients were younger (60% with an age of ≤65
years) and more were diagnosed in an uncomplicated phase (72% vs. 64-68%).
Consequently, the event rate was lower with only 10% experiencing an event within 7
days of diagnosis and 12% during the full follow-up (Table 1). Both the derivation and
validation datasets consisted almost exclusively of patients receiving inpatient care.

Predictor selection
We performed Boruta variable stability selection using random forest for classification
(RF), resulting in the selection of 5 (out of 105) predictors (Table 2). These were: CRP,
disease phase, age, serum urea, and D-dimer (Supplementary Figure 1A).
Interestingly, including only these five predictors in a logistic regression model
achieved results almost on par with the full set of variables (Table2, “RF Boruta”,
Binomial ridge, median AUC=0.81 in the validation cohort).
We additionally performed Boruta stability selection using a survival random forest
(RSF) approach. Here, 24 predictors were retained, with the five predictors from RF
Boruta being among the variables with the highest importance (Supplementary Figure
1B). Increasing the number of predictors to 24 had only a minor impact on model
performance in the validation dataset compared to five predictors, as measured by
Harrell’s C-index (median C-index of 0.77 vs. 0.76 for five predictors, Supplementary
Table 2).

Derivation and validation of a simplified predictive score
Based on the encouraging results and the simple interpretability, we used the
coefficients obtained in the binomial ridge regression model with five predictors (Table
3) to derive an additive score for prediction of COVID-19 progression to critical phase
or death. The score is outlined in Table 4. It showed a similar performance when
compared to the binomial model both in the derivation and the validation datasets
(median AUC in the validation dataset for events within 7 days of diagnosis: 0.81, 95%
confidence interval (95% CI), 0.77-0.85, and for all events, 0.81, 95% CI, 0.77-0.85,
Table 2). Interestingly, the simplified score also showed a similar performance to a
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Cox regression or an RSF approach with both the five and 24 predictors as measured
by Harrell’s C-index (median C-index of 0.76, 95% CI, 0.73-0.80 in the validation
cohort, Supplementary Table 2).
As an independent prospective validation group, we used the second test set of
patients whose data was entered into the registry after the initial data export (n=682
patients, “full test set” in Figure 2). To further reduce the impact of missing values on
the estimation of score performance, we additionally removed patients from centers
with >20% missing values for D-dimer, the variable with most missing values (42-47%
missing). Centers which enrolled less than five patients were also removed. This
resulted in an additional “limited test set” (n=219 patients, Figure 2). This dataset had
only a minor portion of missing values (CRP: 1%, serum urea: 2%, D-dimer: 7%
missing, Table 2).
In both the full and limited test sets we could confirm a similar performance of the
developed score, with a trend towards higher AUC and C-index values compared to
the validation dataset (full test set, median AUC for 7 d: 0.83, 95% CI, 0.78-0.87; all
events: AUC 0.82, 95% CI, 0.78-0.86; limited test set, median AUC for 7 d: 0.82, 95%
CI, 0.73-0.90; all events: AUC 0.83, 95% CI, 0.76-0.90, Table 2; median C-index for
full test set: 0.80, 95%CI, 0.76-0.84; limited test set: 0.81, 95%CI, 0.74-0.87,
Supplementary Table 2).
Depending on the clinical application, different cutoffs may be considered. We
therefore provide the predictive metrics of the score, such as sensitivity, specificity and
the positive and negative predictive values (PPV, NPV) vs. the cutoff (Figure 3) as well
as the absolute event risks for specific score values (Supplementary Figure 2).
Next to the discriminative performance, we observed good calibration with a slope
ranging from 0.944 to 1.101 in the different validation/test datasets (Supplementary
Figure 3). Interestingly, the Brier score was tendentially smaller in the “full test”
compared to the validation dataset (0.076-0.091 vs. 0.106-0.124, Supplementary
Figure 3), mirroring the tendency towards a better discriminative performance in this
dataset (Table 2 and Supplementary Table 2). Calibration-in-the-large for the “full test”
set, which showed a lower event per case rate, was similar to that in the validation set
for an event within 7 days (intercept of -0.181 vs. -0.182), with a higher difference for
all events (intercept of -0.334 vs. 0.004, potentially reflecting the differences in the
event rates between the cohorts).
One method to select a cutoff is by optimizing the modified Youden’s J11. For the
proposed score the optimal J in the combined validation and full test dataset was at a
cutoff of ≥17 both for predictions at 7 days after diagnosis and for all events. Applying
this cutoff, on average 69% of patients are predicted to not progress to critical illness
(Table 5, combined validation/test dataset) at an NPV of 95% for 7 days after diagnosis
and an NPV of 94% for the full follow-up. Patients with scores at or above this threshold
had ≈3-fold increased odds of experiencing an event, while patients below this
threshold had ≈3-fold decreased odds as measured by the respective likelihood ratios
(Table 5).

