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Abstract
The COVID-19 pandemic has caused significant mortality and disruption on a global scale not seen in

living memory. Understanding the spatial and temporal vectors of transmission as well as similarities
in the trajectories of recorded cases and deaths across countries can aid in understanding the benefit
or otherwise of varying interventions and control strategies on virus transmission. It can also highlight
emerging globa trends as they occur. Data on number of cases and deaths across the globe have been made
available through a variety of databases and provide a wide range of opportunities for the application of
multivariate statistical methods to extract information on similarity or difference from them. Here we
conduct spatial and temporal multivariate statistical analyses of global COVID-19 cases and deaths for the
period spanning January to August 2020, using a variety of distance based multivariate methods to cluster
countries according to similar temporal trends in cases and deaths resulting from COVID-19. We also use
novel air passenger data as a proxy for movement between countries. The air passenger movement can act
as an important vector of transmission and thus scaling covariance matrices before conducting dimension
reduction techniques can account for known structures in the data and help highlight important residual
spatial and/or temporal trends that may then be attributable to the success of interventions or other
cultural differences. Global temporal structure is found to be of significantly more importance than local
spatial structure in terms of global dynamics. Our results highlight a significant global change in case
and mortality daynamics from early-August, consistent in timing with the emergence of new strains with
highger levels of transmission. We propose the methodology offers great potential in real-time analysis of
complex, noisy spatio-temporal data and the extraction of emerging changes in pandemic dynamics that
can support policy and decision makers.
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1 Introduction
The SARS-COV-2 pandemic is a global crisis not seen on such a scale in peace-time living memory, yet little
has so far been considered of the spatial and temporal dynamics of the pandemic on a global scale, despite
strong reasons for doing so1. Whilst the virus knows nothing of the political boundaries of geographical
regions, the interventions taken to hinder the virus’ progression have varied significantly across countries and
adherence to these interventions can vary drastically depending on.2 Understanding the important similarities
in the dynamics of the pandemic across both space and time is therefore of huge importance in aiding
successful policy interventions.

Multivariate methods are a collection of statistical methods and computational algorithms for analysing data
where multiple measurements are taken on each sampled unit. Among these, clustering methods aim to
join together units that are similar to each other in the same group, with units that are inherently different
placed in different groups.3 Several approaches have extended standard clustering methods to account for
the inherent correlation present in time-series of observations4, and therefore cluster complete temporal
trajectories rather than single observations. The ability to cluster time series data offers the potential to
study how trajectories of observed cases and/or deaths attributed to COVID-19 vary across countries and
continents, ideally accounting for the fact that emergence time and duration of regional epidemics will vary,
and hence time series could be of equal or unequal length.

In addition to this, multivariate projection and decomposition methods, such as Principal Components
Analysis (PCA),5 allow extraction of important structures inherent in multivariate data through an eigen-
decomposition of the correlation or covariance matrix. However, in general these unsepervised methods find
lower-dimensional subspaces in the data without explicitly using known structures and are based on an
unaided orthogonal, variance maximisation approach. Extensions to PCA relax this assumption of unknown
structure and allow users to account for existing spatial and/or temporal structures inherent in the data
through the use of spatial and/or temporal weighting matrices.7 Spatial and temporal weight matrices have
been previously used to account for important flow vectors in geostatistics, specifically in river flow networks,
and incorporated into existing dimension reduction methodologies. Accounting for existent spatial and
temporal structures in the data allow the extraction of important residual joint structures that can be more
readily interpreted than if these known structures are not accounted for. Using data on air passenger flow
between airports in impacted countries, we treat the flow of people between countries in a similar manner to
hydrological flow, and then ascribe additional remaining temporal and spatial structure to the efficacy of the
variety of interventions that have been implemented on a global scale.

In addition to the potential transmission risk between passengers onboard planes,8 travel of infected patients
between countries is seen as an important vector of transmission before large-scale interventions were
introduced.10 Air travel is also a likely proxy of more general traffic between nations. The possible impact
of those interventions, as well as testing for similarities in space and time between countries with different
political, social and economic standing, is therefore of great interest.

