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Abstract 
Parkinson’s disease (PD) is a complex neurodegenerative disorder. Males are on average 
~1.5 times more likely to develop PD compared to females. Over the years genome-wide 
association studies (GWAS) have identified numerous genetic risk factors for PD, however it 
is unclear whether genetics contribute to disease etiology in a sex-specific manner. 
 
In an effort to study sex-specific genetic factors associated with PD, we explored two large 
genetic datasets from the International Parkinson’s Disease Genomics Consortium and the 
UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male 
controls, 7,947 female PD cases, 5,473 maternal proxy cases and 90,662 female controls. 
We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing 
to disease in male versus female PD cases.  
In total 19 genome-wide significant regions were identified, and no sex-specific effects were 
observed. A high genetic correlation between the male and female PD GWASes was 
identified (rg=0.877) and heritability estimates were identical between male and female PD 
cases (~20%). 
 
We did not detect any significant genetic differences between male or female PD cases. Our 
study does not support the notion that common genetic variation on the autosomes could 
explain the difference in prevalence of PD between males and females at least when 
considering the current sample size under study. Further studies are warranted to 
investigate the genetic architecture of PD explained by X and Y chromosomes and further 
evaluate environmental effects that could potentially contribute to PD etiology in male versus 
females. 
 

Introduction 
Parkinson’s disease (PD) is an age-related, progressive neurodegenerative disorder. On 
average males are ~1.5 times more likely to develop PD compared to females (Moisan et al. 
2016). The reasons for the increased risk in males (relative to females) is not well 
understood. Possible explanations might include different degrees of exposure to 
environmental risk factors (such as pesticides and heavy metals), putative risk and 
protective factors (head trauma, caffeine and urate), the influence of sex-specific hormones, 
differential aging and life expectancy, or potential genetic factors, either linked or 
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independent of these other factors (Nandipati and Litvan 2016; Gao et al. 2016; Ascherio et 
al. 2004; Taylor, Cook, and Counsell 2007). 
There are also differences in the clinical presentation of PD by sex, female patients are more 
likely to experience dyskinesia and a slower decline in performance of activities of daily 
living, while it has been shown that male patients have a higher risk of developing cognitive 
impairment (Iwaki et al. 2020). Symptoms that present into the earliest phases of PD also 
differ by sex; REM sleep behaviour disorder (RBD) is much more common in males, and 
depression and anxiety appear to be more common in females (Postuma et al. 2019; Shiba 
et al. 2000). PD is a genetically complex disease, with a substantial genetic component 
explained by rare and common variants (Blauwendraat, Nalls, and Singleton 2020). Several 
large case-control genome-wide association studies (GWAS) have been performed, the 
most recent of which identified 92 risk signals across 78 loci (Nalls et al. 2019; Foo et al. 
2020). Over the last twenty years we have gained a great deal of insight into the genetic 
architecture and etiology of PD and this now serves as the basis for several therapeutic 
approaches. However, the interplay between sex and genetics in PD has not been broadly 
investigated and it is currently unknown whether the genetic risk varies between males and 
females. Here we investigate whether there is a difference in the genetic architecture of 
autosomal risk according to genetic sex using multiple large case-control cohorts. 
 

Methods 
International Parkinson’s Disease Genomics Consortium data 
Genotyping data, all derived from Illumina platform based genotyping, was obtained from 
members of the International Parkinson’s Disease Genomics Consortium (IPDGC), 
collaborators, and publicly available datasets (Supplementary Table 1). All PD cases were 
diagnosed using standard UK Brain bank or the MDS criteria (Postuma et al. 2015; Gibb and 
Lees 1988). Control participants were excluded if they had any known neurological disease. 
All datasets underwent quality control separately, both on individual-level data and variant-
level data, before imputation was performed as previously described (Nalls et al. 2019; 
Blauwendraat et al. 2019). Quality control steps included: relatedness filtering 
(PIHAT>0.125, at the level of first cousin one random individual was removed from each 
pair), removal of genetic ancestry outliers departing 6 standard deviations from the 
European CEU/TSI HapMap3 populations, removal of samples with call rates <95% and 
whose genetically determined sex from X-chromosome did not match that from clinical data, 
as well as samples exhibiting excess heterozygosity estimated by an F-statistic > +/- 0.15. 
The quality control process and underlying scripts for filtering can be found at 
https://github.com/neurogenetics/GWAS-pipeline. Filtered genotype data was imputed using 
the Michigan imputation server with the Haplotype Reference Consortium reference panel 
r1.1 2016 under default settings with phasing using the EAGLE option (Das et al. 2016; 
McCarthy et al. 2016). For GWAS analyses, variants passing the post-imputation quality 
criteria of R2 > 0.3 and minor allele frequency (MAF) > 1% were included. Data was split into 
male and female datasets based on genetic sex. Sex specific case-control GWAS were 
performed using RVTESTS (v20190205) under default settings (Zhan et al. 2016) using 
logistic regression on genotype dosages adjusted for the following covariates: age at onset 
for cases and age of last examination for controls (for a small subset age was not available 
and missing values were imputed with the mean value using --imputeCov), principal 
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components (PC) 1-5 to account for population stratification, and dataset origin. Age was not 
included in three datasets due to missing data (MF, VANCE) or co-linearity (FINLAND). PCs 
were calculated from non-imputed genotype data using FlashPCA (v2.0) (Abraham, Qiu, and 
Inouye 2017). 
 
