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Abstract 39 

Background 40 

Brazil, the country most impacted by the coronavirus disease 2019 (COVID-19) on the southern hemisphere, uses 41 

mobility indices to monitor quarantines. In this study we quantified the associations between residential mobility 42 

index (RMI), air pollution, meteorology, and daily cases and deaths of COVID-19 in São Paulo, Brazil  43 

Objectives 44 

To acquire time-series data to estimate the associations between daily residential mobility index (RMI), air 45 

pollution, and meteorology, and daily cases and deaths for COVID-19 in São Paulo, Brazil. 46 

Methods 47 

We applied a semiparametric generalized additive model (GAM) to estimate: 1) the association between residential 48 

mobility index and cases and deaths due to COVID-19, accounting for ambient particulate matter (PM2.5), ozone 49 

(O3), relative humidity, temperature and delayed exposure between 3-21 days and 2) the association between 50 

exposure to for ambient particulate matter (PM2.5), ozone (O3), accounting for relative humidity, temperature and 51 

mobility. 52 

Results 53 

We found an RMI of 45.28% results in 1,212 cases (95% CI: 1,189 to 1,235) and 44 deaths (95% CI: 40 to 47).  54 

Reducing mobility 5% would avoid 438 cases and 21 deaths. Also, we found that an increment of 10 μg⋅m-³ of PM2.5 55 

risk of 1.140 (95% CI: 1.021 to 1.274) for cases and of 1.086 (95% CI: 1.008 to 1.170) for deaths, while O3 produces 56 
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a relative risk of 1.075 (95% CI: 1.006 to 1.150) for cases and 1.063 (95% CI: 1.006 to 1.124) for deaths, 57 

respectively. 58 

 59 

Discussion 60 

We compared our results with observations and literature review, finding well agreement. These results implicate 61 

that authorities and policymakers can use such mobility indices as tools to support social distance activities and 62 

assess their effectiveness in the coming weeks and months. Small increments of air pollution pose a risk of COVID-63 

19 cases. 64 

Conclusion 65 

Spatial distancing is a determinant factor to control cases and deaths for COVID-19. Small increments of air 66 

pollution result in a high number of COVID-19 cases and deaths. PM2.5 has higher relative risks for COVID-19 than 67 

O3. 68 

 69 

Keywords: COVID-19, SARS-CoV 2, residential mobility index, air pollution, meteorology  70 
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Introduction 71 

The world has been facing an unprecedent critical health crisis due to COVID-19 pandemic caused by the zoonotic 72 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). According to the Johns Hopkins University (JHU) 73 

Center for Systems Science and Engineering (CSSE), on January 04, 2021, there were 85,510,573 confirmed cases 74 

of COVID-19 worldwide, and 1,849,054 deaths (Dong et al. 2020). Many countries implemented social isolation 75 

and quarantine strategies, and internet companies released aggregated location data to provide information on the 76 

effectiveness of quarantine and isolation (Google 2021). This new disease demonstrated that developed countries 77 

such as Belgium, Italy, and Spain were unprepared, which resulted in infection fatality rates (deaths/cases) of 15.4%, 78 

13.5%, and 10.2%, respectively. Furthermore, new mutations of SARS-CoV2 would present higher transmissibility 79 

and current vaccines might not offer protection against it (Gupta et al. 2021; Kupferschmidt 2021). Therefore, it is 80 

urgent and crucial to conduct more research to better understand the relationships and associations between SARS-81 

CoV2 transmissibility and environmental factors.  82 

COVID-19 spread very quickly across Latin America (Bolaño-Ortiz et al. 2020). As of January 4, 2021, Brazil is the 83 

third country with more cases (7,733,746) and deaths (196,018) (Dong et al. 2020). Brazil is a continental country 84 

with an area of 8.5 million km² and a population of 208 million. The city of São Paulo is the highest populated city 85 

in Brazil, with 11.8 million people (IBGE 2014), and also, with the highest number of COVID-19 cases (404,025) 86 

and deaths (15,725 (https://covid.saude.gov.br/). In Brazil, only symptomatic cases are tested, hence, the real 87 

number of SARS-CoV2 infections could be much higher. A recent study shows that COVID-19 death notification in 88 