Using ECDC reported case and death data between 2020-01-01 and 2020-08-22, normalised by population size
in each country11, we use a variety of algorithmic clustering and multivariate dimension reduction methods
to cluster countries according to similar spatial and/or temporal trends in cases and deaths attributed to
COVID-19 or help detect important change points in global pandemic dynamics.

2 Results
2.1 Clustering based on ACF
We initially study the temporal dynamics of COVID-19 reported case and death numbers using algorithmic
fuzzy clustering to join together similar time series across countries. Persistent autocorrelation at increasing
lags up to 20 weeks highlights countries where cases remain consistently high or low for long periods of time.
Conversely, sharply decreasing autocorrelation would imply that observed numbers are relatively disctinct
over all but the shortest periods. The 210 countries were allocated into one of six clusters with similar
temporal dynamics in case numbers (Figure 1 and Table 1) and deaths (Figure 2 and Table 2). Clustering
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was conducted using dynamic time warping (henceforth DTW) on the autocorrelation lag series of increasing
lengths and on the underlying per capita time series.

2.1.1 Cases

Multiple different structures across clusterings can be observed. Specifically, clusters 2 and 3 correspond
to countries with very shallow decreases in autocorrelation. This is particularly strong in cluster 2, where
autocorrelation is still greater than 0.6 at lag 20 for almost all of the cluster members. Cluster 4 corresponds
to countries with very minimal autocorrelation even at the lowest lags. This cluster contains countries with
little consistency in observed cases or large degrees of fluctuation over time. Clusters 1 and 5 on the other
hand, show moderate correlation at low lags, with a relatively steep reduction towards lag 20. These countries
are showing short-term temporal dependence but again cases drop off swiftly. Finally cluster 6 appears to
show countries for which, whilst there is significant dependence on a short-term basis, this very swiftly drops
down towards zero by 20 days later.
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Figure 1: Temporal lag (x-axis) plotted against correlation coefficient for the k = 6 clusters.

2.1.2 Deaths

Similar types of structures could be observed in the mortality data, although the countries exhibiting
these trends varied. The main difference was the countries in cluster 6, which showed almost consistent
autocorrelation of one up to and including the highest lag. These countries show little variation in numbers
of deaths, mostly due to very low figures.

