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Vaccines are thought to be the best available solution for controlling the ongoing 
SARS-CoV-2 pandemic​1,2​. However, the emergence of vaccine-resistant strains​3–6​ may 
come too rapidly for current vaccine developments to alleviate the health, economic and 
social consequences of the pandemic ​7,8​. To quantify and characterize the risk of such a 
scenario, we created a SIR-derived model​9,10​ with initial stochastic dynamics of the 
vaccine-resistant strain to study the probability of its emergence and establishment. 
Using parameters realistically resembling SARS-CoV-2 transmission, we model a 
wave-like pattern of the pandemic and consider the impact of the rate of vaccination and 
the strength of non-pharmaceutical intervention measures on the probability of 
emergence of a resistant strain. We found a counterintuitive result that the highest 
probability for the establishment of the resistant strain comes at a time of reduced 
non-pharmaceutical intervention measures when most individuals of the population have 
been vaccinated. Consequently, we show that a period of transmission reduction close to 
the end of the vaccination campaign can substantially reduce the probability of resistant 
strain establishment. Our results suggest that policymakers and individuals should 
consider maintaining non-pharmaceutical interventions ​7,11,12​ throughout the entire 
vaccination period.  
 
 
Main 
 
Vaccines are among the most effective public health measures against infectious disease ​1​. 
Their track record brings hope that SARS-CoV-2 may soon be under control ​13​ as a 
consequence of a plethora of vaccine development efforts​14–17​. A potential cause of concern is 
the low rate of vaccine production and administration ​18​ coupled with reports of new strains with 
higher transmission rates​3,4,19​ and even with potential for some degree of vaccine 
resistance ​5,6,8,20​. A number of models considered the dynamics of the spread of a 
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vaccine-resistant strain in the population ​9,10,21,22​. However, to our knowledge, the interplay of the 
population vaccination rate with the stochastic dynamics of emergence of a resistant strain has 
been discussed ​23​ , but not formally modeled. Specifically, a concern is whether a combination of 
vaccination and transmission rates can create positive selection pressure on the emergence 
and establishment of resistant strains​24,25​. To address this issue, we implemented a model to 
simulate the probability of emergence of a resistant strain as a function of vaccination rates and 
changes in the rate of virus transmission, resembling those caused by non-pharmaceutical 
interventions and behavioural changes. We then performed a number of simulations based on 
realistic parameters to study the likelihood and pattern of the emergence of a resistant strain. 
Finally, we considered possible countermeasures to reduce the probability of the establishment 
of the resistant strain in the population.  
 
We implemented a modification of a SIR model ​10,26​ that included additional states to study the 
interplay of the rate of vaccination, rate of transmission and the likelihood of emergence of 
resistant strains (​Fig. 1a ​). In addition to other states, individuals could be vaccinated (V), 
infected by the resistant strain (I​r​), or simultaneously be vaccinated and infected with the 
resistant strain (I​r​

V​). In the model, susceptible individuals (S) are infected by the wildtype strain 
at a rate of β and infected individuals recover at a rate of γ or die at a rate of δ. At each time 
step, a fraction θ of all non-infected individuals is vaccinated and with some probability ​p​, an 
infected individual becomes infected with a resistant strain. Overall, our model included 8 
character states and 6 transition parameters between them (​Fig. 1a, Extended Data Table 1​).  
 
The rate of transmission in the course of a pandemic is typically cyclical ​27–29​ due to government 
interventions​29,30​, behavioural changes​31–33​, and environmental ​34,35​ and other factors​36,37​. 
Generally, the number of infected individuals is wave-like, guided by periods of high rate of 
transmission, followed by periods of a low rate of transmission ​27,28,38,39​. We thus varied β ​t​, the 
rate of virus transmission to reflect this cyclical behavior (​Figs. 1b,c​). A high rate of 
transmission (β ​h​ = 0.18, equivalent to the effective reproduction number of R​h ​= 2.52) was 
alternated with a low rate (β ​l ​ = 0.055 or R​l ​ = 0.77), which broadly reflected the observed rates of 
transmission in various countries affected by  the SARS-CoV-19 pandemic with and without 
lockdown measures, respectively​39–41​. The low rate of transmission was triggered in the model 
when the number of individuals infected with any strain reached F = (I​wt​+I​r​+I​r​

