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Abstract

Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with
multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly
understood. Here we studied metabolic pathways of the human liver across the full histological
spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data
obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients
derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs)
of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in
the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and
glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis.
Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-
associated gene variants (PNPLA3, TM6SF2 and HSD17B13). The study demonstrates dysregulated
liver metabolic pathways which may contribute to the progression of NAFLD.

Introduction

Nonalcoholic fatty liver disease (NAFLD) represents a histological spectrum characterized by
increased lipid accumulation in the hepatocytes, that encompasses non-alcoholic fatty liver (‘simple’
steatosis, NAFL) and an inflammatory form termed as nonalcoholic steatohepatitis (NASH) in which
progressive hepatic fibrosis occurs, ultimately leading to cirrhosis and hepatocellular carcinoma
(HCC) in some patients (Anstee et al., 2019). NAFLD is associated with features of the metabolic
syndrome including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and hypertension (Anstee
et al., 2013; Labenz et al., 2018). The global prevalence of NAFLD in the general population has been
estimated to be 25%, whilst the prevalence of NASH has been estimated to range from 3 - 5%
(Younossi et al.,, 2018). The prevalence of NAFLD has been increasing proportionately with the
epidemics of obesity and is predicted to continue to rise (Estes et al., 2018).

The natural history of NAFLD is highly variable, with substantial interpatient variation in disease
severity and outcome predicted by the degree of fibrosis (McPherson et al., 2015; Taylor et al., 2020).
NAFLD is generally considered to be a complex disease trait driven by an obesogenic environment
acting on a background of genetic susceptibility (Anstee et al., 2020). However, knowledge about the
processes that contribute to the observed variation in severity remains incomplete. There is a
pressing need to elucidate the pathophysiological processes that occur as NAFL progresses to
NASH and fibrosis stage increases towards cirrhosis. Such knowledge will define novel biomarkers
that better risk stratify patients, helping to individualize their care, and aid the development of novel
therapeutic strategies and drug targets.

Progression of NAFLD is characterized by distinct metabolic changes in the liver (Masoodi et al.,
2021, in press). Previously, we showed that there is an excess accumulation of liver triacylglycerols
(TGs) in NAFLD, particularly those with low carbon number and double bond content (Oresic et al.,
2013), which reflects increased de novo lipogenesis in NAFLD (Kotronen et al., 2009; Westerbacka
et al., 2010).

Over the past decade, genome-scale metabolic modeling (GSMM) has emerged as a powerful tool
to study metabolism in human cells (Bordbar et al., 2012; Sen et al., 2020; Sen et al., 2017), including
in modeling metabolism of human liver under healthy and disease conditions (Hyotylainen et al.,
2016; Jerby et al., 2010; Mardinoglu et al., 2014). In a previous study, we charted metabolic activities
associated with degree of steatosis in human liver from 16 NAFLD cases by integrating genome-
wide transcriptomics data from human liver biopsies, and metabolic flux data measured across the
human splanchnic vascular bed using GSMM (Hyotylainen et al., 2016). A similar GSMM study in 32
patients with NAFLD and 20 controls identified serine deficiency and suggested that the serum


https://doi.org/10.1101/2021.02.09.21251354

medRXxiv preprint doi: https://doi.org/10.1101/2021.02.09.21251354; this version posted August 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

concentrations of glycosaminoglycans (GAGs) (e.g., chondroitin and heparan sulphates) associate
with the staging of NAFLD (Mardinoglu et al., 2014). Both studies, whilst informative, only used
transcriptomic data from relatively small patient cohorts, with crude histological characterization of
disease severity, thus neither study adequately addressed grade of steatohepatitis or stage of fibrosis
with sufficient granularity. In addition, several other studies in human and mice have identified
molecular signatures in the liver associated with NAFLD (Arendt et al., 2015; Haas et al., 2019;
Lefebvre et al., 2017; Moylan et al., 2014; Starmann et al., 2012). Moylan et al., compared the hepatic
gene expression profiles in high- (severe) and low-risk (mild) NAFLD patients and idenfitied specific
metabolic pathways that were differentially activated in these groups (Moylan et al., 2014). In a cross-
sectional study, Arendt et al., compared the hepatic gene expression in subjects with either healthy
liver, NAFL or NASH and showed marked alteration in the gene expression profiles associated with
the polyunsaturated fatty acid metabolism (Arendt et al., 2015). Integrative analyisis of human
transcriptomic datasets and the mice models have identified functional role of dermatopontin in
collagen deposition and hepatic fibrosis (Lefebvre et al., 2017). Futhermore, transcriptomic analysis
and immune profiling of NASH patients also relvealed that several genes associated with the
inflammatory responses were altered in progression to NASH (Haas et al., 2019). However, these
studies have largely employed microarray-based techniques and hence, lacked the comprehensive
approach provided by the genome-wide RNA sequencing (RNA-seq) (Govaere et al., 2020).