Brazil is underreported (Alves et al. 2020). On March 24, 2020 (GESP 2020), São Paulo’s government 89 

recommended social distancing for suspected cases and introduced a local quarantine to reduce virus transmission. 90 

Brazil adopted containment measures such as close contact and limited mobility as protective measures, however 91 

"quarantine" was the official term used by São Paulo state government. During the São Paulo quarantine, the 92 

concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), PM10, and PM2.5 were reduced by -35.70%, -93 

29.56%, -17.80%, and -25.02%, respectively. However, O3 increased by 53.25% between 21:00-03:00 Local Time 94 

(LT) (Dantas et al. 2020; Freitas et al. 2020; Nakada and Urban 2020). Other studies showed reductions in China 95 

(30% of NO2 and 25% of CO2) (Dutheil et al. 2020). However, there are indications that COVID-19 and air 96 

pollution interactions may be more complex. Some early reports suggest that longer-term exposure to air pollution 97 

increases susceptibility and severity upon infection (Tosepu et al. 2020; Wu et al. 2020). Similarly, meteorological 98 
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conditions are likely to be important but not easily predicted. For example, some studies have suggested that high 99 

humidity and temperature would reduce virus transmission (Wang et al. 2020a, 2020b). Furthermore, the biological 100 

inactivation rate of SARS-CoV2 is sensitive to humidity, with minimum half-life at 65% and higher at 40% and 101 

85%, and its decays at 27 �C is 10 times faster than at 10 �C (Morris et al. 2020). However, estimations for the 102 

Amazonian city of Manaus, which have a climatology1 temperature 27 �C of and relative humidity 80.2% for July, 103 

show that between 44% and 66% of the population was infected with SARS-CoV-2 by July (Buss et al. 2020).  104 

Few studies have evaluated the effect of mobility on COVID-19, mainly in China. Kraemer et al., (2020)  found 105 

correlation of 0.94 between real-time mobility data and COVID-19 cases from Wuhan, China, confirming the 106 

exportation of cases from Wuhan to other provinces and the effectiveness of the sanitaire cordon. Tian et al (2020) 107 

found that Wuhan shutdown delayed the appearance of COVID-19 in 2.9 days. In the US, Badr et al (2020) 108 

associated county-level origin-destination matrices and COVID-19 cases finding that counties with more mobility 109 

presented higher number of cases. In a related correspondence, Gatalo et al (2020) found that the absence of a strong 110 

correlation between growth of cases and mobility may be related to other factors, such as wearing mask, keeping 111 

distance in encounters and also, the existence of superspreading events.  112 

Our study investigates the associations between RMIand COVID-19, and air pollution and COVID-19 on a 113 

particular day, having accounted for environmental and meteorological factors. We analyzed the effects of mobility, 114 

air pollution, and meteorology on the daily COVID-19 cases and deaths in the city of São Paulo. We applied 115 

semiparametric generalized additive models to study the effect of each predictor by isolating confounding factors 116 

(Peng and Dominici 2008). To the best of our knowledge, few stutudies have associated mobility air pollution, 117 

meteorological factors, and COVID-19 simultaneously especially in Latin Ameirca. 118 

Material and Methods 119 

The Brazilian Ministry of Health reports the official daily time-series of cases and mortality associated with 120 

COVID-19 at https://covid.saude.gov.br/ updated once a day around 19:00 Brazilian official time (-3 GMT). This 121 

information is gathered from the 26 states and the federal district health secretaries and provided at the national, 122 

state, and municipality levels. The availability of data using the web site was interrupted on June 07, 2020, and 123 

                                                           

1 Climatology between 1981-2010 https://portal.inmet.gov.br/  
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returned on June 08, 2020 after judicial demand¹. When returned, it included the data obtained when the web site124 

was offline. To check the trustworthiness of that data, we compared it with the dataset from BrasilIO125 

(https://brasil.io/covid19/). The BrasilIO is an independent organization made of voluntaries that also gathers126 

COVID-19 data from state health secretaries. Both datasets are very similar, in effect, we applied the Wilcoxon test127 