UK Biobank data 
Imputed UK Biobank (UKB) genotype data (v3) was downloaded (April 2018) under 
application number 33601 (Sudlow et al. 2015; Bycroft et al. 2018). PD cases were identified 
using data fields 42032 and 42033. “Proxy” PD cases were included as part of the analyses, 
considering individuals who reported a parent affected with PD (paternal PD, data field 
20107 and maternal PD, data field 20110) since it has been previously shown to share 
genetic risk with PD cases (Nalls et al. 2019). Controls were set as people with no report of 
PD and no parent affected with PD and with an age of recruitment over 60 (data field 
21022). Covariates were obtained from the data fields: age of recruitment (data field 21022) 
and Townsend index (data field 189). Individuals were filtered for relatedness (PIHAT>0.125, 
at the level of first cousin one random individual was removed from each pair) based on the 
pre-imputed genotype data using GCTA (Yang et al. 2011). Only European ancestry 
individuals were included from data field 22006. Imputed genotypes were converted to 
PLINK2 .pgen files using PLINK2 (version v2.00a2LM) (Chang et al. 2015) and filtered for 

missingness (removing samples with variant missingness >0.1 and MAF <0.01), Hardy-

Weinberg equilibrium of P ≥1E-6 and imputation quality (R2 > 0.8). GWAS was performed 

using PLINK2 logistic regression with covariates including age of recruitment, Townsend 
index, and 5 PCs generated by FlashPCA to account for population substructure (Abraham, 
Qiu, and Inouye 2017). Four GWAS were performed in the UKB data 1) Male PD cases vs 
male controls, 2) Female PD cases vs female controls, 3) Subjects with a father affected 
with PD vs controls and 4) Subjects with a mother affected with PD vs controls 
(Supplementary Table 1). Proxy conversion was performed as previously described (Liu, 
Erlich, and Pickrell 2017).  
 
Additional analyses 
Post GWAS quality control was applied to remove variants with a MAF <1%, unrealistic beta 
values for GWAS (>5 or <-5), and multi-allelic variants. Sex-specific meta-analyses were 
performed using METAL v2018-08-28 under default settings (Willer, Li, and Abecasis 2010). 
Post GWAS meta-analysis, the following filtering steps were further applied: variants present 
in at least 13 out of the 19 datasets and displaying an I2 heterogeneity value of <80 were 
included. LD Score regression (LDSC) was performed to calculate the genetic correlation 
between summary statistics (Bulik-Sullivan et al. 2015).To assess differences in the 
magnitude of associations between males and females heterogeneity tests performed. 
Additionally, genetic heritability was calculated excluding the UKB proxies for males and 
females separately. All figures and statistical calculations were created and performed using 
R (v4.0.3) or Python (v3.7). The genetic risk score was estimated using IPDGC data, and 
Nalls et al. 2019 as the reference dataset to define risk-weighted alleles. Locus numbering 
was obtained as previously described (Grenn et al. 2020). Large effect size variants from the 
GBA and LRRK2 regions were excluded (rs76763715, rs35749011, rs34637584, 
rs114138760).  
 
Data and code availability 
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All summary statistics are available at https://pdgenetics.org/resources. Six summary 
statistics tables are made available: 1) Male PD GWAS (all data), 2) Female PD GWAS (all 
data), 3) Male PD GWAS (no UKB proxy data), 4) Female PD GWAS (no UKB proxy data), 
5) Male PD GWAS (no UKB data) and 6) Female PD GWAS (no UKB data). All code used 
has been made available on GitHub: https://github.com/neurogenetics/Autosomal-sex-
differences-PDv2.  
 