Adjusted Rand index between the two clusters was 0.23, suggesting a relatively low level of similarity between
the two sets of clusters and therefore differing factors underlying the temporal trajectories.
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Table 1: Cluster members for cases.
Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Cluster_6
Andorra Afghanistan Argentina Anguilla Barbados Austria
Angola Albania Australia Antigua and Barbuda Burkina Faso Bahamas
Aruba Algeria Belgium Benin Cases on an international conveyance Japan Cape Verde
Belize Armenia Bosnia and Herzegovina Bermuda Cayman Islands Central African Republic
Brunei Darussalam Azerbaijan Bulgaria Bhutan Congo Cote dIvoire
Chad Bahrain Costa Rica Bonaire, Saint Eustatius and Saba Djibouti Croatia
Chile Bangladesh Czechia Botswana Ecuador Cuba
China Belarus Denmark British Virgin Islands Faroe Islands Cyprus
Gambia Bolivia Eswatini Burundi Gabon Democratic Republic of the Congo
Georgia Brazil Finland Cambodia Gibraltar Estonia
Ghana Canada Germany Cameroon Guam Ethiopia
Guernsey Colombia Iceland Comoros Guinea France
Guyana Dominican Republic Ireland Curaçao Guinea Bissau Greece
Isle of Man Egypt Japan Dominica Jamaica Guatemala
Kosovo El Salvador Madagascar Equatorial Guinea Jersey Haiti
Latvia Honduras Malaysia Eritrea Jordan Hungary
Liberia India North Macedonia Falkland Islands (Malvinas) Kazakhstan Lebanon
Libya Indonesia Norway Fiji Kyrgyzstan Lithuania
Malta Iran Peru French Polynesia Laos Luxembourg
Mauritius Iraq Philippines Greenland Lesotho Malawi
Monaco Israel Senegal Grenada Liechtenstein Maldives
Montenegro Italy Serbia Holy See Mali Moldova
Niger Kenya Singapore Mongolia Mauritania Morocco
Portugal Kuwait Suriname Montserrat New Caledonia Mozambique
Republic of Korea Mexico Switzerland Myanmar Papua New Guinea Namibia
Rwanda Netherlands Turkey Nicaragua Sri Lanka Nepal
San Marino Nigeria - Northern Mariana Islands Tajikistan New Zealand
Sierra Leone Oman - Saint Kitts and Nevis Togo Paraguay
Sint Maarten Pakistan - Saint Lucia Tunisia Poland
Slovakia Palestine - Saint Vincent and the Grenadines Uganda Puerto Rico
Somalia Panama - Sao Tome and Principe Uruguay Slovenia
Sudan Qatar - Seychelles Yemen Spain
Syria Romania - South Sudan - Sweden
Taiwan Russia - Timor Leste - Thailand
Trinidad and Tobago Saudi Arabia - United Republic of Tanzania - Ukraine
Turks and Caicos islands South Africa - Western Sahara - Venezuela
United States Virgin Islands United Arab Emirates - - - Zambia
Vietnam United Kingdom - - - Zimbabwe
- United States - - - -
- Uzbekistan - - - -
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Figure 2: Temporal lag (x-axis) plotted against correlation coefficient for number of recorded deaths.
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Table 2: Cluster members for deaths using autocorrelation lag.
Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Cluster_6
Andorra Algeria Bahamas Afghanistan Armenia Anguilla
Angola Antigua and Barbuda Barbados Albania Azerbaijan Bhutan
Bosnia and Herzegovina Aruba Benin Argentina Bangladesh Bonaire, Saint Eustatius and Saba
Bulgaria Belize Burkina Faso Australia Belarus Cambodia
Croatia Bermuda Cape Verde Austria Belgium Dominica
Cuba Botswana Central African Republic Bahrain Bolivia Eritrea
El Salvador British Virgin Islands Chad China Brazil Falkland Islands (Malvinas)
Estonia Brunei Darussalam Chile Czechia Canada Faroe Islands
Eswatini Burundi Cote dIvoire Dominican Republic Colombia French Polynesia
Finland Cameroon Democratic Republic of the Congo Ethiopia Costa Rica Gibraltar
Greece Cases on an international conveyance Japan Djibouti France Denmark Greenland
Honduras Cayman Islands Ecuador Guatemala Egypt Grenada
Ireland Comoros Gambia Hungary Germany Holy See
Israel Congo Ghana Madagascar India Laos
Japan Curaçao Guernsey Malaysia Indonesia Mongolia
Kenya Cyprus Haiti Nigeria Iran New Caledonia
Lebanon Equatorial Guinea Iceland North Macedonia Iraq Saint Kitts and Nevis
Libya Fiji Isle of Man Norway Italy Saint Lucia
Luxembourg Gabon Jersey Portugal Kuwait Saint Vincent and the Grenadines
Malawi Georgia Kosovo Qatar Mexico Seychelles
Moldova Guam Lesotho Republic of Korea Netherlands Timor Leste
Montenegro Guinea Lithuania Serbia Pakistan -
Morocco Guinea Bissau Mali Spain Panama -
Namibia Guyana Mauritania Sweden Romania -
Nepal Jamaica New Zealand Switzerland Russia -
Oman Jordan Niger United Arab Emirates Saudi Arabia -
Palestine Kazakhstan Philippines Venezuela South Africa -
Paraguay Kyrgyzstan San Marino - Turkey -
Poland Latvia Sierra Leone - United Kingdom -
Puerto Rico Liberia Singapore - United States -
Senegal Liechtenstein Slovakia - Uzbekistan -
Slovenia Maldives Somalia - - -
Sudan Malta Suriname - - -
Thailand Mauritius Syria - - -
Ukraine Monaco Tajikistan - - -
Zimbabwe Montserrat Tunisia - - -
- Mozambique Uganda - - -
- Myanmar Vietnam - - -
- Nicaragua Yemen - - -
- Northern Mariana Islands Zambia - - -
- Papua New Guinea - - - -
- Peru - - - -
- Rwanda - - - -
- Sao Tome and Principe - - - -
- Sint Maarten - - - -
- South Sudan - - - -
- Sri Lanka - - - -
- Taiwan - - - -
- Togo - - - -
- Trinidad and Tobago - - - -
- Turks and Caicos islands - - - -
- United Republic of Tanzania - - - -
- United States Virgin Islands - - - -
- Uruguay - - - -
- Western Sahara - - - -
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2.2 Clustering based on distance measures between timeseries
We can also use distance measures on the original time-series (again DTW) but this only works for the time
periods where there is concurrent complete data across all countries, as the series must be of the same length.
Number of cases/deaths are plotted against day index, with dates ranging from 2020-05-17 to 2020-08-23.

