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Equations for infection spread in a closed population are found in discrete approximation, corre-
sponding to the published statistical data, and in continuous time in the form of delay differential
equations. We consider the epidemic as dependent upon four key parameters: the size of population
involved, the mean number of dangerous contacts of one infected person per day, the probability
to transmit infection due to such contact and the mean duration of disease. In the simplest case
of free-running epidemic in an infinite population, the number of infected rises exponentially day
by day. Here we show the model for epidemic process in a closed population, constrained by iso-
lation, treatment and so on. The four parameters introduced here have the clear sense and are
in association with the well-known concept of reproduction number in the continuous susceptible–
infectious–removed, susceptible–exposed–infectious–removed (SIR, SEIR) models. We derive the
initial rate of infection spread from the published statistical data for the initial stage of epidemic,
when the quarantine measures were absent. On this basis, we can found the corresponding basic
reproduction number mentioned above. Our approach allows evaluating the influence of quarantine
measures on free pandemic process that leads to the time-dependent rate of infection and suppres-
sion of infection. We found a good correspondence of the theory and reliable statistical data. The
initially formulated discrete model, describing epidemic course day by day is transferred to differ-
ential form. The conditions for saturation of epidemic are found by solving the delay differential
equations. They differ essentially from ones in SIR model due to finite delay, typical for COVID-
19. The proposed model opens up the possibility to predict the optimal level of social quarantine
measures. The model is quite flexible and it can be extended to more complex cases.

PACS number(s): 02.50.-r, 05.60.-k, 82.39.-k, 87.19.Xx

I. INTRODUCTION

The appearance of a new virus in China at the end of
2019 has been recognized by the World Health Organi-
zation (WHO) as a pandemic in March 11, 2020. This
virus named SARS-CoV-2 (causing COVID-19 disease)
to the moment infected 25 millions of people and almost
1 million of deaths over the world. High mortality re-
quired introduction of essential quarantine measures to
confront pandemic and to reduce victims. The strong
quarantine measures lead to the serious damage to the
global economy.

The most of existing models for the spread of infec-
tion simulate the spontaneous development of an epi-
demic and describe all its stages. There are two kinds
of such models: susceptible-infected-susceptible (SIS)
models and susceptible–infectious–removed, susceptible–
exposed–infectious–removed (SIR, SEIR) models. The
first go back to the pioneering work of Kermack and
McKendrick [1] and uses the assumption that the recov-
ered people can immediately get infection again. On the
contrary, the latter are built on the assumption that the
recovered people save strong immunity during epidemic
(see, e.g. [2]). There are many variants of those mod-
els.The SIS models are used in the mathematical epi-
demiology [3]. An overview is given in [4–6] (see also
references therein). Balance between the susceptible and
infected members of population under the various condi-
tions of infection transfer, are the subject of research in

[7–9].

The susceptible–infectious–removed, susceptible–
exposed–infectious–removed (SIR, SEIR) models (see
[10–12] and references therein), as well as a few papers
the changing in time parameters ([13, 14] and references
therein), which assume the overall immunity of recov-
ered people, are somewhat closer to the formulation
of our model presented here. However, opportunity of
immediate recovery contained in SIR-type models is
quite questionable for diseases like COVID-19. With
regard to the SIR and SEIR models, it should be noted
that the time derivative of the infectious people dI/dt is
determined, in particular, by the term γI (where γ−1 is
the average duration of a disease). Therefore, there is
a possibility of immediate recovering, which contradicts
the observed features of COVID-19.

There are stochastic (e.g., [15, 16]) and deterministic
approaches to the description of epidemic course. The
latter include the SIR, SEIR models and their modifi-
cations. Therefore, it is natural to develop the existing
deterministic models such as [17] to more precise and
appropriate description of the COVID-19. This develop-
ment should take into account such a feature of COVID-
19 that infected is contagious for a long time. The advan-
tage of this type of model is the ability to compare their
results with the statistics reported by the authorities of
countries and regions [13].