Results 
Initial data overview 
After quality control, we included 13,020 male PD cases, 7,936 paternal proxies, 89,660 
male controls, 7,947 female PD cases, 5,473 maternal proxies and 90,662 female controls 
totalling 214,698 individuals (Supplementary Table 1). The odds ratio for PD in males versus 
females (excluding proxies) was 1.72 (95% CI 1.66-1.78). Meta-analyses at MAF > 1%, 
variant present at least 13 out of the 19 datasets and displaying an I2 heterogeneity value of 
<80 resulted in 7,153,507 variants passing quality control for males and 7,141,404 variants 
for females. No evidence of genomic inflation was observed, with Lambda 1000 and LDSC 
intercept values of 1.0013 and 0.9548 (SE=0.0077) for male PD GWAS and 1.0008 and 
0.9516 (SE=0.0077) for female PD GWAS (Supplementary Figure 1 and 2). In total, 14 and 
13 genomic regions reached genome-wide significance in the male and female GWAS meta-
analyses respectively, of which 8 were identified in both and 11 were only genome-wide 
significant in either GWAS. However, all these 11 genomic regions show significant signals 
at P >1E-4, similar effect sizes and overlapping 95% CIs of regression coefficients (Figure 
1). As expected and previously reported in the largest PD GWAS meta-analysis (Nalls et al., 
2019), the SNCA and MAPT loci were the main significant hits in both the male and female 
specific GWAS (Figure 1), where the top SNCA variant was rs356182; (PD_male: P=3.47E-
44, beta=0.256, SE=0.0184; PD_female: P=1.41E-25, beta=0.219, SE=0.0209) and top 
MAPT variant was rs75010486; (PD_male: P=1.48E-32, beta=0.244, SE=0.0206; 
PD_female: P=5.02E-29, beta=0.268, SE=0.0239). 
 
Comparing Parkinson’s disease risk signals between males and females 
To identify potential genetic differences in risk for PD we performed four main analyses, 1) a 
genome-wide LDSC correlation between male and female specific summary statistics, 2) an 
analysis of whether the known cumulative genetic risk score was different between males 
and females, 3) an assessment of whether the known PD risk variants from Nalls et al 2019 
were affecting males and females differently and 4) an investigation for potential novel sex-
specific assocations in male and female specific summary statistics. The genome-wide 
correlation using LDSC resulted in a very high genetic correlation between the male and 
female PD GWASes (rg=0.877, SE=0.0699) which was highly significant at a P=4.24E-36. 
This shows that on an autosomal genetic level, PD risk is similar between males and 
females much like how it is similar between self-reported, clinically diagnosed and family 
history defined cases with genetic correlations at 84% or more as shown in Nalls et al., 2019 
when comparing IPDGC (clinically diagnosed) summary statistics with 23andMe data 
(mostly self-reported) (rg=0.85) or UK Biobank (rg=0.84) (family history defined cases). 
Heritability estimates (excluding UKB proxies) were similar between males and females 
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(h2_male: 0.2077 (SE=0.0238), h2_female: 0.1857 (SE=0.0304) as expected based on 
previous estimates. 
Next, we tested whether there was a difference of cumulative genetic risk score, based on 
known GWAS hits and using weights from Nalls et al 2019, between male and female PD 
cases using the IPDGC data. Each cohort was analyzed separately and results were meta-
analyzed. Meta-analysis showed that there was no difference between the cumulative 
genetic risk score in males and females with PD, P=0.572 (Figure 2). Subsequently, we 
investigated whether any of the known GWAS risk signals were associated with PD 
differently between males and females cases. Out of the 90 independent risk signals from 
the most recent PD GWAS (Nalls et al. 2019), 85 were present in the sex-specific GWAS 
summary statistics. An almost perfect correlation was observed between the effect sizes of 
the sex-specific GWASes for these 85 variants (Pearson correlation R2 > 0.95) (Figure 3 
and Supplementary Table 2). Similarly, high correlations were found comparing effect sizes 
between male PD GWAS and Nalls et al. 2019 (>0.98) and females and Nalls et al. 2019 
(>0.96). Minor differences were observed in some instances. For example, the GALC 
genomic region (locus 58, rs979812) showed slight differences in magnitude of effect in 
males versus females; PD_male P=0.06462, beta=0.031, SE=0.0168; PD_female P=3.07E-
06, beta=0.0895, SE=0.0192 and P_difference=0.0218. However, none of these were not 
passing multiple test corrections (Supplementary Table 2). 
Finally, we investigated the full summary statistics to identify potential sex specific hits that 
have not been identified yet as PD GWAS risk signals. All variants passing P<5.0E-8 from 
the male PD GWAS were extracted and compared to the summary statistics of the female 
PD GWAS and vice versa. When plotting the effect sizes of these variants, no differences 
were observed between male PD GWAS and female PD GWAS effect sizes of variants 
passing P<5.0E-8 (Supplementary Figure 3 and 4).  