2.2.1 Cases

Figure 3 shows the time series of cases per capita in each of the 12 clusters, with the corresponding cluster
members in Table 3. The method is capable of clustering similar trajectories and magnitudes, even with
shifts in time between the dynamics.
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Figure 3: Date in 2020 (x-axis) plotted against cases per capita.

2.2.2 Deaths

Figure 4 shows the time series of deaths per capita in each of the 12 clusters, with the corresponding cluster
members in Table 4. Once again the clusters contain time series of similar dynamics and magnitude.

Adjusted Rand index between the two clusters was 0.22 again suggesting a relatively low level of similarity
between the two sets of clusters.

2.3 Flow directed PCA
Our second approach to determining dynamics is to conduct variants of PCA to produce low-dimensional
representations of the data matrix.

All analyses were dominated by the first principal component, which explained approximately 99% of variation
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Table 3: Cluster members for cases using distance between timeseries.
Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Cluster_6 Cluster_7 Cluster_8 Cluster_9 Cluster_10 Cluster_11 Cluster_12
Armenia Austria Bahamas Belize Afghanistan Australia Guinea Bosnia and Herzegovina Aruba Benin Haiti Azerbaijan
Djibouti Belgium Guam Iceland Algeria Colombia Hungary Costa Rica - Botswana Liberia Belarus
Eswatini Cuba - Malta Angola Ghana Saudi Arabia Croatia - Burundi Sierra Leone Bolivia
Gabon Ecuador - Suriname Bangladesh Iraq Senegal Jamaica - Cameroon - Bulgaria
Guyana Guatemala - - Brazil Madagascar Togo Lithuania - Comoros - Central African Republic
Moldova Kazakhstan - - Burkina Faso Malawi - Namibia - Eritrea - Chile
Qatar Lesotho - - Chad Morocco - Slovenia - Somalia - Denmark
- Mauritania - - China Nepal - - - - - Dominican Republic
- Netherlands - - Congo Poland - - - - - Finland
- New Zealand - - Egypt Rwanda - - - - - Georgia
- Peru - - Ethiopia South Africa - - - - - Honduras
- Switzerland - - France Spain - - - - - Ireland
- Tajikistan - - Germany Syria - - - - - Lebanon
- Tunisia - - India Ukraine - - - - - Libya
- - - - Indonesia Uzbekistan - - - - - Norway
- - - - Iran Venezuela - - - - - Paraguay
- - - - Japan Zambia - - - - - Serbia
- - - - Kenya Zimbabwe - - - - - Sweden
- - - - Laos - - - - - - United Arab Emirates
- - - - Malaysia - - - - - - Uruguay
- - - - Mali - - - - - - -
- - - - Mexico - - - - - - -
- - - - Mozambique - - - - - - -
- - - - Nicaragua - - - - - - -
- - - - Niger - - - - - - -
- - - - Nigeria - - - - - - -
- - - - Pakistan - - - - - - -
- - - - Philippines - - - - - - -
- - - - Russia - - - - - - -
- - - - Sri Lanka - - - - - - -
- - - - Sudan - - - - - - -
- - - - Thailand - - - - - - -
- - - - Turkey - - - - - - -
- - - - Uganda - - - - - - -
- - - - United Kingdom - - - - - - -
- - - - United States - - - - - - -
- - - - Vietnam - - - - - - -
- - - - Yemen - - - - - - -
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Figure 4: Date in 2020 (x-axis) plotted against deaths per capita.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.08.21251339doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.08.21251339
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: Cluster members for deaths using distance between timeseries.
Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Cluster_6 Cluster_7 Cluster_8 Cluster_9 Cluster_10 Cluster_11 Cluster_12
Bahamas Central African Republic Armenia Azerbaijan Aruba Bosnia and Herzegovina Algeria Austria Bolivia Brazil Afghanistan Australia
Bangladesh Croatia Djibouti Belarus - Lithuania Iran Belgium Bulgaria Egypt Angola Colombia
Belize Denmark Eswatini Chile - Mauritania Mexico Ecuador Costa Rica France Benin Haiti
Botswana Finland Gabon Dominican Republic - Namibia Morocco Hungary Honduras Germany Burkina Faso Iraq
Burundi Ireland Guyana Guatemala - Qatar Nepal Netherlands Libya Kenya Cameroon Kazakhstan
China Liberia Lesotho - - - Poland Peru Paraguay Russia Chad Lebanon
Congo Norway Moldova - - - Ukraine Sierra Leone Serbia Spain Comoros Malawi
Eritrea Sweden Slovenia - - - Uzbekistan United Arab Emirates - Turkey Cuba Saudi Arabia
Ethiopia Uruguay Suriname - - - Venezuela - - - Ghana Senegal
Georgia - - - - - Yemen - - - Guinea South Africa
Guam - - - - - - - - - Madagascar Zambia
Iceland - - - - - - - - - Mali Zimbabwe
India - - - - - - - - - Niger -
Indonesia - - - - - - - - - Rwanda -
Jamaica - - - - - - - - - Somalia -
Japan - - - - - - - - - Sudan -
Laos - - - - - - - - - Switzerland -
Malaysia - - - - - - - - - Syria -
Malta - - - - - - - - - Togo -
Mozambique - - - - - - - - - Tunisia -
New Zealand - - - - - - - - - United Kingdom -
Nicaragua - - - - - - - - - - -
Nigeria - - - - - - - - - - -
Pakistan - - - - - - - - - - -
Philippines - - - - - - - - - - -
Sri Lanka - - - - - - - - - - -
Tajikistan - - - - - - - - - - -
Thailand - - - - - - - - - - -
Uganda - - - - - - - - - - -
United States - - - - - - - - - - -
Vietnam - - - - - - - - - - -