V​). Transition from a 
low rate of transmission back to a high rate occurred at a constant value of (I​wt​+I​r​+I​r​

V​) = 1000. 
We also considered a mode when the transition from low to high rate of transmission occurred 
at (I​wt​+I​r​+I​r​

V​) = F/2, however, the results were not qualitatively different and are not reported 
here. 
 
SIR-like models frequently consider only deterministic dynamics​10​. However, the emergence of a 
new strain is an inherently stochastic process under extensive influence of genetic drift​42,43​. 
Therefore, we incorporated a stochastic stage into our model to allow for genetic drift in the 
early phases of population dynamics of the resistant strains. The growth rate of the number of 
individuals infected with the wildtype strain at time ​t​ was determined deterministically by (β*S/N - 
γ - δ)I​wt​. By contrast, when the frequency of the resistant strain in the population is low, the 
number of transmissions of the resistant strain was drawn from a Poisson distribution with a 
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mean of (β*I​r​*(S+V)/N)dt [​44 ​]. However, when the frequency of the resistant strain is greater 
than 1000 individuals (0.01% of the population), making it highly unlikely to disappear by 
stochastic forces, the dynamics are treated deterministically in the same manner as the wildtype 
strain. 
 
The initial stages of the vaccine-resistant strain propagation consisted of emergence, the 
appearance of the first individual with the infected strain, establishment, the time point when the 
number of infected individuals reached 1000, and extinction, when the number of resistant strain 
infected individuals returned to zero. The impact of three parameters on the resistant strain 
propagation were explored, the probability of the emergence of the resistant strain (p), the 
speed of vaccination (θ) and the initiation of periods of lower rate of transmission (F). All other 
parameters were constants and their values were chosen to be broadly reflecting a realistic set 
of parameters that approximate the available data for the SARS-CoV-2 pandemic, μ =1/180, γ = 
0.99*1/14 and δ = 0.01*1/14 (see ​Extended Data Table 1​). The model was run to simulate a 
population of 10,000,000 individuals over three years with the vaccination starting after the first 
year. Higher values of ​p​ had a predictably​45​ positive effect on the probability of the 
establishment of the resistant strain (​Extended Data Figs. 1-3​), but depended on the rate of 
vaccination (θ) and low transmission initiation (F) in a complex manner (​Fig. 2, Extended Data 
Figs. 1-3 ​). In a specific parameter range the probability of establishment of the resistant strain 
was increased by a factor of two (​Figs. 2d,e ​). 
 
The behaviour of the emergence, establishment and extinction of the resistant strain in the 
population bears striking resemblance to the population genetics problem addressing the 
survival of a beneficial allele in a growing population ​46,47​. To understand the stochastic dynamics 
of the resistant strain in the model, it is therefore instructive to consider the underlying 
mechanism in population genetics terms. Unless the rate of mutation is zero, or infinitesimally 
low, new variants will emerge in the population at a rate of p*I​wt​. When the rates of transmission 
of the wildtype and the resistant strain are equal, the probability that the resistant strain will go 
extinct, 1 - Q​t​, can be approximated by 
 
1 - Q​t​ = exp[-Q​t+1​(1+s)R​t​

r​] (​eq. 1 ​), 
 
where s is the selection advantage of the resistant strain ​42,48​ and R​t​

r​
 ​= (S+V)β ​t​/N(γ + δ). 