Herein, we examined the changes in hepatic metabolic processes and pathways that occur across
the full histological spectrum of NAFLD, exploring the evolving changes during the progression of
NAFL to NASH with increasing fibrosis stages including cirrhosis (FO up to F4). Whole liver tissue
RNA-Seq transcriptomic data from a cohort of histologically characterized patients derived from the
European NAFLD Registry (n=206) (Govaere et al., 2020; Hardy et al., 2020) was used to develop
personalized and NAFLD-stage-specific genome-scale metabolic models (GEMs) of human
hepatocytes (Table 1 and Fig 1). The integrative approach employed in this study defined the
changes of liver metabolism in NAFL and with progressive NASH-associated fibrosis. Furthermore,
GSMM predicted the metabolic differences among carriers of widely validated genetic variants
associated with NAFLD / NASH disease severity in three genes (PNPLA3, TM6SF2 and HSD17B13)
(Abul-Husn et al., 2018; Anstee et al., 2020; Liu et al., 2014; Romeo et al., 2008).

Results

Development of genome-scale metabolic models of human hepatocytes in the patients
with NAFLD

A GEM of human hepatocyte (iHepatocytes2322) was first developed by Mardinoglu et al., by
combining the iHepatocyte1154 GEM (Agren et al., 2012) with previously published liver models.
iHepatocytes2322 comprises 2,322 genes, 5,686 metabolites and 7,930 reactions found in the
human liver (Mardinoglu et al., 2014). Here, by using NAFLD stage-specific transcriptomics data
generated from the liver biopsies of 206 patients with NAFLD (Table 1) (Govaere et al., 2020), we
contextualized the iHepatocytes2322 model and developed personalized GEMs of human
hepatocytes across the full spectrum of NAFLD severity (NAFL through NASH FO-F4) (Fig 1). A
stepwise strategy that combines IMAT (Zur et al., 2010) and E-flux (Colijn et al., 2009) algorithm was
developed for the contextualization of GEMs, i.e., selection of stage-specific active reactions and
their associated genes and metabolites from the iHepatocytes2322. The number of genes,
metabolites and reactions included in these models are given in Fig S81. All the models were tested
to carry out 256 metabolic tasks as given in (Mardinoglu et al., 2013; Mardinoglu et al., 2014). The
occurrence scores of the metabolic tasks carried out by these models are shown in Fig S2.

The hepatocyte GEMs were used to study the metabolic differences across the NAFLD spectrum.
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To increase the statistical power of differential expression analysis of the transcriptomic data required
for GSMM, cases were grouped by disease severity and clinical implications for outcome (Taylor et
al., 2020): ‘minimal’ disease — NAFL + NASH (FO-1) (n= 85); ‘mild’ disease — NAFL + NASH (F0-2) (n=
1838); ‘clinically significant’ non-cirrhotic fibrosis — (NASH F2-3) (n= 107); and ‘advanced’ fibrosis —
(NASH F3-4) (n= 68).

Stage-specific alterations of the metabolic pathways at various stages of NAFLD

Partial least squares-discriminant analysis (PLS-DA) (Le Cao et al., 2011) of the metabolic fluxes
predicted by the personalized hepatocyte GEMs showed that patients with NASH (F3, AUC=0.70)
and cirrhosis (F4, AUC=0.83) were metabolically different from NAFL and NASH (FO-1 and F2) groups
(Fig 2A and 2C). Here, the reaction flux states were estimated by a non-uniform random sampling
method that finds solutions among the feasible flux distributions of the metabolic network (Bordel et
al.,, 2010; Osterlund et al., 2013). The PLS-DA model has identified several metabolic
subsystems/pathways such as fatty acid, glycerophspholipid, cholesterol, bile acid, tryptophan,
histidine, glutathione, vitamin (B,D), nucleotide metabolism and ROS detoxification which were
altered (Variable Importance in Projection (VIP) scores (Farrés et al., 2015) >1) among these groups
(Fig 2B). Pairwise comparisons between different NAFLD groups suggested that most of these
subsystems were upregulated in the patients with ‘clinically significant’ non-cirrhotic or ‘advanced’
fibrosis as compared to ‘mild’ or ‘minimal’ diseases (Fig S3). Intriguingly, at ‘advanced’ (vs. ‘mild’)
fibrosis, fluxes across the sphingolipid metabolism were significantly (two sample t-test, p-values <
0.05, corrected for False Discovery Rate (FDR)) upregulated, whilst glycosphingolipid (GSL)
biosynthesis—globo series were downregulated (Fig S3).