in all settings. Also note that the dimension reduction is identifiable up to a sign change, so some of the
scores plots show similar dynamics but inverted because of this non-identifiability.

2.3.1 S-Mode - cases

The first three principal scores from the S-Mode analyses are presented in Figure 5 with corresponding
proportions of variance explained in Table 5. The analysis of case data shows a relatively consistent dominant
trend across all three weighting procedures, with the first component accounting for around 99% of variability.
This suggests very little spatial variability in temporal dynamics.7 Relatively little consistency across countries
is shown between mid-May and, with a steep global spike in cases observed from mid-August onwards.
This suggests that after normalising by population size, there was no strong temporal trend in global case
numbers until mid-August, when there was a sudden sharp increase in the total global population of infected
individuals. The second principal score had strongest contribution to overall variance explanation in the
spatio-temporal analysis. This less-important trend shows an additional minimal peak in the second half
of June, and a further large spike again from the second week of August onwards. The second spike is
particularly pronounced after removing country-specific temporal variation.

2.3.2 S-Mode - deaths

The results from the S-Mode analysis are presented in Figure 6 with corresponding proportions of variance
explained in Table 6. The analysis of deaths proved problematic, due to obvious discrepancies in the data.
There were significantly large values of deaths in several of the later weeks that were not specific to a single
country and these dominated the first two principal components, as can be seen in Figure . Given the fact that
these involved multiple countries simultaneously, it is hard to justify removing them completely. Looking at
the third component, however, there appears to be some additional noticeable change in deaths approximately
a week after the emergence of the spike observed in the analysis of cases. This will likely represent more
relevant variation in mortality data similar to that detected in the cases data. Given the discrepancy in
time between the two spikes, it suggests that observed increases in deaths occurred a week later. This seems
reasonable given that mean time from illness onset to death has been estimated as between 15.1 and 29.5,12

but this would need to include time for formal testing and reporting of cases (estimated at 7.1 days).12