Therefore, even when there is no selective advantage of the resistant strain (s = 0) over the 
wildtype strain but the rate of transmission is high (R​t​

r​ > 1), the likelihood that a new mutation is 
lost from the population is small (~10% for β ​h​ = 0.18, or R​0​ = 2.52). By contrast, when the rate of 
transmission is low (R​t​

r​
 ​< 1, which is the case during the low transmission periods in the model), 

the probability of extinction of the resistant strain by genetic drift is substantial ​42,43​. The results of 
our model are consistent with theory, such that the resistant strain emerges during periods of 
high and low transmission rates, but goes extinct with higher probability during periods of low 
transmission (​Fig. 2f​). Furthermore, under the parameters of our model the resistant strain 
becomes established only during periods of high transmission (​Fig. 2f​). 
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The complex influence of the speed of vaccination, θ, and initiation of low transmission period, 
F, on the dynamics of establishment of the resistant strain (​Figs. 2d​) may, therefore, be driven 
by the overlap of the vaccination period and the periodicity of the cycles of the number of 
infected individuals driven by F (​Fig, 1b.c​). The coincidence of a high number of vaccinated 
individuals and a high rate of transmission has two effects on the resistant strain. First, as 
mentioned previously, because the rate of transmission is high, the emerging resistant strain is 
not lost through genetic drift (see also ​46,49​). Second, a high number of vaccinations creates a 
selective advantage of the resistant strain over the wildtype strain ​25​. The effective reproductive 
number of the wildtype versus the resistant strains, R​t​

wt​/R​t​
r​, is (V+S)/S, which is the selective 

advantage 1+s in ​eq. 1​. Thus, when V is large the resistant strain has a growth advantage over 
the wildtype strain, contributing to its establishment in the population towards the end of the 
vaccination campaign. Taken together, the highest probability for establishment of the resistant 
strain for a given ​p​ is reached when V, I​wt​ and β ​t​ (and the corresponding R​t​

r​) are large (​Fig. 2c ​, 
eq. 1 ​). 
 
Indeed, when p = 10 ​-6​, in those cases when the resistant strain becomes established, its initial 
time of emergence frequently occurs at around the time when 60% of the population is 
vaccinated (​Fig. 3 ​). Therefore, we then tested the influence of a single intervention triggering at 
a single extraordinary period of low transmission centred around 60% of vaccinated individuals 
in the population (​Fig. 3​). We varied the duration of this intervention, T, ranging from one week 
to 120 days and considered three rates of transmission, β ​l ​ = 0.055 (R​0​ = 0.77), 0.03 (R​0​ = 0.42) 
and 0.01 (R​0​ = 0.14). Both parameters decrease probability of establishment of the resistant 
strain with the length of the intervention having a relatively stronger effect (​Fig. 3​. ​Extended 
Data Figs. 1-7 ​). 
 
In conclusion, our model suggests three specific risk factors that favour the emergence and 
establishment of a vaccine-resistant strain that are intuitively obvious: high probability of initial 
emergence of the resistant strain, high number of infected individuals​50​ and low rate of 
vaccination ​51​. By contrast, a counterintuitive result of our analysis is that the highest risk of 
resistant strain establishment occurs when a large fraction of the population has already been 
vaccinated but the transmission is not controlled (see ref. [​52 ​] for empirical data consistent with 
this result in influenza). Indeed, it seems likely that when a large fraction of the population is 
vaccinated, especially the high-risk fraction of the population (aged individuals and those with 
specific underlying conditions) policy makers and individuals will be driven to return to 
pre-pandemic guidelines and behaviours conducive to a high rate of virus transmission. 
However, the establishment of a resistant strain at that time may lead to serial rounds of 
resistant strain evolution with vaccine development playing catch up in the evolutionary arms 
race against novel strains. 
 