We consider some of specific features of COVID-19 [18–
22] when developing the discrete model of epidemic [23].
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In contrast with the SIR-type models, the model under
consideration for a closed population includes two inde-
pendent parameters. One of them is the average dura-
tion of disease d and the second, the parameter of the
infection transmission rate p, similar to the reproduction
number R0 in the SIR models. We divide the parameter
p on two nck, where nc is the average quantity of dan-
gerous contacts per day for one infected person and k
is the average susceptibility to virus of a healthy person.
The initial condition, namely the quantity of the infected
people at the beginning of the epidemic process in the
concrete closed region, is also essential. Here we restrict
ourselves to closed populations (country, region, city, and
etc.). Of course, there is a steady exchange between con-
sidering populations. However, already at an early stage
of the epidemic, the authorities use isolation measures
to reduce such flows to a minimum. The transboundary
transmission of the infection before the quarantine can-
not be accurately calculated. This first stage of epidemic
can be approximated as the free running epidemic, when
the quarantine measures are practically absent. Analysis
of the impact of the flow of people between regions on
the epidemic is a separate task that can be considered,
including on the basis of the proposed model.

Thus, the national and local authorities are taking ac-
tions to slow down the epidemic. We can define these
measures as an epidemic under partial control. It is very
important to slow down the epidemic rate to give physi-
cians the ability to provide patients with the necessary
amount of medical care. Therefore, to study the entire
course of infection spread from the very beginning may
be useful.

We believe that it is important to take into account
such features of the disease caused by COVID-19, as the
frequent recurrence of asymptomatic course of the dis-
ease, long duration, high infectivity and high mortality.
The model we present here makes it possible to take into
account all features just mentioned. We consider the
course of epidemic in the closed population. Based on
this, the authorities can outline a strategy for quaran-
tine measures. It should be noted that the real epidemic
develops under the significant influence of some external
limiting factors that are not considered in this paper, but
the model, according to its capabilities, allows, if neces-
sary, to take them into account. The present work has
been announced recently [24].

II. EPIDEMIC IN UNLIMITED AND LIMITED
POPULATIONS

Following Ref. [16], first we will examine an unlimited
population where anyone can be infected since no one
has immunity. Let us assume that the average duration
of the disease (d, days) is the time when the carrier of the
infection is able to transmit it to others. In fact this time
can vary from place to place depending on the accepted
accounting methods, on the regional type of age pyramids

etc. (see e.g.[25, 26]). Moreover, the reliability of the
COVID-19 tests till now is about 50 percent. Therefore,
we determined the value of d empirically on the basis
of published statistical data for different countries, e.g.
18 days for Switzerland and 16 days for Israel. So by
day l ≤ d after the first infected appears, the NI(nc; k; l)
people will be infected

NI(nc; k; l) = (nc · k + 1)l, (1)

where nc is the average number of the dangerous (i.e.
close unprotected contacts that may lead to infection)
contacts, that may lead to infection, of one infected per-
son per day, and k is the probability of infection during
these dangerous contacts. Thus, p = nc · k is the aver-
age number of people infected by one virulent person per
day in an unlimited population. The general case of the
initial stage of epidemic for arbitrary value p is consid-
ered in [22]. It’s obvious that the number of infected is
growing exponentially like l · ln(p+ 1).

However, after l ≥ d days the situation changes, be-
cause removed people (recovered and dead) appear in the
population. So, the number of infected becomes equal

NI(nc; k; l) = (nc · k + 1)l[1− (nc · k + 1)−d], (2)

With an average duration of disease about 14 days,
equations (1) and (2) for l ≥ d give approximately the
same results.

Now, let us consider an epidemic in a closed population
number of N people.

After more than d days after the epidemic outbreak
the population P splits into the following subsets: H - a
subset of healthy people (”preys”); V - a subset of infec-
tious people (virus carriers, ”predators”); R - a subset of
removed people that can neither infect nor be infected;
A - a subset of people ever infected in the course of epi-
demic (affected). In daily statistics, subsets V and A are
denoted as ”actual cases” and ”total cases” respectively.

During an epidemic, the number of people from sub-
set A (people V together with people R) will inevitably
increase. People V do not infect themselves or people
R, therefore both come out of the number of potential
preys.Since people V do not infect themselves or people
R, they come out of the number of potential preys. The
space for new infections slightly narrows. Therefore, the
current number of dangerous contacts becomes less than
the initial value of the dangerous contacts nc. This means
that the transmission rate of the infection is determined
by the variable n

(eff)
c (l), depending on the number of

days after the first infection, reads:

n(eff)c (l) = nc · k[1−NT (l)/N ], (3)