Reporter metabolite analysis of human hepatocytes unveiled the intrinsic regulation of
GSLs, GAGs and cholesterols in advance fibrosis

Reporter metabolite (RM) analysis is a metabolite-centric differential approach that aids in identifying
metabolites in a network around which significant transcriptional changes occur (Cakir et al., 2006;
Patil and Nielsen, 2005). RMs can predict hot spots in a metabolic network that are significantly
altered between two different conditions, in this case, different stages of NAFLD.

RM analysis revealed that several species of eicosanoids, estrone, steroids and retinoic acids were
upregulated (p < 0.05, corrected for FDR) in NASH F2 stage as compared to NAFL (Fig S4). RMs of
NASH F3 (vs. NAFL) showed a remarkable pattern with several species of GSLs, particularly,
cerebrosides (glucosylceramides (GlcCers), lactosylceramides (LacCers), digalactosylceramides),
globosides and gangliosides (GM1-, GM2-alpha) were downregulated (p < 0.05, corrected for FDR).
At this stage, RMs of GAGs (heparin, keratin sulphates) and cholesterols were also downregulated
(P < 0.05, corrected for FDR) (Fig 3). Intriguingly, these GAGs were linked to GSLs by 3'-
Phosphoadenosine-5'-phosphosulfate (PAPs) and globotriaosylceramides which in turn were also
downregulated (p < 0.05, corrected for FDR) (Fig 3). In addition, RMs of multiple eicosanoids,
prostaglandins (PGs), leukotrienes (LTs) and arachidonic and retinoic acid derivates were
upregulated downregulated (p < 0.05, corrected for FDR) (Fig 3).

Interestingly, RMs of GSLs, GAGs, and cholesterols remain downregulated (p < 0.05, corrected for
FDR) in cirrhosis (NASH F4 vs. NAFL) (Fig S5). A similar directional change in the RMs of GSLs,
GAGs, cholesterols, gamma-tocopherols (Vitamin E) was observed in ‘advanced’ fibrosis — (NASH
F3-4) vs. ‘minimal disease — NAFL + NASH (FO-1) (Fig S6) and ‘mild disease’ — NAFL + NASH (F0-2),
respectively (Fig S7). In addition, RMs of aromatic and sulphur containing amino acids, i.e.,
phenylalanine, tyrosine, tryptophan, histidine and methionine were increased in the ‘advanced’
fibrosis vs. ‘mild disease’. These amino acids were associated with apolipoproteins (apo), primarily
involved in the formation of low-density lipoprotein particles (LDL and VLDL). However, no significant
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change in the GSLs, GAGs, cholesterols was observed in the ‘clinically significant’ non-cirrhotic
fibrosis — (NASH F2-3) vs. ‘minimal disease’ (Fig S8 and S9).

Regulation of sphingolipid and ceramide pathways in advanced fibrosis

GSLs and ceramides (Cers) are essential intermediates of sphingolipid (SL) pathways (Sen et al.,
2021) (Fig 4A). They play a significant role in maintaining the integrity of the plasma membrane. Our
results suggest that, several species of GSLs and related pathways were altered at NASH (F3 and
F4) stages (Fig 3, S5 and S9). At these stages, the GSLs were associated with GAGs (heparin, keratin
sulphates) and cholesterols which was also altered (Fig 3 and S9). Therefore, the intracellular
regulation of SL pathways might play a critical role in the progression of fibrosis.

Next, we identified the metabolic genes (MGs) of the sphingolipid (SL) pathways that were
differentially expressed (p < 0.05, corrected for FDR) with the progression of NASH-associated
fibrosis. Intriguingly, MGs and fluxes of glycosyl- (GlcCer) and lactosylceramide (LacCer)
biosynthesis pathways (R7, R8, R9) were downregulated in ‘advanced’ fibrosis vs. ‘minimal’ and/or
‘mild’ disease stages (Fig 4A-C). Moreover, the net flux and gene expression of (R6) reaction was
upregulated (p < 0.05, corrected for FDR) in ‘advanced’ fibrosis vs. ‘mild disease which suggests
conversion of Cer to bioactive ceramide-1-phosphate (Fig 4A-C).

Taken together, in ‘advanced’ fibrosis the hepatocytes tend to decreases the synthesis of GSLs,
particularly GlcCers, LacCers and GalCers from Cers (Fig 4A-C). Excessive accumulation of Cers in
the hepatocyte may be required to exert cellular signaling, modulate inflammatory response or
generate apoptotic stress signals (Apostolidis et al., 2016; Zhang et al., 2019).