The results of our model provide several qualitative implications for the strategy forward in the 
months of vaccination. In our model, the probability of emergence of a resistant strain in one 
individual per day was in the range of 10 ​-5​ to 10 ​-8​ for a population of 10 ​7 ​individuals. For the 
entire human population of ~10 ​10​ that probability would be 10 ​-8​ to 10 ​-11​, which does not seem 
improbably large. As of February 2021, ~10 ​9​ individuals have been infected by SARS-CoV-2 
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[​53 ​] with an average 14 days of sickness per individual ​54​, so >10 ​10​ number of total days of 
infected individuals. Furthermore, highly mutated strains may emerge as a result of long 
shedding in immunocompromised individuals, a rare but realistic scenario ​55–57​. Taken together, 
the emergence of a partially or fully vaccine-resistant strain and its eventual establishment 
appears inevitable. However, as vaccination needs to be ahead of the spread of such strains in 
similar ways to influenza ​25​, it is necessary to reduce the probability of establishment by a 
targeted effort to reduce the virus transmission rate towards the end of the vaccination period 
before the current vaccines become ineffective. Conversely, lack of non-pharmaceutical 
interventions at that time can increase the probability of establishment of vaccine-resistant 
strains. For example, plans to vaccinate individuals with a high risk of a fatal disease outcome 
followed by a drive to reach herd immunity while in uncontrolled transmission among the rest of 
the population is likely to greatly increase the probability that a resistant strain is established, 
annulling the initial vaccination effort. Another potential risk factor may be the reversion of 
vaccinated individuals to pre-pandemic behaviours that can drive the initial spread of the 
resistant strain. 
 
One simple specific recommendation is to keep transmission low even when a large fraction of 
the population has been vaccinated by implementing acute non-pharmaceutical interventions 
(i.e. a strict lockdown) for a reasonable period of time, to allow emergent lineages of resistant 
strains to go extinct through stochastic genetic drift. Additional factors that may make these 
measures even more effective are: (i) increased and widespread testing, (ii) rigorous contact 
tracing, (iii) high rate of viral sequencing of positive cases​52,58​ and (iv) travel restrictions. Finally, 
while our model formally considers only one homogenous population, our data also suggest that 
delays in vaccination in some countries relative to others will make the global emergence of a 
vaccine-resistant strain more likely. Thus, a truly global vaccination effort may be necessary to 
reduce the chances of a global spread of a resistant strain. 
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Figures and Figure Legends 

 

 
 
Fig. 1. The states, transition parameters and dynamics. ​ ​a, ​States are shown in circles and 
transition parameters in squares. The transition parameter, μ, is the rate at which individuals 
lose natural immunity and ​p​, is the probability that an individual infected with the wildtype strain 
transmits a resistant strain, so it is not a deterministic parameter. Example dynamics of the 
number of individuals infected with the wildtype (blue) and resistant strains (red) for p = 10 ​-6​, θ ​0 
= 1/365 and F = 15000. The period of vaccination is highlighted (green). Under the same 
parameters the resistant strain may emerge and go extinct, ​b​, or become established, ​c​. 
 

6 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.21251383doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.08.21251383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Fig. 2. Impact of the rate of vaccination and initiation of low rate of transmission on 
model dynamics. ​The cumulative death rate from the ​a​, wildtype and ​b, ​resistant strains, ​c​, the 
number of wildtype-strain infected individuals at t​v60​, the point in time when 60% of the 
population is vaccinated and ​d​, the probability of resistant strain establishment, for p=10 ​-6​. ​e ​, 
The probability of emergence of the resistant strain as a function of the probability of 
emergence, p, in the parameter ranges of θ and F indicated in corresponding colour boxes in ​d​. 
f, ​The average number of times of 8x10 ​6​ simulation runs during which a resistant strain emerges 
(black) or goes extinct (grey) during periods of low (β ​l ​) or high (β ​h​) transmission for p = 10 ​-6​.​ g, ​ A 
resistant strain was never observed to establish during periods of low transmission (β ​l ​) for p = 
10 ​-6​. 
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Fig. 3. Time of initial emergence of a resistant strain that has become established. 
Probability density that the resistant strain emerges as a function of time since the start of the 
simulation, ​t​, rescaled by the time at which 60% of the individuals are vaccinated, ​t​v60​, averaged 
across simulations with θ (0.001 through 0.015), F (2,000 through 20,000) and p = 10 ​-6​. Without 
any extraordinary periods of low transmission (blue line) the peak of the likelihood of emergence 
of a new strain is at ​t​/​t ​V60​ = 1. The likelihood of emergence of a resistant strain can be reduced 
by an extraordinary period of low transmission centered at ​t​/​t ​v60​ = 1 with a stronger reduction 
when such period is longer, T (colour-coded), or when the rate of transmission is more strongly 
reduced ​a​, β ​l ​ = 0.055, ​b ​, β ​l ​ = 0.03, ​c ​,​ ​β ​l ​ = 0.01.  
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Extended Data Figures and Legends 
 