In fact, the dependence n
(eff)
c (l) on time appears here

as the dependence on the ratio of the total number of
affected (sum of infected, recovered and dead) people on
the day before the current day NT (l−1), to the full pop-
ulation size N . Therefore, following to the reliable and
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Figure 1: The total number of infections (thick curves) and
the number of actually infected (thin curves) computed with
Eqs. (6) and (7) during the free-running epidemic in a closed
populations a percentage of the population size. Here p = 0.14
(curves 1, 2), p = 0.12 (curves 3, 4), p = 0.1 (curves 5, 6);
d = 20.

accepted statistics [19] we use below only two main char-
acteristic functions for the COVID-19 epidemic: NT (l)
the total number of affected to the day l people and NI(l)
-people capable infect. The latter consist of evidently
sick, the people in incubation period and asymptomatic
ones. These groups can be considered separately as in
SEIR models [12–14], [17], see also [22]. It is also possi-
ble in the model under consideration. However, such a
separation seems non-adequate to the available statistical
data of WHO and national authorities [19]. The reported
incubation periods can vary between (0 ÷ 27) days [19],
that is too much to compare the theory which includes
incubation separately with the reliable statistics.

At the beginning of the epidemic (l ≤ d) all people
infected up to the day l by definition are the virus carriers
NT (l) = NI(l), and we obtain the equation:

NT (l) = NT (l − 1) +NT (l)n(eff)c (l) ≡ NT (l − 1) +

NT (l)nc · k[1−NT (l)/N ], (4)

where NT (l) is the number of people infected up to the
day l. To shorten the notation, we will further omit the
arguments nc and k and instead NI(nc; k; l) we will write
NI(l). After d days in the population P begin to appear
first people coming out of epidemic. They form the subset
of removed people denoted above as R.

NR(l) = NI(l − d+ 1). (5)

Wherein, for l > d, the numbers of infected people
NI(l) (virus carriers) and the total number of infected
cases NT (l) to the day l can be described by the main
system of equations without quarantine measures [23, 24]

NT (l) = NT (l − 1) +NI(l)nc · k[1−NT (l)/N ],

NI(l) = NT (l)−NT (l − d+ 1). (6)

Figure 2: Function p(l) according to the official data on Israel
(population N = 8000000, d = 16 days) till the day 120 of
epidemic. x-axis - days after the first infection, y-axis - p(l).
1– raw observed data; 2 – modeling curve; 3 - time span,
where the quarantine measures with p(l) are fulfilled.

Therefore, substitution NI from the second equation
(6) to the first one leads to the closed equation for NT (l)

NT (l) = NT (l − 1) + {NT (l)−NT (l − d+ 1)}

nc · k[1− NT (l)

N
], (7)

As is easy to show equation (7) not always lead to
liml→∞NT (l)/N → 1. For some parameters equation
(7) can contain solutions with NI(l → ∞) = Nsat < N .
Therefore, the growth of total cases of disease in course
of the free-running epidemic can be limited by the level
of saturation Nsat, called collective immunity (CI).

Figure 1 shows the curves corresponding to the Eqs.
(6), (7). For calculations we used the initial condition
NI(l = 1) = NT (l = 1) = 1 + nck. As mentioned above
the parameters nc and k enter in the above equations only
as a product. This pair of numbers could be replaced by
their product p, but it makes sense to distinguish be-
tween them, since nc number reflects the characteristics
of local conditions and quarantine policy for the popula-
tion P , while k is associated with the level of personal
susceptibility among the people of P .

III. EPIDEMIC IN A LIMITED POPULATION
WITH QUARANTINE MEASURES

Let us consider now the influence of quarantine mea-
sures on epidemic process. The parameter nc, initially
possessing a certain specific characteristic value, can be
modified nc → n(l) (p → p(l)) by the introduction of
quarantine or protective measures. Such measures can
be taken into account in the developed theory by intro-
ducing a function n(l) in the course of the epidemic. This
”function of an external influence” is in general different
for different populations.