(R Core Team 2020) for cases and deaths getting p-values of 0.7798 and 0.922, meaning that there are no significant128 

differences between the two datasets. Therefore, we used the official data from the Brazilian Ministry of Health. The129 

day July 29 was reported cases and deaths including July 28, therefore, we distributed the number of cases and130 

deaths equally in both days. Figure 1 shows the daily time series and boxplots of cases and deaths from COVID-19131 

in São Paulo State between March 27, 2020 and January 03, 2021. The mean of daily cases is 1432 and for daily132 

deaths is 55, with a maximum of 7063 on August 13, 2020 and 179 deaths on June 23, 2020. Furthermore, the133 

variance of cases is 1511183 and deaths 1889.89, indicating that overdispersion in the data. In effect, the dispersion134 

parameter for cases is 1035.86 and for deaths 33.84 (both p-value<0.05) (Kleiber and Zeileis 2008). Currently, São135 

Paulo is experiencing a second wave of COVID19. 136 

137 
Figure 1. Daily cases and deaths of COVID-19 in (a) boxplots and (b) time series in São Paulo, Brazil, between 138 

March 27, 2020 and January 12, 2021 (Saúde 2021). The smooth lines on panel b) are the LOESS regression made 139 
with ggplot2 and R (R Core Team 2020; Wickham 2016). 140 
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We obtained mobility indices datasets from Google mobility trends (Google, 2020) and the Intelligent Monitoring 142 

System for the city of São Paulo (SIMI-SP). The Google data is based on the use of smart devices such as 143 

cellphones, vehicle trackers, and other GPS enabled systems. The data reported by Google consists in mobility 144 

trends related to places as percentage change from baseline, with baseline as the median value, for each day of the 145 

week, during the 5-week period January 3 and February 6, 2020. We selected the mobility trend "residential", 146 

because it better represent the situation of spatial isolation (Hereafter Residential Mobility Index, RMI). The SIMI-147 

SP data is collected by network companies which receive cellphone signals by triangulating with the nearest 148 

cellphone communication tower2. This means that SIMI-SP does not need internet to collect mobility information. 149 

Both indices are shown on Figure 2,  meaning that higher values represent more stay-at-home and while lower 150 

values pre-quarantine conditions. RMI is an indicator that represent exposure in two ways, first, staying out of home 151 

increases the chances of getting infections with SARS-CoV2 present in aerosols (Morawska and Milton 2020) and 152 

second, increases the exposure to air pollution with deleterious effect on human health which could pose a 153 

synergetic effect. The trend on both RMI shows steady decline ahead of the start of quarantine on March 24, 2020 154 

(black vertical line) (GESP 2020). The median RMI for Google data 13.51% and for RMI SIMI-SP is 44.75% for 155 

the whole period. The median RMI for the pre-quarantine period, that is the first 15 days of March 2020, are -1% for 156 

Google and 31.30% for SIMI-SP and after the quarantine 14% for Google and 45.48% for SIMI-SP. 157 

                                                           

2 https://www.saopaulo.sp.gov.br/coronavirus/isolamento  
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158 
Figure 2. RMI values in São Paulo, Brazil, in a) boxplots and b) times series between January 15 and December 29, 159 
2020 for RMI Google (Google 2021) and between February 26, 2020 and January 3, 2021. Black vertical line shows 160 

when started the quarantine in São Paulo on March, 24. The smooth lines on panel b) are the LOESS regression 161 
made with ggplot2 and R (R Core Team 2020; Wickham 2016). 162 

 163 

Air pollution and meteorology hourly surface measurements were obtained from the air quality system (QUALAR)164 

operated by the Environmental Agency of Sao Paulo State (CETESB, 2020). QUALAR archives air quality real-165 

time data using several stations spread in São Paulo. Hourly averages of O3 (ug/m³), PM2.5 (ug/m³), Relative166 

Humidity (%) and Temperature (°C) are shown in Figure 3, between January 01st-, 2019 and January 4, 2021167 