 
Extended Data Fig. 1 Impact of the rate of vaccination and initiation of low rate of 
transmission on model dynamics for p = 10 ​-5​. ​The cumulative death rate from the ​a​, wildtype 
and ​b, ​resistant strains, ​c​, the number of wildtype-strain infected individuals at t​v60​, the point in 
time when 60% of the population is vaccinated and ​d​, the probability of resistant strain 
establishment. ​e-g,​ Probability density that the resistant strain emerges as a function of time 
since the start of the simulation, ​t​, rescaled by the time at which 60% of the individuals are 
vaccinated, ​t​v60​, summed across simulations with θ (0.001 through 0.015), F (2,000 through 
20,000). The impact of the extraordinary low transmission period centered at  ​t​/​t ​v60​ = 1 on the 
likelihood of emergence of the resistant strain as a function of the duration of that period, T 
(colour-coded), and the intensity of the reduction of transmission ​e​, β ​l ​ = 0.055, ​f ​, β ​l ​ = 0.03, ​g ​,​ ​β ​l 
= 0.01.  
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Extended Data Fig. 2 Impact of the rate of vaccination and initiation of low rate of 
transmission on model dynamics for p = 10 ​-7​. ​The cumulative death rate from the ​a​, wildtype 
and ​b, ​resistant strains, ​c​, the number of wildtype-strain infected individuals at t​v60​, the point in 
time when 60% of the population is vaccinated and ​d​, the probability of resistant strain 
establishment. ​e-g, ​Probability density that the resistant strain emerges as a function of time 
since the start of the simulation, ​t​, rescaled by the time at which 60% of the individuals are 
vaccinated, ​t​v60​, summed across simulations with θ (0.001 through 0.015), F (2,000 through 
20,000). The impact of the extraordinary low transmission period centered at  ​t​/​t ​v60​ = 1 on the 
likelihood of emergence of the resistant strain as a function of the duration of that period, T 
(colour-coded), and the intensity of the reduction of transmission ​e​, β ​l ​ = 0.055, ​f ​, β ​l ​ = 0.03, ​g ​,​ ​β ​l 
= 0.01.  
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Extended Data Fig. 3 Impact of the rate of vaccination and initiation of low rate of 
transmission on model dynamics for p = 10 ​-8​. ​The cumulative death rate from the ​a​, wildtype 
and ​b, ​resistant strains, ​c​, the number of wildtype-strain infected individuals at t​v60​, the point in 
time when 60% of the population is vaccinated and ​d​, the probability of resistant strain 
establishment. ​e-g,​ Probability density that the resistant strain emerges as a function of time 
since the start of the simulation, ​t​, rescaled by the time at which 60% of the individuals are 
vaccinated, ​t​v60​, summed across simulations with θ (0.001 through 0.015), F (2,000 through 
20,000). The impact of the extraordinary low transmission period centered at  ​t​/​t ​v60​ = 1 on the 
likelihood of emergence of the resistant strain as a function of the duration of that period, T 
(colour-coded), and the intensity of the reduction of transmission ​e​, β ​l ​ = 0.055, ​f ​, β ​l ​ = 0.03, ​g ​,​ ​β ​l 
= 0.01.  
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Extended Data Fig. 4 The probability of establishment of the resistant strain for p = 10 ​-5​. 
The influence of low transmission period centered at ​t​/​t ​v60​ = 1 on probability of establishment of 
the resistant strain as a function of the duration of that period, T, and the intensity of the 
reduction of transmission, β. 
  