Discussion
Here we describe the derivation and validation of a COVID-19 risk score for the
prediction of the combined end point of critical disease or COVID-19-related death
with five predictors. We derive the score in an untargeted way by selecting the most
stable predictors among 105 available at baseline in the LEOSS registry in a random
forest approach and use regularized regression to calculate the coefficients.
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A number of approaches for COVID-19 risk stratification have been reported
previously (reviewed by Wynants et al.12), several with a similar aim of predicting
critical disease, as indicated by admission to the ICU (e.g.13–15) or death (e.g. 14–17).
The availability of factors such as hospital or ICU beds has been limited during the
high tide of the pandemic and the resulting strain on health care systems. Thus,
difficulties in generalizing outcome predictions obtained under these constraints in
currently available scores may arise. In our view some important limiting aspects have
to be considered. On the one hand, if hospital beds are limited, the study population
for inpatient analyses may overrepresent patients with symptoms of exceptional
severity and high risk groups, which may limit generalizability (as e.g. noted for the
ISARIC 4C score16). Similarly, if ICU resources are limited, the indications for
admission may be more conservative, thus a patient may be identified as having a
favorable outcome (not being admitted to an ICU) despite having fulfilled clinical
criteria at some point. This is exemplified by the finding that one of the predictors
included in the COVID-GRAM score was unconsciousness, which may already
indicate an outcome of an advanced disease.
Another important consideration is for the generalizability of mortality as an outcome
for patient stratification. Case fatality rates have been widely differing across
countries18, even within the European Union, which may be at least in part attributed
to country-specific differences in clinical management of COVID-19 patients and to
resource availability during the first wave of the pandemic4. This may limit
generalizability and potentially require an update to existing scores for mortality
prediction19 as care providers gain experience with COVID-19 management and the
strain on hospitals is reduced.
A previous review on COVID-19 prognosis scores came to an overall negative
assessment of the potential bias of these scores and as a result discouraged their
use12. A combination of characteristics sets apart our approach compared to those
available (to our knowledge) at the time of writing and makes it potentially better
generalizable for future clinical application: (a) the outcome was not defined in terms
of a specific treatment (or lack thereof, i.e. admission to the ICU), but rather based on
clinical features (a predefined “critical phase”); (b) the inclusion was based on
predefined clinical criteria (“uncomplicated” or “complicated” phase) and (c) the use of
a stability selection approach as a means of reducing the number of predictors, as
further discussed below. Additionally, the vast majority (>90%) of the cases enrolled
into the LEOSS cohort were from Germany5, where the capacity of the healthcare
system was in general not exceeded during the first wave of the pandemic20.
To address bias in predictor selection we used an untargeted approach and
resampling techniques (stability selection and cross-validated ridge regression) in
order to first internally test the predictions on the derivation dataset and then validate
them on a withheld validation cohort. Stability selection helps to ensure the internal
validity and sufficient sample size already for the derivation dataset, as a too small
sample will reduce variable stability and lead to less variables being selected. Ridge
regression shrinks the regression coefficients to achieve improved predictions in a
binomial model again with internal (cross-)validation already in the derivation dataset.
As a result of the above steps, we could successfully confirm the performance of our
score in an independent test set, consisting in its majority of COVID-19 cases
diagnosed after the first wave of the pandemic.
An important contributor to the predictive performance of the final score was the
predefined clinical phase (“complicated” vs. “uncomplicated”), which summarizes the
presence of a manifest organ involvement of the lungs, heart or liver. Of note, some
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parameters of the complicated phase, such as arterial partial pressure of oxygen
(PaO2) and pericardial effusion were acquired by indication (e.g. if an
echocardiography or arterial blood gas analysis were performed, but not routinely),
therefore for phase assignment these do not have to be taken into account in absence
of an indication for the respective measurement.
Serum urea, likely as a measure of kidney involvement, was also an important
predictor and outperformed creatinine, as reported previously for mortality16,21. This
predictor potentially summarizes both preexisting chronic kidney disease (CKD) as a
risk factor (as e.g. reported by Williamson et al.22 and in Supplementary Figure 1B)
and acute kidney injury (AKI) due to COVID-19 as organ involvement (also stable in
RSF Boruta, Supplementary Figure 1B). Different mechanisms of AKI in COVID-19
patients have been observed, including indirect involvement e.g. due to a cardiorenal
syndrome, direct virus-induced injury as well as immunologic causes such as
complement activation (as reviewed in 23,24). Differentiating the type of acute kidney
involvement in COVID-19 patients may provide further insights and refine risk
stratification in future analyses.
Overall, the presented score, despite being limited to only 5 predictors and applying a
point system, compared well to more complex prediction models.14,16 We suggest a
threshold for patients with an increased risk of critical disease at ≥ 17 points, based
on the modified Youden’s J. At this threshold we obtained a positive likelihood ratio of
3-fold while retaining a good negative predictive value of 94-95%. Different cutoffs may
be considered based on the application and local circumstances (e.g. different local
ratio of critical disease per case, travelling time to the next hospital in case of
deterioration in an outpatient setting, etc.). The graphs provided in Figure 3 for
sensitivity/specificity and PPV/NPV (based on the prevalence in the validation and test
datasets) as well as in Supplementary Figure 2 for absolute risk prediction may assist
in determining such thresholds.