To prove this we consider the epidemic course with
changing day after day nc → n(l) ≡ nl. As is easy to
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Figure 3: Comparison of computed and statistical epidemic-
data for Israel. x-axis - days after the first infection, y-axis -
cases. The data are the same as for figure 2.1– the total cases
NT (l) computed; 2 – the total cases, observed; 3 – the active
cases (NI(l)) computed; 4 – the active cases observed; 5 – the
hyperbolic stage from 34 to 83 days.

seen, if the epidemic starts with one infected person, after
the first day the full number of infected must be NI(1) =
1 + n1k, for the second day - NI(1) = 1 + n1k + (1 +
n1k)n2k = (1 + n1k)(1 + n2k) and so on. From here we
can determine the full number NI(l) of all infected since
day 1 till day l [23]:

NI(l) =
l′=l∏
l′=1

(1 + knl′) = NI(l − 1)(1 + knl) (8)

Taking into account that virus carriers cannot infect the
infected people and removed ones, we find the true ex-
pression NI(l) (it is also describes the number of real
virus carriers, named usually as actual cases, for l < d )

NI(l) = NI(l − 1)

(
1 + knl[1−

NT (l − 1)

N
]

)
(9)

Then the equations for total cases and active cases (cur-
rent virus carriers) at arbitrary day l ≥ d for the duration
of the disease d are

NT (l) = NT (l − 1) +NI(l)nl · k[1−NT (l)/N ],

NI(l) = NT (l)−NT (l − d+ 1). (10)

Here nl is an arbitrary function of l, which describing
the introduction of the quarantine measures by external
regulation. Equations (9) and (10), being a generaliza-
tion of equation (6), are the main equations for epidemic
process with quarantine measures.

Figure 2 shows the computed and statistical data for
p(l) for Israel. Up to l = 33 days there is a free-running
stochastic epidemic process we approximate with the con-
stant p0 = 0.26. Between 34 < l < 83 days statis-
tics reflect the impact of quarantine measures. The lat-
ter may be fitted by the quarantine measures function
p(l) = 2.12591 · 105/l4 (hyperbolic part of curve 2). Af-
ter this, a ”second wave” is obvious. However in this

Figure 4: Function p(l) according to official data on Switzer-
land (population N = 8800000, d = 18 days) till the day
180 of epidemic. x-axis - days after the first infection, y-axis
- p(l). 1 –observed data with 7-days running average; 2 –
modeling curve; 3 - time span from 25 to 90 days, where the
quarantine measures are fulfilled resulting in a hyperbolic de-
crease of p(l) (p(l) = 0.023 + 59124l−4). In the initial stage of
the epidemic(l < 25) p = 0.35. At the post-quarantine stage
(l > 90) p(l) = p(90) = 0.025.

work we restrict ourselves to considering the first wave
of the epidemic in order to show the effectiveness of the
proposed model.

Figure 3 demonstrates the comparison of the active
cases of real statistics for Israel [13] with calculations
based on Eq. (15) for the fixed value of the average dis-
ease duration d. The function nl has been found on the
basis of the real data for NI(l) by inverse calculation.
By reverse calculations for real statistical data the func-
tion nl has been found. As we see d = 16 days seems a
suitable value of average d to describe the curve of real
active cases of COVID-19 in Israel. This value of d is in
a reasonable agreement with the statistical average value
of the disease duration. However, the average duration
of disease d can be different for different countries, pop-
ulations and even stages of the epidemic.

The similar calculations for Switzerland with appro-
priate fitting parameters are presented on figures 4 and
5. The hyperbolic approximation Const/l4 as for Israel
is a good approximation for the period of the quaran-
tine measures. However the value of constant is different.
The initial conditions for the performed calculations cor-
responds for both countries the real statistical data [19].

IV. DELAY DIFFERENTIAL EQUATION

Instead of using discrete time, l, in Eq. (7) one can
come to continuous time description. To do so we denote
t = ∆t(l−1), where ∆t is a unit of time that equals to one
day, and put NT (l) = x(t)N , NT (l)−NT (l−1) = x′(t)N .
Then Eq. (7) is rewritten as
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Figure 5: Comparison of computed and statistical epidemic-
data for Switzerland. x-axis - days past the first infection; y
- cases. The data are the same as for figure 4. 1– the total
cases NT (l) computed; 2 – the total cases, observed; 3 – the
active cases (NI(l)) computed; 4 – the active cases observed;
5 – the hyperbolic stage from 25 to 90 days.

x′(t) = p[x(t)− θ(t− T )x(t− T )][1− x(t)], (11)

where θ(t) is the Heaviside’s step function and T = d−1.
We assume here that time is still measured in days, i.e.,
∆t = 1, otherwise coefficient p should be renormalized.