 
Extended Data Fig. 5 The probability of establishment of the resistant strain for p = 10 ​-6​. 
The influence of low transmission period centered at ​t​/​t ​v60​ = 1 on probability of establishment of 
the resistant strain as a function of the duration of that period, T, and the intensity of the 
reduction of transmission, β. 
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Extended Data Fig. 6 The probability of establishment of the resistant strain for p = 10 ​-7​. 
The influence of low transmission period centered at ​t​/​t ​v60​ = 1 on probability of establishment of 
the resistant strain as a function of the duration of that period, T, and the intensity of the 
reduction of transmission, β. 
 

 
Extended Data Fig. 7 The probability of establishment of the resistant strain for p = 10 ​-8​. 
The influence of low transmission period centered at ​t​/​t ​v60​ = 1 on probability of establishment of 
the resistant strain as a function of the duration of that period, T, and the intensity of the 
reduction of transmission, β. 
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Methods

Our extension of the SIR Model features 8 distinct states. Susceptible, S, and recovered, R, individuals
are vaccinated over time to become vaccinated, V , or recovered vaccinated, RV . Susceptible individuals
can become infected with the wildtype, Iwt, or the resistant virus strain, Ir. While the vaccinated
population is immune against the wildtype, it can be a target to the resistant strain, IVr . After a while
any infected individual recovers or dies, D. Finally, we assume that the recovered population retains
natural immunity towards both strains, but becomes susceptible again with some small rate, µ. In our
model, immunity against the wildtype strain gained through vaccination is not lost during the entire
model period of 3 years.
The total number of individuals, N , in the population remains constant at 10,000,000.

S + Iwt + Ir + IVr +R+RV +D + V = N (eq.2)

In the limit of large population sizes, the full dynamics without mutations can be described by the
following set of differential equations.

Ṡ = µR− θ(t)S − β(t)(Iwt + Ir + IVr )S (eq.3)

˙Iwt = −(γ + δ)Iwt + β(t)SIwt (eq.4)

İr = −(γ + δ)Ir + β(t)S(Ir + IVr ) (eq.5)

˙IVr = −(γ + δ)IVr + β(t)V (Ir + IVr ) (eq.6)

Ṙ = −µR− θ(t)R+ γ(Iwt + Ir) (eq.7)

ṘV = −µRV + θ(t)R+ γIVr (eq.8)

Ḋ = δ(Iwt + Ir + IVr ) (eq.9)

V̇ = µRV + θ(t)S − β(t)IrV (eq.10)

Or Ẋ = P̂X, with X = (S, Iwt, Ir, I
V
r , R,R

V , D, V )T

P̂ =



−θ(t) −β(t)S −β(t)S −β(t)S µ 0 0 0
β(t)Iwt −(γ + δ) 0 0 0 0 0 0
β(t)Ir 0 −(γ + δ) β(t)S 0 0 0 0

0 0 β(t)V −(γ + δ) 0 0 0 β(t)IVr
0 γ γ 0 −(µ+ θ(t)) 0 0 0
0 0 0 γ θ(t) −µ 0 0
0 δ δ δ 0 0 0 0
θ(t) 0 −β(t)V 0 0 µ 0 0


(eq.11)

The dynamics are influenced by the following constant parameters: the recovery rate, γ, the death
rate, δ, and the rate at which natural immunity is lost, µ. Additionally we introduce a time dependent
transmission rate β(t) and a function θ(t), which controls the speed of vaccination.

Time Dependent Transmission Rate β(t) switches between high and low transmission rates27,28,38,39.
The model begins with a period of a high rate of transmission, βh/N . A low transmission rate, βl/N , is
initiated when the fraction of individuals infected with any strain, I = (Iwt + Ir + IVr ), reaches the value
of F . Transition from a period of low to high transmission occurs when I = 1000.