Limitations
Our study has limitations. The LEOSS registry is anonymized and continuous
parameters were categorized, thus potentially reducing the predictive performance of
e.g. laboratory measures. As a real-world dataset, given the heterogeneity of clinical
procedures across centers, our analysis had to compensate for missing values. This
typically reduces the predictive performance of the respective variables and the
probability that they pass stability selection criteria. Thus, some predictors may have
been underestimated or missed.
Our analysis was limited to predicting disease progression with information obtained
at the time point of first positive SARS-CoV-2 testing (typically occurring during
presentation at the medical facility), without taking into account the dynamics of the
predictors. In this regard, the days since the beginning of symptoms (uncomplicated
phase) to the diagnosis were included as a variable, however it did not pass stability
criteria. Also, there were differences between the validation and the test dataset with
the latter having a higher proportion of patients diagnosed in the uncomplicated phase
(suggesting earlier diagnosis, possibly due to expanded testing capacities after the
first wave). Yet, the score still showed a similar or tendentially even better performance
in the test set. This indirect evidence suggests that the application of our score may
be valid also at time points after diagnosis (or the initial presentation), such as if the
patient’s condition or laboratory values deteriorate, however further studies are
needed to assess its suitability in such settings.
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No information on patient ethnicity/race was available for current analysis, it may be
assumed that the distribution follows that in the German population and represents
largely Caucasians, which may limit generalizability. External validation in different
patient populations is thus needed, also with regard to socioeconomic factors and local
standards of care.
Extensive information on comorbid conditions for the study participants was available.
Although some passed the criteria in RSF stability selection, none passed RF stability
criteria. Yet, having more predictors (24 vs. 5) did not improve the overall predictive
performance. This suggests that the increased risk due to these comorbidities may
already be reflected by the remaining five predictors (collinearity), therefore relieving
the need for inclusion into the score. However, this may not hold true for less common
comorbidities, as the overall prediction improvement will be low for low prevalence
predictors, even if they have a strong effect for patients suffering from these
comorbidities. Thus, a score based on the total population, as presented here, may
underestimate high-risk constellations due to rare comorbidities such as specific
cancers, autoimmune diseases/immunosuppressive treatments, etc. To our
knowledge this limitation applies to most if not all available COVID-19 prognosis
scores which were derived on the total population. Yet, such patients may deteriorate
rapidly. It seems important to establish the additional risk for specific conditions on top
of the used score in future studies.
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Figure legends

Figure 1. Definition of COVID-19 disease phases in the LEOSS registry. Patients
were assigned to the highest phase for which at least one characteristic was fulfilled.
Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; INR,
international normalized ratio of prothrombin time; PaO2, partial pressure of oxygen in
arterial blood; qSOFA, quick sequential organ failure assessment score; sO2, blood
oxygen saturation; ULN, upper limit of normal;

Figure 2. Patient flow diagram (A) and months of COVID-19 diagnosis (B) for the
different datasets.