2.3.3 T-Mode - cases

The results from the T-Mode analysis of cases are presented in Figure 7 with corresponding proportions
of variance explained in Table 7. The results are a stark contrast to the S-Mode analyses is showing very
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Figure 5: First three weighted S-Mode PCA scores on number of cases with different weight matricies applied.
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Figure 6: First three weighted S-Mode PCA scores on number of deaths with different weight matricies
applied.
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little spatial structure. The only nation to be highlighted in the first PC is Aruba, which is shown to have a
significantly different case-per-capita temporal series than other countries.
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Figure 7: Spatio-temporally weighted T-Mode PCA scores on number of cases (plotted alphabetically).

2.3.4 T-Mode - deaths

The results from the T-Mode analysis of deaths are presented in Figures 8 with corresponding proportions of
variance explained in Table 8. Once again, very little consistent spatial structure was observed in the data,
with Aruba being the single country highlighted by the analysis as having a particularly unique deaths per
capita trend.

3 Methods
We employ two broad approaches to detecting dynamics across space and time using several publicly available
datasets, initially using algorithmic temporal clustering methods to cluster countries according to different
measures of temporal (dis)similarity. Our second approach is to study spatial and temporal structure through
weighted PCA methodology. All statistical analyses were conducted in R version 4.0.2.

3.1 Data
Daily case and incidence data were extracted from.13 Dates were converted to ‘days since 2020-01-01’ for
ease of modelling. The number of cases for Iran were not added on 2020-04-04 and approximately double
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Figure 8: Spatio-temporally weighted T-Mode PCA scores on number of deaths (plotted alphabetically).

Table 5: Percentage of case per capita variance explained by S-mode PC1, PC2 and PC3 for the three different
weight matrics.

Unweighted Spatial Spatiotemporal
99.7 99.7 99.27
0.3 0.3 0.73
0.0 0.0 0.00

Table 6: Percentage of death per capita variance explained by S-mode PC1, PC2 and PC3 for the three
different weight matrics.

Unweighted Spatial Spatiotemporal
99.37 99.37 98.99
0.60 0.61 0.97
0.02 0.02 0.03
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Table 7: Percentage of case per capita variance explained by T-mode PC1, PC2 and PC3 for the three
different weight matrics.

Unweighted Spatial Spatiotemporal
99.72 99.72 99.26
0.28 0.28 0.74
0.00 0.00 0.00

Table 8: Percentage of death per capita variance explained by T-mode PC1, PC2 and PC3 for the three
different weight matrics.

Unweighted Spatial Spatiotemporal
99.39 99.38 98.99
0.59 0.59 0.97
0.02 0.02 0.03

−7.000e−20

3.150e−19

7.000e−19

1.085e−18

1.470e−18

−6.300e−22

2.835e−21

6.300e−21

9.765e−21

1.323e−20

Apr May Jun Jul Aug
Days since 2020−01−01

C
as

es

D
eaths

Figure 9: Cases (red, left vertical axis) and deaths (green, right vertical axis) per capita in Aruba.
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were added on 2020-04-05, so these were shared equally across the two dates. An unrealistically high value of
deaths were also observed for China on 2020-04-17 which corresponded to historical update of records that
had been previously attributed to other diagnoses,14 and hence this datum was removed.

Global population data dating from 2019 was extracted from,11 with countries matched to those in the
incidence data. Data for Eritrea was only available up until 2011, so this figure was used instead for consistency
with the other country methodologies. Case and deaths for each country were divided by these population
figures to give incidence per capita values.

3.2 Clustering on temporal lags
We initially cluster countries based on the autocorrelation profile15, namely calculating autocorrelation up to
lag 20 for each country. DTW is a method for calculating the optimum match between two series, allowing
for the fact that different countries may have similar trajectories but displaced in time depending on the
onset of emergence. With this approach, we can use the complete data trajectories by clustering based on
the increasing lags over the course of the pandemic, even when the time series differ in length. Clusters are
calculated based on a fuzzy clustering approach16 with L2-norm distance between autocorrelation functions,
allowing calculation of probabilities associated with belonging to each cluster. Countries are assigned the
cluster with highest probability.