Vaccination Vaccination is modelled as a mostly linear function with saturation. h denotes the
number of individuals in the population that are never vaccinated. A maximum of N − h individuals
can be vaccinated at the end of the vaccination program. The constant k controls the saturation of
the vaccination speed once the number of susceptible individuals is significantly depleted. The state
dependent vaccination speed θ(t) is given as:

θ(t) =

(
1− h

S(t) +R(t) + Iwt(t) + Ir(t)

)
· θ0
S(t) +R(t) + k

, (eq.12)

where θ0 can take different values and h and k are chosen to be small (see Extended Data Table 1).
Integration Method The deterministic differential equations eq.11 were numerically solved using

an Euler Forward Integration Scheme, with time step ∆t, measured in days.
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Resistant Strain Each day and for every Iwt individual, there is a small probability p, that a
vaccine-resistant strain emerges in that individual. Then this individual switches from state Iwt to state
Ir. Conversely, any Ir individual can revert back to the wildtype strain population Iwt with the same
probability p. Each time step the number of mutations is drawn from a Poisson distribution with mean
∆tpIwt, for mutations to the resistant strain, or ∆tpIr, for mutations to the wildtype strain.

Stochastic and Deterministic Regimes The population dynamics of a rare variant is an inher-
ently stochastic process42,43. We can formally treat the spread of a disease in our model as a stochastic
birth-death process. In the following we illustrate this with the number of wildtype infections Iwt as an
example. In each infinitesimally small time step dt, there is a probability βSIwtdt, that the wildtype
population Iwt grows by 1, Iwt → Iwt + 1, while the susceptible population is decreased, S → S − 1.
Similarly, with probability (γ+δ)Iwtdt, Iwt is reduced by 1, Iwt → Iwt−1, while the number of recovered
or dead grows by 1. We carefully model small populations, Iwt < N∗, using a stochastic Tau-Leaping
Algorithm44. We choose a fixed time step size τ , that is equal to the time step of the Euler Integrator
∆t. For very small Iwt Tau Leaping Algorithm can produce negative population59. This stems from the
fact, that the number of events K that occur in time τ is drawn from a Poisson Distribution, that always
assigns a non-zero probability for any K > Iwt. We reduce the chances of such a scenario, by solving the
exact SSA Gillespie Algorithm for very small Iwt that is below a critical size Nc

44.
For large Iwt, larger than some N∗, this stochastic process can by approximated with the limiting dif-
ferential eq.4 and an Euler Integration Scheme. Once Iwt ≥ N∗, we consider that the resistant strain of
the virus is established in the population and we continue modelling it using the deterministic equation10.

Parallel Evaluation Of Deterministic And Stochastic Variables In our model we can then
evaluate deterministic and the stochastic dynamics in parallel. While small populations of infected indi-
viduals are treated as stochastic, other variables, such as the number of susceptible individuals, S, are
evaluated within the deterministic regime. While the infection numbers of the wildtype or the emergent
strain are in the stochastic regime (< N∗), the corresponding terms that contain the wildtype infections
Iwt or the emergent infections Ir & IVr are removed from the deterministic rate equations. When Iwt
or Ir + IVr grows above the threshold value N∗, the corresponding population of infected individuals is
treated as deterministic.

Sources of Errors Finally, we discuss some sources of errors in our simulation: (1) Depending on
the time step ∆t the Euler Integration Scheme is not exact. In most of our simulations, we choose a time
step of one day, ∆t = 1d. (2) Using the deterministic rate equations for the infection numbers in eq.11 is
an approximation to the exact stochastic dynamics given by a birth-death model. The quality of this ap-
proximation is given by the threshold value N∗. In our model we use a threshold of N∗ = 1000. (3) When
Iwt or Ir + IVr trespasses the threshold N∗ from above, the populations of infected individuals changes
from being treated as a real number (the mean field average) to being treated as a natural number. We
truncate the mean field average with a floor function and treat the remainder as part of the recovered
population, Iwt → bIwtc & R→ R+ Iwt − bIwtc. (4) The Tau Leaping algorithm is an approximation to
the exact SSA Gillespie Algorithm, that allows faster evaluation with a constant step size τ . Increasing
the threshold value Nc increases the accuracy of the model (Supplementary Figure 1). (5) As discussed
above, it can rarely happen that a population of infected individuals drops below 0 in one leap. If this
happens we disregard the draw and redraw from the same Poisson distribution. (6) Finally, while the time
step of the deterministic model ∆t and τ are chosen to be equal, for population sizes above Nc, the SSA
algorithm acts on exponentially distributed waiting times τSSA between reactions44. This introduces er-
rors, if τSSA � ∆t, because the interaction rates may change, while we wait for the next reaction to occur.