Figure 3. Summary of key characteristics of the score for predicting the
combined endpoint of critical phase or COVID-19-related death (A) within 7 days
of the diagnosis or (B) at any time point during follow up in the validation and
test cohorts. Colour codes distinguish the different datasets as indicated. Sensitivity
and NPV are indicted by continuous lines and the corresponding y-axis scaling on the
left, while specificity and PPV are indicated by dashed lines and y-axis scaling on the
right side of the respective panels. Bottom panels show cumulative fractions of
patients meeting respective score cutoffs for a combined validation and full test set
(combined n=1331). For all panels the median score (rounded to the next whole
integer) of the imputations was calculated for patients with missing values.
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Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; INR,
international normalized ratio of prothrombin time; PaO2, partial pressure of oxygen in
arterial blood; qSOFA, quick sequential organ failure assessment score; sO2, blood
oxygen saturation; ULN, upper limit of normal;

Figure 2. Patient flow diagram (A) and months of COVID-19 diagnosis (B) for the
different datasets.

Figure 3. Summary of key characteristics of the score for predicting the
combined endpoint of critical phase or COVID-19-related death (A) within 7 days
of the diagnosis or (B) at any time point during follow up in the validation and
test cohorts. Colour codes distinguish the different datasets as indicated. Sensitivity
and NPV are indicted by continuous lines and the corresponding y-axis scaling on the
left, while specificity and PPV are indicated by dashed lines and y-axis scaling on the
right side of the respective panels. Bottom panels show cumulative fractions of
patients meeting respective score cutoffs for a combined validation and full test set
(combined n=1331). For all panels the median score (rounded to the next whole
integer) of the imputations was calculated for patients with missing values.
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Tables

Table 1. Characteristics of patients in the derivation and validation datasets.

Predictor Deriv. Valid. Test, f. Test, l. Predictor Deriv. Valid. Test, f. Test, l.
Total patients CRP (mg/L)

1297 649 682 219 < 3 181 (14%) 101 (16%) 97 (14%) 37 (17%)
Event during follow-up (7d/all) 3- 29 454 (35%) 222 (34%) 250 (37%) 80 (37%)
No 1095/1036 555/522 613/597 198/190 30 - 69 266 (21%) 132 (20%) 140 (21%) 47 (21%)

(84%/80%) (86%/80%) (90%/88%) (90%/87%) 70 - 119 166 (13%) 85 (13%) 92 (13%) 28 (13%)
Yes 202/261 94/127 69/85 21/29 120 - 179 124 (10%) 55 (8%) 67 (10%) 18 (8%)

(16%/20%) (14%/20%) (10%/12%) (10%/13%) 180 - 249 52 (4%) 26 (4%) 18 (3%) 6 (3%)
Type of patient care (not used for analyses) > 249 32 (2%) 17 (3%) 6 (1%) 0 (0%)
Outpatient 16 (1%) 11 (2%) 9 (1%) 1 (0%) Missing 22 (2%) 11 (2%) 12 (2%) 3 (1%)
Inpatient 1255 (97%) 627 (97%) 648 (95%) 207 (95%) PCT (ng/mL)
Missing 26 (2%) 11 (2%) 25 (4%) 11 (5%) < 0.005 78 (6%) 28 (4%) 27 (4%) 12 (5%)

Age (yr) 0.005 - 0.5 562 (43%) 282 (43%) 367 (54%) 161 (74%)
≤ 25 22 (2%) 17 (3%) 36 (5%) 9 (4%) 0.51 - 2 58 (4%) 35 (5%) 28 (4%) 10 (5%)
26 - 35 78 (6%) 42 (6%) 64 (9%) 29 (13%) 02.01.10 0 (0%) 0 (0%) 13 (2%) 5 (2%)
36 - 45 105 (8%) 50 (8%) 86 (13%) 29 (13%) > 10 10 (1%) 6 (1%) 4 (1%) 1 (0%)
46 - 55 189 (15%) 98 (15%) 104 (15%) 38 (17%) Missing 589 (45%) 298 (46%) 243 (36%) 30 (14%)
56 - 65 244 (19%) 117 (18%) 120 (18%) 45 (21%) D-dimer (LN)
66 - 75 214 (16%) 118 (18%) 89 (13%) 25 (11%) Normal 232 (18%) 123 (19%) 158 (23%) 83 (38%)
76 - 85 317 (24%) 140 (22%) 133 (20%) 30 (14%) >1x, ≤2x 211 (16%) 109 (17%) 126 (18%) 72 (33%)
> 85 110 (8%) 59 (9%) 47 (7%) 13 (6%) >2x, ≤5x 159 (12%) 69 (11%) 72 (11%) 34 (16%)
Missing 18 (1%) 8 (1%) 3 (0%) 1 (0%) >5x, ≤10x 39 (3%) 27 (4%) 24 (4%) 9 (4%)