At the initial stage of an epidemic, 0 ≤ t ≤ T , Eq. (11)
reads

x′(t) = px(t)[1− x(t)] (12)

and solution to it is given by

x0(t) =
εept

εept − ε+ 1
, (13)

where x(0) = ε. Solution (13) serves as an initial history
function for Eq. (11), that is, x(t) = x0(t) at 0 ≤ t ≤ T .

There are two stationary solutions to Eq. (12), namely,
the unstable solution x0(t) = 0 and the stable solution
x0(t) = 1 which is the limit of x0(t) (10) at t → ∞. In
contrast, delay differential equation (11) has an arbitrary
stationary solution x(t) = C at t > T (0 ≤ C ≤ 1).
Evidently, at large time any solution to Eq. (11) tends
to some stationary stable saturation value as depicted in
figure 1.

The minimal saturation value may be estimated by
linearizing Eq. (11) near an arbitrary stationary solution
x(t) = C. Let x(t) = C + δx(t) then linearized equa-
tion is δx′(t) = p(1 − C)[δx(t) − δx(t − T )]. Assuming
that δx(t) = exp(λt/T ) we arrive at the characteristic
equation

λ+ (e−λ − 1)Tp(1− C) = 0. (14)

One of the roots of this equation is λ = 0. Another
real root of Eq. (14) is negative λ < 0 if Tp(1− C) < 1.
In other words, stationary solution x(t) = C is stable if

Figure 6: Parametrical dependence of the model under con-
sideration, x-axis - days after first case of infection of the
epidemic in a closed population; y-axis - cases of infection as
a percent of whole population: 1, 3 - total confirmed cases of
infection ; 2, 4 - active cases of infection for a given day; 1, 2 -
p = 0.16, d = 11, pT = 1.6; 3, 4 - p = 0.08, d = 21, pT = 1.6.

C >

 0, Tp ≤ 1

1− 1

Tp
, Tp > 1

(15)

Therefore, the saturation value x∞(p) = limt→∞ x(t)
should exceed the value given by Eq. (15). Figure 6 shows
dependence of asymptotic value of solution to Eq. (11)
on pT calculated for two values of initial perturbation,
ε = 10−5 (curve 1) and ε = 2 10−2 (curve 2). If pT < 1,
there is no significant growth of epidemics. For larger
values of pT the saturation level is always larger than the
value given by Eq. (15) and tends to unity for pT � 1.
For small enough value of ε � 1, the function x∞(p)
tends to a universal curve that is independent of initial
perturbation (e.g. curve 1 in Fig. 2). However, the time
required to reach the saturation value depends on initial
perturbation.

V. COMPARISON WITH THE SIR-MODEL

As is known the existing models of epidemic spread
are based on two models susceptible-infected-susceptible
(SIS) and susceptible - infected - recovered (SIR)(see,
e.g., [10, 11]). In the first model the recovered people
are immediately transfer to the group of susceptible and
can be again infected. In the second model the recovered
people save immunity. Therefore, the SIR model is more
close to the above considered model and we have compare
these models. The main equations of the SIR model (the
particular case of the Lotka-Volterra equations [27, 28])
for the necessary values of total and active cases may be
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Figure 7: Dependence of saturation value x∞ on pT . Curve
1 — ε = 10−5, curve 2 — ε = 2 10−2, curve 3 is given by
Eq. (15).

modified as

dx(t)

dt
= py(t)(1− x(t)), (16)

dy(t)

dt
= py(t)(1− x(t))− y(t)

T
, (17)

where x(t) = NT (t)/N and y(t) = NI(t)/N correspond
to the fractions of population that are affected and in-
fected, respectively.

Taking into account the first integral of set (16), (17)
y(t) = ε + x(t) + ln(1 − x(t))/(pT ), where it assumed
that initially x(0) = 0 and y(0) = ε, we arrive at single
first-order equation

dx(t)

dt
= p(1−x(t))

(
log(1− x(t))

pT
+ x(t) + ε

)
≡ F (x(t)).

(18)
The examples of epidemic growth calculated using two

models (11), (18) are depicted in fig. 8. For small enough
initial perturbation, ε, the SIR model predicts approxi-
mately twice longer time of saturation. As it was al-
ready mentioned there are an infinite number of station-
ary states of delay equation (11). In contrast, there is
only one root of the equation F (x1) = 0 that may be writ-
ten as x1(ε, pT ) = 1 + W

(
−pTe−pT (ε+1)

)
/(pT ), where

W (z) is the Lambert function (e.g. [29]). It is easy to ver-
ify that the stationary state is stable, i.e., F ′(x1) > 0. It
was numerically found that for sufficiently small value of
initial perturbation, ε� 1, the saturation level given by
both models are nearly equal. For example, if ε = 10−5

then the dependence x1(ε, pT ) on pT practically coincides
with curve 1 in fig. 6.