In order to determine a range of acceptable values of Nc, we ran our simulation for a period of T = 200
days, initially loading the system with Iwt = 200 wildtype carriers. For multiple values of Nc and no
mutations, we compared the results of disease survival with the analytical solution derived for the birth
death process,

P (Iwt(T ) = 0) = 1−
(

(δ + γ)e(δ+γ−β)T − γ − δ
(δ + γ)e(δ+γ−β)T − β

)Iwt(0)

. (eq.13)

We pick Nc = 100 days, which gives us a reasonably small error.
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Supplementary Figure 1: Shown is the fraction of surviving strains after T = 200 days in 107 runs,
first initialized with Iwt = 200 infected individuals. The red dashed line shows the expected fraction of
surviving strains, as computed with eq.13. The stochastic algorithm becomes exact, if no Tau Leaping
is employed and instead the whole simulation is evaluated using the Gillespie SSA scheme.

Assumptions and Choice of Parameters

The model is run for a total time of three years, with vaccination starting one year into the model. We
assume that the wildtype and emergent strains have the same infectivity (β is the same for both strains).
We assume that infection by any one strain provides immunity to both, reflecting that many vaccines
carry only the Spike protein of the SARS-CoV-2 virus and it may be easier to escape immunity provided
by the vaccine than the immunity provided by infection. We also assume that the immune response
provided by the vaccine is more permanent and that immunity provided by infection, µ, decays in 0.5
years13,60 after recovery. Both of these assumptions influence the model when the number of infected
individuals becomes large, which is unlikely for realistic average rates of transmission across the simulated
time.

We assume that susceptible and recovered individuals have an equal chance to be vaccinated, θ0. We
also assume that the infection-recovery rate, γ, and infection-fatality rate, δ are the same for the wildtype
and mutated strains.

We regulate the rates of transmission exogenously in the model, with the rate of transmission (β)
switching between a high rate, βh and a low rate, βl, when the total number of individuals infected with
either strain reaches a threshold parameter. This threshold parameter, F , simultaneously reflects the
impact of all non-pharmaceutical interventions and behavioural changes of individuals. We operate under
the assumption that vaccine efficacy not only impacts disease manifestation but also blocks transmission
at the same rate, which is a reasonable assumption based on previous vaccine performance but has not
yet been demonstrated.

In Extended Data Table 1 we present the choice of parameters for the model, the ones that were
constant and those that were varied, including their boundaries.

Parameter Value Comments
Fixed parameters

Population size, N 10,000,000 individuals
Cut-off for stochastic mode, N∗ 1000
Cut-off for Gillespie algorithm, Nc 100
Recovery rate, γ 0.99*1/14 Average disease duration 14 days54

Death rate, δ 0.01*1/14 Infection-fatality rate is 1%61,62,63

Loss of immunity rate, µ 1/180 On average in 180 days64,65

Share of non-vaccinated, h 0.01 1% of population
Saturation parameter, k 0.01
Transmission rate, β = {βl, βh} {0.055, 0.18} R0 = {0.77, 2.52} 39,40,41

Bound for initiation of high transmission 1,000 individuals
Varying parameters

Bound for initiation of low transmission, F 2,000 to 20,000 individuals
Probability of emergence of resistant
strain, p

1e-8 to 1e-5 Daily for every infected

Vaccination speed, θ0 0.001 to 0.015 0.1% to 1.5% daily

Extended Data Table 1: Model Parameters
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