Sex >10x, ≤20x 20 (2%) 11 (2%) 8 (1%) 2 (1%)
Male 768 (59%) 360 (55%) 390 (57%) 133 (61%) >20x 21 (2%) 12 (2%) 6 (1%) 4 (2%)
Female 529 (41%) 289 (45%) 292 (43%) 86 (39%) Missing 615 (47%) 298 (46%) 288 (42%) 15 (7%)

Disease phase Neutrophils (x1000 /μL)
Uncompl. 876 (68%) 430 (66%) 488 (72%) 162 (74%) <0.1 11 (1%) 3 (0%) 4 (1%) 1 (0%)
Compl. 421 (32%) 219 (34%) 194 (28%) 57 (26%) 0.1 - <0.3 14 (1%) 3 (0%) 2 (0%) 0 (0%)

Any cardiovascular comorbidity 0.3 - <0.5 22 (2%) 10 (2%) 2 (0%) 0 (0%)
Yes 727 (56%) 370 (57%) 346 (51%) 104 (47%) 0.5 - <2 118 (9%) 62 (10%) 47 (7%) 15 (7%)
No 545 (42%) 262 (40%) 326 (48%) 113 (52%) 2 - <5 524 (40%) 262 (40%) 275 (40%) 105 (48%)
Missing 25 (2%) 17 (3%) 10 (1%) 2 (1%) 5 - <9 262 (20%) 139 (21%) 144 (21%) 54 (25%)

Malignant neoplasia ≥9 71 (5%) 40 (6%) 39 (6%) 6 (3%)
No 1263 (97%) 635 (98%) 678 (99%) 218 (100%) Missing 275 (21%) 130 (20%) 169 (25%) 38 (17%)
Yes 34 (3%) 14 (2%) 4 (1%) 1 (0%) Lymphocytes (x1000 /μL)

LDH (LN) <0.1 16 (1%) 8 (1%) 7 (1%) 1 (0%)
<Normal 0 (0%) 0 (0%) 8 (1%) 2 (1%) 0.1 - <0.3 56 (4%) 30 (5%) 18 (3%) 1 (0%)
Normal 439 (34%) 218 (34%) 249 (37%) 98 (45%) 0.3 - <0.5 95 (7%) 43 (7%) 33 (5%) 9 (4%)
>1x, ≤2x 596 (46%) 312 (48%) 305 (45%) 95 (43%) 0.5 - <0.8 230 (18%) 124 (19%) 118 (17%) 39 (18%)
>2x, ≤5x 87 (7%) 51 (8%) 38 (6%) 11 (5%) 0.8 - <1.5 421 (32%) 212 (33%) 231 (34%) 94 (43%)
>5x 4 (0%) 1 (0%) 3 (0%) 2 (1%) 1.5 - <3 198 (15%) 104 (16%) 100 (15%) 34 (16%)
Missing 171 (13%) 67 (10%) 79 (12%) 11 (5%) ≥3 15 (1%) 13 (2%) 17 (2%) 4 (2%)

Urea (LN) Missing 266 (21%) 115 (18%) 158 (23%) 37 (17%)
<Normal 8 (1%) 9 (1%) 33 (5%) 8 (4%)
Normal 846 (65%) 408 (63%) 445 (65%) 173 (79%)
>1x, ≤2x 195 (15%) 106 (16%) 89 (13%) 26 (12%)
>2x 63 (5%) 32 (5%) 30 (4%) 8 (4%)
Missing 185 (14%) 94 (14%) 85 (12%) 4 (2%)

Abbreviations: 7d, event (critical phase or COVID-19-related death) within 7 days of diagnosis; LN, laboratory normal range, "x"
indicates multiples of the upper limit of the normal range; Test, f., full test set (as shown in Fig. 2); Test, l., limited test set (as shown
in Fig. 2).
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Table 2. Summary of the predictive performances of the analyzed models.