Temporal clustering was carried out using various functions in the dtwclust package in R15. Dynamic Time
Warping17 is an algorithm that calculates distance between two temporal series that may be of different
lengths, aiming to calculate an optimal match between the indices of two given sequences.

3.3 Clustering on incidence per capita
We also cluster in a more traditional way according to either the number of cases or deaths per capita. In
this case, all time series must be of the same length so only the 126 countries with complete data during a
core central period are included. Again using dynamic time warping as the distance metric, we employ a
k-medoids partitioning algorithm with 12 clusters to form clusters of similar trajectories in cases and deaths15.
A larger number of clusters were used to account for greater variability in these raw data.

In both of the above scenarios, we use the Adjusted Rand Index (ARI)18 to compare between clusterings of
cases (denoted Xi) and deaths (denoted Yj) under each of the two approaches. The ARI is defined as

ARI =
∑

ij
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nij

2
)

− [
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where ni,j denotes the number of objects in common between cluster Xi and Yj , ai =
∑

j ni,j and bj =
∑

i ni,j .
Values close to one suggest similar cluster memberships and values close to zero denote very different clusters.
Due to the lower number of countries in the latter setting, it is not feasible to compare clusterings between
methods.

3.4 Flow directed PCA
Next we aim to discover important global spatial and temporal trends in cases and deaths from COVID-19.
To extract the important trends, PCA and similar dimension reduction techniques are an obvious choice. PCA
conducts an eigendecomposition of the covariance (or correlation) of a data matrix, with eigenvalues ordered
by magnitude to reduce a set ofp correlated variables to a smaller set of k < p orthogonal variables. Versions
of PCA for spatio-temporal data were referred to by,19 S-mode and T-mode PCA, the particular mode
depending on whether the columns of are time points (T-mode) or countries (S-mode). The S-Mode PCA
aims to find dominant temporal trends across the spatial locations, highlighting a small number of dominant
temporal trends across all countries. Conversely, T-Mode PCA aims to find different spatial patterns in
the data and the associated time points at which they occur. In general, however, PCA finds unsupervised
structures in the data by conducting an eigen decomposition of the correlation of covariance matrix. Whilst
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this can often be useful in visualising data in lower dimensions, it is not possible to guide the structure of
the new axes using prior information or independent data. In order to account for known spatio-temporal
correlations inherent in the data, we use spatio-temporally weighted S-mode and T-mode PCA, which aim to
find dominant temporal and spatial patterns respectively.7 extended these approaches to account for known
spatio-temporal structures in river flow systems through the use of spatial and/or temporal weight matrices
to inform spatio-temporal structure. Assuming the data matrix is a n × p matrix, a p × p column weight
matrix Ω and n× n row weight matrix Φ can be constructed so that PCA is applied to a transformed matrix
X ′ = ΦXΩ. We adopt a similar approach to considering the transmission of COVID-19 through air travel
as a proxy to general movement between countries. Residual spatial or temporal structure may then be
associated with the impact of any intervention method introduced in that country. Analyses were conducted
using the stpca package in R.

3.4.1 Spatial weight matrix

Using data on air traffic between airports in the different countries, we construct a spatial weight matrix
using a similar approach to.7 The method involves constructing a spatial weight matrix of air passenger
connectivity between countries for which COVID-19 case and death data were available. The air passenger
data provided by20 generated a modeled passenger flow matrix for all airports with a host city-population of
more than 100,000 and within two transfers of air travel from various publicly available air travel datasets.
Multiple covariates were included in a spatial interaction framework to predict the air transportation flows
between airports. This modelled flow matrix is used here to explain flow of passengers between different
international airports, much in the same way that hydrological flow is measured in.21

Initially, all starting airports and destination airports were assigned to a country using the GNcountryCode
function in the geonames package in R, based on their latitude and longitude. These were then matched to
the corresponding countries in the case and death data. The entries of spatial weight matrix Si,j denoting
the flow of passengers into country j from country i were then the sum of all individual flows of passengers
to/from airports within that country. To ensure valid covariance matrices, diagonal terms are kept equal to 1
and the remaining terms are scaled by the row means of the remaining non-diagonal terms.