Locally estimated scatterplot smoothing (or local regression LOESS) show that that the O3 incremented after the168 

quarantine and remained higher than 2019 during most of 2020. The concentrations of PM2.5 during 2020 were169 

lower than 2019, , related to the decrease in human activity and also, as reported by other studies (Bolaño-Ortiz et al.170 

2020; Debone et al. 2020; Nakada and Urban 2020), and just in September concentration increased. The quarantine171 

beginning coincided with the dry season beginning at São Paulo, presenting a decline in temperature compared to172 

the early months of 2020. The most significant feature of the São Paulo dry season (though April to November), the173 

wet season counterpart (Vera et al. 2006), is the non-significative precipitation amount, caused by weak isolated174 

events, and long periods with no precipitation occurring in between (Rehbein et al. 2018), and the very low relative175 

humidity during the daytime (climate reports from the Climate Group of Studies - GrEC/USP,176 

http://www.grec.iag.usp.br). Also, a general decreasing in temperature occurs according to the austral winter and177 

presenting drops in temperature, associated to the synoptic systems crossing São Paulo and generally are not able to178 
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organize convection (GrEC/USP, http://www.grec.iag.usp.br) or even sea breezes that eventually reaches the interior 179 

of São Paulo (Freitas et al. 2007). In 2020, for instance, from April 3-May 3, 2020 there was very few (2mm at São 180 

Paulo-SESC Interlagos station, in the south of São Paulo) or no precipitation (at the São Paulo-Mirante de Santana 181 

station, in the north of São Paulo) according to the official meteorological stations (www.inmet.gov.br), while 182 

synoptic systems (such as cold fronts) were observed (CPTEC/INPE, https://www.cptec.inpe.br; GrEC/USP, 183 

http://www.grec.iag.usp.br). The first semester of 2020 was drier and colder than 2019, but during the second 184 

semester, relative humidity and temperature remained similar. 185 

 186 

Figure 3. Hourly means of O3 (μg/m³), PM2.5 (μg/m³) and Air Temperature (°C) between January 1st 2020 and 187 
January 4 2021 for the city of São Paulo, Brazil (CETESB 2021). The means considered the parameters from the 188 
stations Congonhas, Cid.Universitária-USP-Ipen, Santana, Ibirapuera, Mooca, Pinheiros and Parque D. Pedro II. 189 

The red and blue lines are the automatic LOESS regression made with ggplot2 and R (R Core Team 2020; Wickham 190 
2016). 191 

 192 

Association between mobility and COVID-19 193 

The statistical analyses consisted of the application of the generalized additive model (GAM) (Hastie and Tibshirani 194 

1990). One of the most common applications of this framework consists of a semi-parametric model in 195 
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environmental studies to understand the associations between air pollution and health outcomes by controlling other 196 

factors such as meteorology (Dominici et al. 2004; Peng and Dominici 2008). Recently, a study has shown that air 197 

pollution can increase up to 15% of COVID-19 mortality and worldwide, 27% in East Asia, 19% in Europe and 17% 198 

in North America (Pozzer et al. 2020).  It has been shown that health effects of air pollution is related to previous 199 

days' exposure (Abrutzky et al., 2013; Carracedo-Martínez et al., 2010; Leitte et al., 2009). In this study we need to 200 

consider the incubation period for COVID-19, that is the period of time between the exposure to SARS CoV2 and 201 

the symptom onset. Furthermore, in this study we want to characterize how the exposure, measured by the mobility 202 

indices, is associated with COVID-19. It has been reported that the incubation period for COVID-19 is 5.1 days 203 

(95% CI, 4.5 to 5.8 days (Kraemer et al. 2020; Lauer et al. 2020), Lai et al (2020) found between 2 and 14 days with 204 

a mean of 6.4 days another (Lai et al. 2020). Therefore, we calculated moving averages between 4 and 21 days of 205 

mobility and environmental factors, and study possible associations with COVID-19. We used thin plate splines for 206 

accounting confounding factors of PM2.5, O3, temperature, relative humidity, day of the week and time, including 207 

interactions between the variables with quasi-poisson and negative binomial distributions to capture over-dispersion 208 