Discussion 
Males are ~1.5x more likely to develop PD compared to females. Here we assessed whether 
an autosomal genetic difference explains these differences by performing GWAS using 
several large case-control datasets and separating these by males and females. Overall, 
based on the results presented here, we could not identify that autosomal genetics 
contributes to the difference of observed prevalence between males and females. As 
expected the results from the sex-specific GWASes are highly similar to previous PD GWAS 
and in particular to the PD GWAS from 2011 with a very similar sample size (15K cases) 
(International Parkinson’s Disease Genomics Consortium (IPDGC) and Wellcome Trust 
Case Control Consortium 2 (WTCCC2) 2011).  
 
The question of what actually causes the difference in prevalence will need to be further 
evaluated. One possibility is genetic variation on the sex chromosomes. Chromosome X 
contains approximately 850 genes and chromosome Y approximately 70 genes and account 
for ~5% and ~2% of the human genome size respectively. While there is ongoing work in 
this area, thus far, no association has been found that can explain the significant 
overrepresentation of male PD patients (Guen et al., n.d.). Given that chromosome Y is only 
present in males, it could be a good candidate for increased risk. Currently no large genetic 
association studies have been performed to investigate if certain chromosome Y haplotypes 
are overrepresented in cases versus controls. There are reports stating that certain Y 
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chromosome genes show male-specific effects for potential dopaminergic loss (Lee et al. 
2019). Besides the differences in sex chromosomes in males and females, there are several 
other not directly assessed here that may likely contribute to sex differences in PD including 
1) differences in gene expression in cells and tissues on both autosomes and sex 
chromosomes (Oliva et al. 2020; Trabzuni et al. 2013), 2) hormone production and 3) the 
environment including for example smoking behaviour (Heilbron et al., n.d.). All these 
possibilities need to be studied further with a specific focus on PD. 
 
As for any GWAS study, there are limitations. First, due to the study design, we can only 
investigate common variants that are present in the imputation panels, meaning that we 
cannot investigate rare variants and structural variation. Second, given that the majority of 
the data included in this study was also used in the discovery of the known 90 risk variants 
from Nalls et al 2019 and sex was used as a covariate in that analysis, it is not suprising that 
there is a high correlation of effect sizes between the male and female specific GWAS 
results from Figure 3 due to circularity. However, by using a more unbiased approach in 
Supplementary Figure 3 and 4 no differences in effect sizes were identified for any genome-
wide significant hits from the sex-specific GWASes. Third, although we included a very large 
number of cases and controls, there could be small effect size variants that play a role in 
disease, not currently detected due to lack of statistical power.  
 
Overall, here we provide evidence that there are no male or female specific PD GWAS hits 
and that the difference in prevalence of PD between males and females cannot be explained 
by common genetics on the autosomes at least when considering the current sample size 
under study. Further studies are warranted to investigate the genetic architecture of PD 
explained by the sex chromosomes and further evaluate environmental effects that could 
potentially contribute to PD etiology in male versus females. 
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Figures 
Figure 1: Mirror Manhattan plot of male and female specific Parkinson’s disease GWAS. On 
the top Male PD GWAS, and bottom Female PD GWAS. Red line indicates the -log10 P-
value genome-wide significant threshold of 5E-8. Green dots indicate variants passing 
genome-wide significance. Signals are annotated based on the closest gene from (Nalls et 
al. 2019). Figure made using the Hudson Plot Package (Anastasia Lucas, 2020). 
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Figure 2: Meta-analysis of the genetic risk score vs male/female status shows no difference 
between “genetic load” of Parkinson’s disease associated risk. Red diamond indicates the 
effect estimate (odds ratio) and 95% confidence interval of the aggregate result. 
 

 
 
 
Figure 3: Beta-beta plot of (Nalls et al. 2019) genome wide significant risk signals. Very high 
correlation (Pearson correlation R2 > 0.95) is observed between effect sizes from the male 
and female specific GWASes. Additional details can be found in Supplementary Table 2. 
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Supplementary Tables 
 
Supplementary Table 1: Overview of included data 
 
Supplementary Table 2: Summary statistics of the genome wide signals from Nalls et al., 
2019 
 
Supplementary Figures 
 
Supplementary Figure 1: Quantile-quantile plot of male PD GWAS showing very limited 
population stratification. 
 
Supplementary Figure 2: Quantile-quantile plot of female PD GWAS showing very limited 
population stratification. 
 
Supplementary Figure 3: Effect sizes of the male PD GWAS hits passing genome wide 
significance plotted versus matching female PD GWAS effect sizes. 
 
Supplementary Figure 4: Effect sizes of the female PD GWAS hits passing genome wide 
significance plotted versus matching male PD GWAS effect sizes. 
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