Once this initial matrix has been calculated, to ensure a valid postive-definite covariance matrix is produced,
the final weight matrix is calculated as

S′ = S
1
2 + S

1
2ᵀ.

where 1
2 is the matrix squareroot and ᵀ denotes the matrix transpose.

3.4.2 Temporal weight matrix

The temporal weight matrix is constructed similarly to.7 Independent Generalised Additive Modesls (GAMs)22

are fitted by restricted maximum likelihood (REML) in the mgcv package23 to each of the time series with
an intercept and an univariate smooth function of date since 1st January 2020 as predictor. Remaining
correlation in the model residuals between time [1, . . . , (n− 1)] and [2, . . . , n] is calculated for each country
and then the median value is used as an estimate of ρ, the average global temporal correlation. This aims to
remove general seasonal patterns for each country that can be accounted for by simple smooth functions of
time, before attributing latent residual correlation to additional epidemiological . Joint latent covariance
models are frequently used to detect or account for residual joint covariance across a variety of applications.24

The median residual temporal correlations were estimated as 0.812 and 0.808 for cases and deaths respectively.
The ith row and jth column element of the temporal weight matrix Ti,j is then specified as ρ|i−j| for all time
indices in the original data matrix.

4 Conclusions
Our results show a strong temporal pattern in both the global case and death numbers, with comparatively
minimal spatial pattern. Only a single principal component is required in each case to explain the vast
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majority of variation in the data, suggesting consistent dominant temporal trends ocross the globe. Previous
analyses of global data have focused on fitting models independently for each country and compared results
post analysis26, whereas our approaches model all countries simultaneously through time. The two approaches
were complimentary, rather than contradictory. Aruba was consistently found to show different dynamics to
other countries and was selected as a unique cluster in the clustering approaches and was also singled out in
the T-mode PCA analyses. The data for Aruba is plotted in Figure 9.

The clustering according to temporal correlation in the data has the benefit of being able to use full trajectories
from the beginning of January and allows all countries with data at any point during the pandemic to be
included. This approch is particularly successful at joining together similar temporal trajectories, avoiding
the separation of countries that have similar dynamics but larger populations and hence larger absolute
number of cases. The clustering also suggests that temporal correlation in both cases and deaths is significant
even at lags of up to 20 days for some countries, whilst others have spikes resulting in low correlation for all
lags greater than two.

Partition clustering according to numbers of cases and deaths is successful at clustering temporal trajectories,
but once again there was little similarity between clusterings according to case numbers and those conducted
on mortality data.

The weighted PCA shows that there is important spatial and temporal structure within the data, and
when this is removed, many of the important joint global trends are more easily detected. The temporal
dynamics are shown to be particularly important in the global spread of infected individuals. Providing a
semi-supervised approach, the method more readily extracts joint structure and highlights the emergence of
a spike in numbers of cases globally from early August, with a subsequent spike in deaths approximately a
week later. This appears consistent with the increase in mutant strains observed in global studies.28 There
are two obvious daily spikes in the S-Mode analysis of deaths that is driving the principal temporal trends,
and this may well correspond to a lag in data collection or data dumping. Subsequent principal components
showed the complementary pattern to those observed in the case data.

As such, this approach offers the possibility of real-time detection of changes in pandemic dynamics through
extraction of important changepoints, where analyses are re-run when new data are collected, which may
correspond to the emergence of new strains with contrasting properties or issues with data collection protocols
that require further study. The approach is incredibly fast computationally and easily highlights important
and interpretable trends in complex and potentially very noisy spatio-temporal data. These can then formally
assist with policy decisions in relation to when and where interventions appear to be working26 and when
they are not, which2 linked to cultural tightness. The emergence of significant changes in dynamics can also
trigger further epidemiological and genetic studies to detect viral mutations that may be associated with or
causing the changing dynamics.

5 Data availability
All data are publicly available and references and access dates are provided within the text.
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