(Wood 2017; Zeileis et al. 2008). For instance, tropospheric O3 is a secondary pollutant generated by reactions 209 

between NOX, Volatile Organic Compounds and solar radiation (Jacob 1999), and as the diurnal cycle of 210 

temperature follows solar cycle, we would expect statistical interactions between O3 and temperature. To identify 211 

associations between mobility and COID-19, by controlling confounding factors, we used the general equation 1. 212 

We performed a detailed sensitivity analyses between the variables, shown supplementary material S1. 213 

(1) ������� � �� 	 �� 
 ��
�,� 	 �����.	�
� 	 ���
�

� 	 ������ 	 �������� 	 ������� 	 ������ 

 214 

Where log(u) is the log-transform of the daily cases and deaths of COVID-19 with a quasi-poisson or negative 215 

binomial distribution i, �� is the intercept �� is the coefficient that represents the association of  ��
�,� moving 216 

average m using mobility data n from Google or SIMI-SP on cases, s the thin plate, and temp temperature,  RH 217 

relative humidity, PM2.5 and O3 atmospheric pollutants, time represents each day to account unobserved factors,  218 

s(dow) is the cubic spline function with dimension of 7 to account for each day of the week. We used thin-plate 219 

splines to avoid knot placement and, therefore, avoid overfitting (Wood 2003). The predicted number of COVID-19 220 

cases is then ����β� 	 β� 
 ��
��, which is conditionally to the other predictors. Although more pollutants are 221 

reported by São Paulo (QUALAR) air quality stations, e.g., NO2, CO, and PM10, we limited the model to PM2.5 and 222 
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O3 to avoid multicollinearity between PM2.5 and these other species. As the objective of this study is to evaluate the 223 

effect of the quarantine measure, the data were filtered starting on March 24, 2020. In order to apply GAM, we used 224 

the R programming language and the library mgcv (v1.8.31)(R Core Team 2020; Wood 2017). One limitation of our 225 

method is the limited sample, consisting of 292 days between 2020-03-27 and 2020-12-30. Nevertheless, we 226 

performed a comprehensive sensitivity analyses, as we evaluated 18 equations with 4-21 moving average lag 227 

periods, and compared RMI data from Google and SIMI-SP with quasi-poisson and negative binomial distributions, 228 

this resulted in 1296 regressions. To ensure consistency, we repeated the analyses with data only until November 229 

2020 finding similar results.  230 

Association between air pollution and COVID-19 231 

We also study the effects of air pollution on COVID-19. In this case, we are interested in evaluating the effect of 232 

specific level of air pollution present on the same or previous specific days, rather than the moving average of air 233 

pollution. Many papers have used lag models to identify associations with air pollution and health outcomes 234 

(Gasparrini 2011; Peng and Dominici 2008). Therefore, we used lags to account for the delayed effect of air 235 

pollution on COVID-19 with a quasi-poisson and negative binomial distributions (Wood 2017; Zeileis et al. 2008). 236 

Thus, we used single-lag generalized additive models and different configuration for confounding variables with 237 

thin plate splines. To identify associations between air pollution and COVID-19, by controlling confounding factors, 238 

we used the general equation 2. A sensitivity analyses is available on supplementary material S2. 239 

 240 

(2) ������� � β� 	 β� 
 �� 	 ����
�� 	 �������� 	 ������� 	 ������ 

 241 

Where P represent the air pollutant concentrations of ���.	�
 or �
�

, �����, ���, and ��
� are the delayed 242 

environmental quantities at different lags l. The methodology is similar as we presented to calculate the effect of the 243 

RMI index, but in this case, we controlled all the variables except air pollution. This is useful to compare with other 244 

studies and to see the importance of exposure to air pollution and its effects on COVID-19 cases. Then, we 245 

calculated the relative risks of new cases by the increment of 10 µg·m-3air pollution with the expression ex p�β� 
246 

�ollutant. 247 

Results  248 

Mobility and COVID-19 cases and deaths 249 
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The associations between mobility indices RMI SIMI-SP and Google, parameter β1 on equations 1-21, are shown on 250 