VI. CONCLUSIONS

The real-world epidemic course requires discrete ap-
proach to the description which can be useful for deter-
mination of the strategy of the quarantine measures. In-

12

0 100 200 300 400 500 600 700
t

0.1

0.2

0.3

0.4

x(t

Figure 8: Comparison of two models. Curve 1 — SIR model
(18), curve 2 - delay equation (11). ε = 10−4, p = 0.1, T = 13

stead the SIR-type model, based on the differential equa-
tions, we derive the non-differential equations in discrete
time (days). This approach corresponds to the real daily
statistical reports about epidemic course. The transfer-
ring from discrete time model to differential equation
shows the essential difference in comparison with the SIR
model due to the delay obliged by the long duration of
COVID-19.

The essential novelty of the obtained results is also the
consequent inclusion of quarantine measures in general
form through the time-dependent ”function of an exter-
nal influence” nl (p(l)). The role of the different quar-
antine measures and numerical estimation of their influ-
ence is still not clear and discussed. Nevertheless, the
model under consideration permits to find this function
by the reverse calculation on the basis of existent dis-
crete statistical data. The results can be used to assess
the impact of quarantine measures for selected regions
and countries in general, since the dates and types of
regulations are known. This is a way to understand the
effectiveness of the regulation rules. We used the reverse
calculations to reconcile the values of the theory parame-
ters with observational data. It is possible by use enough
simple phenomenological approach. We suppose that this
phenomenological approach can be useful for different re-
gions and countries, but cannot be universal due to var-
ious regulations, related with economics, national tradi-
tions and level of subordination of people to the suggested
quarantine measures [19, 20]. Not only constants in the
function of external influence p(l) ' a + b/l4, as for the
case of Germany and Israel, but also the functional de-
pendence p(l) on l can be different for different countries.

We also show and investigate the appearance of the
collective immunity under quarantine measures. It is
the property of the considered deterministic (and in this
sense non-Markovian) model with the delayed process of
transferring from the subset of virus carriers V to the sub-
set of recovered people R, which is absent in the known
SIR and SEIR models and their modifications. This de-
lay is the characteristic peculiarity of the COVID-19. We
demonstrate, that this type of the collective immunity,
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depended on the parameters of infectivity p(l) (or p(t) in
differential form with continues time), average duration d
of the virus transmission time (active cases) and the ini-
tially infected part of population ε, can be supported on
a low level. We have mentioned the models that take into
account the change in the infectiousness of the patient in
the course of his illness. They are suitable for those cases
when the course of the epidemic in small populations is
observed in full detail [30, 31]. However, for large popu-
lations, such details cannot be known, so their modeling
cannot be justified and useful. For such populations, in-
formation about the quarantine conditions in which the
epidemic develops is much more important. The qualita-
tive confirmation of the obtained in the framework of the
considering model results demonstrates the experience of
China ans S. Korea. This conclusion supports the use of
reasonable strong (taking into account, however, the eco-
nomical consequences and population fatigue) quarantine
measures till the wide vaccination process. Moreover, the
model permits to calculate the necessary level of vacci-
nation to reach collective immunity under vaccination.
However, these calculations are outside the purposes of
this article.

In the suggested model we considered the free epidemic
process for various constant values of the average dan-
gerous contacts nc [22, 23] of one infected individual per
day. The idealistic equation for infinite population is gen-

eralized for finite population. The general equations are
derived for finite population for both cases - with and
without quarantine measures. The parameters for satu-
ration of epidemic on the level of total cases NT < N
are determined. The developed theory permits to pre-
dict the optimal quarantine measures. On the example
of Israel and Switzerland a good agreement between the
considered theoretical model and the statistical data is
found.

We restrict our consideration of epidemic in Israel by
the period before the ”second wave” (in sense of new es-
sential increase of the active cases) started recently. The
second wave for Switzerland also exists but is less pro-
nounced. However, the presented theory can describe all
the process, including new waves of COVID-19 observing
in present and periodical change of the balance between
quarantine measures and reduction of the quarantine re-
strictions.
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