AUC, 7 d (imp. range) AUC, all (imp. range)
Selection Model N pr. Derivation Validation Derivation Validation
All pr. RF 105 0.83 (0.82-0.83) 0.83 (0.82-0.83) 0.83 (0.83-0.83) 0.83 (0.82-0.83)

Binomial ridge 105 0.88 (0.86-0.89) 0.81 (0.80-0.81) 0.86 (0.86-0.87) 0.81 (0.80-0.82)
RF Boruta RF 5 0.74 (0.72-0.75) 0.73 (0.71-0.75) 0.73 (0.72-0.75) 0.75 (0.73-0.76)

Binomial ridge 5 0.80 (0.80-0.80) 0.81 (0.80-0.81) 0.80 (0.80-0.80) 0.81 (0.81-0.82)

Score 5 0.80 (0.80-0.80) 0.81 (0.81-0.81) 0.80 (0.80-0.80) 0.81 (0.81-0.81)
95%CI, 0.77-0.83 95%CI, 0.77-0.85 95%CI, 0.77-0.83 95%CI, 0.77-0.85

Validation on
full test set

0.83 (0.82-0.83) 0.82 (0.82-0.82)
95%CI, 0.78-0.87 95%CI, 0.78-0.86

Validation on
limited test set

0.82 (0.82-0.82) 0.83 (0.83-0.83)
95%CI, 0.73-0.90 95%CI, 0.76-0.90

Initial derivation and validation analyses were performed on the respective datasets (n=1297 and 649, respectively) as
summarized in Figure 2. As indicated, the final score was additionally independently validated on the full and the limited test
sets (n=675 and 218, as described in Figure 2).
Indicated are the median values and the full range for the imputed datasets (in brackets). AUC values were calculated for
an event within 7 days of diagnosis ("7 d") and for all time points ("all"). 95% confidence intervals (95%CI) were calculated
for score predictions using bootstrapping with equal contributions of the imputed datasets.
Abbreviations: AUC, area under the receiver operating characteristic (ROC) curve; imp., imputation; N pr., number of
predictors in the model; pr., predictors; RF, random forest for classification.
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Table 3. Results of the ridge-penalized binomial regression on the five variables
selected by RF Boruta.

Predictor Ridge β P-value Weight
Age 0.09 0.016 1
Disease phase 0.46 0.001 5
Urea 0.30 0.010 3
CRP 0.16 <0.001 2
D-dimer 0.11 0.030 1
Indicated are β coefficients from binomial ridge
regression (outcome: event within 7 days) and the
resulting weights per step increase in the respective
predictor group (all groups are listed in Table 4). P-values
were calculated using ridge regression on the derivation
dataset with permutations of the outcome.
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Table 4. Calculation of the CAPS-D score.

Predictor Score Predictor Score
Age (yr) CRP (mg/L)

≤ 25 - < 3 -
26 - 35 +1 3- 29 +2
36 - 45 +2 30 - 69 +4
46 - 55 +3 70 - 119 +6
56 - 65 +4 120 - 179 +8
66 - 75 +5 180 - 249 +10
76 - 85 +6 > 249 +12
> 85 +7 Disease phase

D-dimer (LN) Uncomplicated -
Normal - Complicated +5
>1x, ≤2x +1 Urea (LN)
>2x, ≤5x +2 <Normal -
>5x, ≤10x +3 Normal +3
>10x, ≤20x +4 >1x, ≤2x +6
>20x +5 >2x +9

Maximum score: 38
Abbreviations: LN, laboratory normal range, "x" indicates
multiples of the upper limit of the normal range.
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Table 5. Score characteristics at the selected cutoff of ≥17

Validation
set (7d/all)

Full test set
(7d/all)

Combined
(7d/all)

Sensitivity 0.73 / 0.73 0.74 / 0.72 0.74 / 0.73
Specificity 0.72 / 0.75 0.77 / 0.79 0.75 / 0.77
PPV 0.31 / 0.41 0.27 / 0.32 0.29 / 0.37
NPV 0.94 / 0.92 0.96 / 0.95 0.95 / 0.94
LR+ 2.6 / 2.9 3.3 / 3.3 2.9 / 3.1
LR- 0.37 / 0.36 0.34 / 0.36 0.35 / 0.36
%score<cutoff 65% 72% 69%
Abbreviations: %score<cutoff, percentage of patients
with scores below the cutoff value (≤16).; 7d, event
(critical disease or COVID-19-related death) within 7 d
of diagnosis; all, all events during follow-up; LR+/-,
positive/negative likelihood ratio; NPV, negative
predictive value; PPV, positive predictive value.
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