Figure 4. The x-axis represents the model configurations from equations 1-20 and the facet labels 4-21 the delayed 251 

effect of exposure as moving average. RMI Google was not significantly associated with COVID-19 in any model. 252 

This can be explained by the low correlation between RMI Google with Cases -0.19 and with Deaths 0.1 (not 253 

significant), as shown on  Error! Reference source not found.. Au contraire, we did find statistical association 254 

between RMI SIMI-SP and COVID-19. It is evident increasing the mobility, that is staying out-of-home which 255 

results in lower RMI, have a delayed effect increasing COVID-19 cases after four to nine days of exposure. While  256 

some studies have shown that the incubation period for COVID-19  is between 4.5-5.8 days or 6.4 days (Kraemer et 257 

al. 2020; Lai et al. 2020; Lauer et al. 2020) here we found more days to confirm the case appearance in Brazil the 258 

Reverse transcription polymerase chain reaction (RT-PCR) tests to detect virus take between 3 days and one week. 259 

This explanation also applies to the expected cases after seven, eight, nine and 18 days of exposure. Regarding the 260 

deaths, we found more  associations after 18-21 days of exposure, which makes sense because exposure between the 261 

exposure and the deaths there is the severe disease, which naturally implies more days. We also ound increased 262 

deaths after 4 days of exposure, but the magnitude is also lower, nearer to zero. Furthermore, there is a trend after 14 263 

days of exposure decreasing the β1, which means this association gains strength after more days, which after 21 days 264 

of exposure most of models signalized the association with mobility and COVID-19 death. These associations were 265 

found with negative binomial and quasi-poisson regressions, and the reader can reproduce these results following 266 

the instructions available in this public repository https://gitlab.com/ibarraespinosa/covid191.  267 

 268 
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 269 
Figure 4. Coefficient of association between RMI SIMI-SP (%) and Google (%) and COVID-19 cases and deaths 270 

with a moving average of four to 21 days of delayed exposure with quasi-poisson and negative binomial distribution 271 
under different model configuration. All non-significant associations (p-value > 0.05) of β1 were plotted transparent 272 

(alpha = 0.2) so that we can clearly see the significant associations. (R Core Team 2020; Wickham 2016).  273 
 274 

 275 
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After analyzing the coefficients of association RMI and COVID-19, we calculated the expected outcomes after 276 

moving average periods. As the RMI produce significant results after several days of exposure, we grouped the 277 

results to obtain one curve exposure-response for cases and deaths, as shown on Figure 5. They grey points 278 

represents the expected cases and deaths under different exposure levels, expressed as RMI SIMI-SP and the red 279 

curves a gam regression with 95% confidence interval. We found strong associations between moving average of 280 

delayed exposure and COVID-19 cases and deaths. In other words, when people stayed home COVID-19 cases and 281 

deaths decreased. Likewise, with less RMI or increased outdoor activities, COVID-19 cases and resulting deaths 282 

increased. The mean RMI SIMI-SP during pre-quarantine (before March 15) was 31.10% and just after the 283 

quarantine (between March 27 and April 15) was 54.77%, reducing the mobility. Then,he association between RMI 284 

and cases was assessed with the median RMI SIMI-SP of 45.28% post-quarantine, presented as the second vertical 285 

black line in Figure 5. Under this RMI we would expect 1,212 cases (95% CI: 1,189 to 1,235) and 44 deaths (95% 286 

CI: 40 to 47). We applied the expected outcomes for several RMI values to evaluate the resulting cases for RMI 287 

extremes. For example, under the first quantile of RMI SIMI-SP, first vertical black line, that is 41.38%, it would 288 

result in 1,757 cases (95% CI: 1,734 to 1,780) and 80 deaths (95% CI: 77 to 84) and under the third quantile of 289 

48.87%, third vertical black line, it would result in 846 cases (95% CI: 823 to 869) and 25 deaths (95% CI: 22 to 290 

29). Analyzing the extreme values shows that, if the RMI SIMI-SP were 37.82% would result in 2,311 cases (95% 291 

CI: 2,285 to 2,338) and 127 deaths (95% CI: 122 to 131) and with RMI SIMI-SP of 59.25%, 351 cases (95% CI: 292 

325 to 378) and 8 deaths (95% CI: 4 to 13). Therefore, avoiding unnecessary outdoor activities and staying at home 293 

would result in a reduction in expected cases and deaths. We added a repeated histogram of RMI SIMI-SP on the top 294 

of  Figure 5 so that it is easier to see the quantiles and histograms. This means that most of time RMI values are 295 

below 49%, resulting that mobility was increased contributing to the current second COVID-19 wave occurring in 296 

São Paulo. 297 
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 298 

Figure 5. Association between COVID-19 cases and deaths and the percentage of RMI SIMI-SP (%). The grey 299 
points show the association between COVID-19 and RMI after different periods of exposure. The red line 300 

representes the expected cases and deaths and blue lines upper and lower confidence intervals 95%. The vertical 301 
black lines show the first quantile, median and third quantile of RMI SIMI-SP. The histograms of RMI SIMI-SP are 302 

repeated so that it is easier to the reader to compare cases with RMI.  303 
 304 

 305 

Air pollution and COVID-19 cases 306 

We assessed the association between COVID-19 and increment of 10 μg⋅m-³ of PM2.5 and O3. Figure 6 shows the 307 

relative risks of COVID-19 cases and deaths after 1-21 days of exposure. We found that PM2.5 and O3 have positive 308 

relative risks for cases and deaths with both distributions. Furthermore, O3 increment cases after four and 13 days of 309 

exposure, and deaths after two, four, 19 and 20 days of exposure. While, PM2.5 poses positive relative risks after 310 

two, 10 and 13 days of exposure for cases and 17 days of exposure for deaths. Nevertheless, there are some relative 311 

risks below 1, which would provide protective factors for O3 and PM2.5 after 17 days for cases where more research 312 
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is needed. The order of magnitude of relative risks within lagged group is very similar with different models, as 313 

shown on equations 21-28. Therefore, we averaged the relative risks within groups resulting that an increment of 10 314 

μg⋅m-³ of O3 produce cases-relative risks of 1.066 (95% CI: 1.005 to 1.131) and 1.084 (95% CI: 1.007 to 1.168) after 315 

four and 13 days of exposure, respectively. In the case of deaths, the O3-related relative risks are 1.067 (95% CI: 316 

1.008 to 1.129), 1.050 (95% CI: 1.003 to 1.100), 1.070 (95% CI: 1.012 to 1.131) and 1.066 (95% CI: 1.001 to 1.135) 317 

after two, four, 19 and 20 days of exposure, respectively. Likewise, an increment of 10 μg⋅m-³ of PM2.5 produce 318 

cases-relative risks 1.151 (95% CI: 1.048 to 1.264), 1.113 (95% CI: 1.002 to 1.236) and 1.157(95% CI: 1.012 to 319 

1.323) after three, 10 and 14 days of exposure and the risk for death is 1.086 (95% CI: 1.008 to 1.170) after 17 days.  320 

Based on these results, air pollution significantly increases COVID-19 cases and deaths. The mean relative risks for 321 

cases are 1.140 for PM2.5 and 1.075 for O3, meaning that PM2.5 increments 1.06 times more COVID-19 cases than 322 

O3. In the case of deaths, the relative risk for O3 is 1.063 and for PM2.5 1.086. 323 
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 324 
Figure 6. The relative risks of COVID-19 cases and deaths due to 10 μg⋅m-³ of PM2.5 and O3 after 1-21 days of 325 

exposure with single-lag models.  All non-significant associations (p-value > 0.05) of β1 were plotted transparent 326 
(alpha = 0.2) so that we can clearly see the significant associations. 327 

 328 

Discussion 329 

In this study, we used a semiparametric Generalized Additive Model (GAM) to explore possible associations 330 

between RMI, air pollutants, and COVID-19 cases and deaths in São Paulo, Brazil, for March 27, 2020, through 331 

December 30, 2020. We controlled for environmental factors such as air temperature, relative humidity, and air 332 

pollutant concentrations of PM2.5 and O3 with thin splines. 333 

We found statistical associations between RMI and COVID-19 cases and a lower RMI (i.e., the increase of residents 334 

staying-at-home) increase COVID-19 cases. Likewise, increased RMI or less  outdoor activities decreases COVID-335 

19 cases. The median RMI after quarantine started was 45.28%, which represents most of the period of study. Under 336 
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this RMI, we would expect  1,212 cases (95% CI: 1,189 to 1,235) and 44 deaths (95% CI: 40 to 47). São Paulo’s 337 

COVID-19 median values are 1,214 and 46 for cases and deaths, which means that our predictions align with our 338 

observations. A Brazilian study covering several cities also found that increased mobility is associated with COVID-339 

19 cases (Martins et al. 2020). We analyzed RMI values to provide policymakers with several options to mitigate the 340 

number of COVID-19 cases and deaths and support public health system. Then, if the mobility is reduced by 341 

increasing the RMI SIMI-SP index from 45.28% to 50.00%, we would expect 774 (95% CI: 751 to 797) cases and 342 

23 (95% CI: 19 to 26) deaths, representing a reduction 438 cases and 21 deaths by only increasing the RMI 5%. 343 

Therefore, a policymaker can use this information and define RMI targets based on the capacity of their health 344 

system. 345 

We evaluated the effect of moving average air pollution on COVID-19 cases and deaths and we found strong 346 

associations. The average of the significant relative risk over the 21 days of delayed exposure is 1.140 (95% CI: 347 

1.021 to 1.274) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths due to an increment of 10 μg⋅m-³ of PM2.5, 348 

and 1.075 (95% CI: 1.006 to 1.150) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths due to an increment of 349 

10 μg⋅m-³ of O3. A global study about the association between air pollution and death-risk for COVID-19 found that 350 

in South America the attributable fraction (AF) of COVID-19 mortality due PM2.5, calculated as 1-1/RR, is 351 

approximately 15% in São Paulo (Pozzer et al. 2020), while the AF due the increment of PM2.5 in Sao Paulo is 352 

12.28. Another study in China showed that 10 μg⋅m-³ of O3 results in relative risk of 1.047 (Zhu et al. 2020), which 353 

is slightly lower than our results of 1.075 presented in this study. Finally, Zhang et al (2021) found a country-354 

average relative risk for PM2.5 of 1.06 (95% CI: 1.03 to 1.08), while relative risk found in Northeast and Southwest 355 

China oscillate around 1.2, similar to our result 1.140. Therefore, our results are in agreement with other studies. 356 

As this study is based on 292 days of data, future research should consider the potential effects of a more extended 357 

period to study the effect of air pollution on COVID-19 related cases and deaths. Recent social distancing and 358 

quarantines have been introduced on unprecedented scales, made necessary by the high transmissivity and severity 359 

of COVID-19, and the lack of effective vaccines or testing programs (Cohen and Kupferschmidt 2020). This 360 

strongly suggests that mobility indices can be used to study infectious disease transmission and assess the 361 

effectiveness of large-scale isolation and quarantine style management activities. Therefore, policymakers can use 362 

the new mobility dataset to enforce efforts to implement more effective social distancing and quarantine-based 363 

management strategies for COVID-19. 364 
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Arguably, models like the one used here are more commonly applied to much larger datasets. However, we present 365 

findings and caveats, to provide early evidence on the transmission of COVID-19, and as part of efforts to highlight 366 

the potential value of the recently developed mobility indices.  367 

Conclusion 368 

Spatial distancing was proven to be a determining factor to control COVID-19 cases and deaths. RMI is also 369 

significantly associated with COVID-19 cases and deaths. Higher RMI values lower COVID-19 cases while lower 370 

values are related to a higher number of COVID-19 cases and deaths. Our predictions align with mean observations 371 

of COVID-19 cases. Air pollutant models revealed that an increment of 10 μg⋅m-³ of PM2.5 and O3 produces a 372 

relative risk of 1.140 (95% CI: 1.021 to 1.274) for cases and of 1.086 (95% CI: 1.008 to 1.170), and 1.075 (95% CI: 373 

1.006 to 1.150) for cases and 1.063 (95% CI: 1.006 to 1.124) for deaths, respectively. 374 
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