Marked alterations of Cers and GSLs levels in the serum of the patients with advanced
fibrosis

By applying lipidomics to serum samples obtained from NAFLD patients in the present study, we
measured the levels of Cers and GSLs. We found that the serum levels of several Cer species were
increased (Tukey’s HSD, p < 0.05) (Fig 4A-D), whilst GSLs (HexCers, GlcCers) were decreased
(Tukey’s HSD, p < 0.05) in the ‘advanced’ fibrosis (NASH F3) as compared to ‘minimal’ and / or ‘mild’
disease stages (Fig 4E-F). Overall, the directional changes (up or downregulated) of the predicted
RMs of GSLs in the liver were comparable with the differences (increase or decrease) in the serum
GSL levels of the patients at different stages of NASH-associated fibrosis. Intriguingly, there was an
abrupt decrease in the levels of Cers and HexCers at NASH F4 (cirrhosis) stage, which may be
attributed to the alterations in the SL pathway(s) in the liver.

Serum levels of retinol, retinol palmitate and cholecalciferol (D3) across various stages of NAFLD are
shown in (Fig $10).

Impact of genetic variants associated with NAFLD on liver metabolic pathways

Genetic susceptibility plays a vital role in the development of NAFLD (Anstee et al., 2020; Trepo and
Valenti, 2020). Here, we studied three of the most widely validated NAFLD-associated common
genetic variants, i.e., PNPLA3 (rs738409), TM6SF2 (rs58542926) and HSD17B13 (rs72613567)
(Anstee et al., 2020; Liu et al., 2014; Luukkonen et al., 2017; Ma et al., 2019; Trepo and Valenti, 2020).
Some of these gene variants are known to alter TG hydrolysis (He et al., 2010) and retinol (Vitamin A)
metabolism (Kovarova et al., 2015; Mondul et al., 2015) and increase the severity of NAFLD (He et
al., 2010; Luukkonen et al., 2017; Pettinelli et al., 2018). However, little is known about the metabolic
differences conferred by these variants.

We developed personalized GEMs for hepatocytes in the individuals carrying one of these three
common gene variants, PNPLA3 (GC, GG) (n=69), TM6SF2 (CT, TT) (n=13), HSD17B13 (-T, TT) (n=21)
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compared with wild type (WTs) (n=36), i.e., individuals homozygous for all the three gene variants:
PNPLA3 (CC) , TM6SF2 (CC) and HSD17B13 (--) (Tables 1 and Fig S11), using genome-wide
transcriptomics data and the iHepatocytes2322 model. Selection of individuals exclusively carrying
PNPLA3, TM6SF2 or HSD17B13 gene variants from the study cohort (Govaere et al., 2020) is given
in (Table S1). The occurrence scores of the metabolic tasks carried out by the gene variants and wild
type (WT) models are shown in (Fig S12).

Pairwise PLS-DA analysis of the fluxes across the metabolic subsystems predicted by the
hepatocyte-GEMs of PNPLA3, TM6SF2 or HSD17B13 variant carriers vs. WT showed remarkable
separation between these groups, with AUCs = [0.86, 0.85 and 0.84], respectively (Fig 6A-C). PLS-
DA identified five metabolic subsystems, fatty acid biosynthesis and oxidation, oxidative
phosphorylation, terpinoid biosynthesis and folate metabolism, which were commonly altered (VIP >
0.1) (Fig 6D and S13) between the gene variants and the WT. In addition, a pairwise comparision
between the PNPLAS variants and WT groups suggest that GSL metabolism are downregulated (two-
sample t-test, p<0.05 corrected for FDR) whilst cysteine and methionine, and vitamin B6 metabolism
was upregulated (p<0.05 corrected for FDR). PNPLA3 and HSD17B13 variants showed a decrease
(p<0.05 corrected for FDR) in the B-oxidation of fatty acids as compared to the WT, whilst TM6SF2
variant showed an elevation in the cholesterol biosynthesis (Fig 6E).

Materials and Methods
Subject Details

A full description of the transcriptomic analysis of the whole liver RNA-Seq data used in this study
has previously been reported (Govaere et al., 2020). Patient samples were derived from the European
NAFLD Registry (NCT04442334) (Hardy et al., 2020) and comprised snap-frozen biopsy samples and
associated clinical data from 206 patients diagnosed with histologically characterized NAFLD in
France, Germany, Italy, or the United Kingdom. All biopsies samples obtained in this study were
centrally scored by two expert liver pathologists according to the semiquantitative NASH-Clinical
Research Network ‘NAFLD Activity Score’ (NAS) (Kleiner et al., 2005). Fibrosis was staged from FO
to F4 (cirrhosis) (Govaere et al., 2020). Patients with alternate diagnoses and etiologies were
excluded, including excessive alcohol intake (30 g per day for males and 20 g per day for females),
viral hepatitis, autoimmune liver diseases, and steatogenic medication use. As previously described
(Hardy et al., 2020), collection and use of samples and clinical data for this study were approved by
the relevant local and/or national Ethical Review Committee covering each participating center, with
all patients providing informed consent for participation. All participant recruitment and informed
consent processes at recruitment centers were conducted in compliance with nationally accepted
practice in the respective territory and in accordance with the World Medical Association Declaration
of Helsinki 2018.

Transcriptomics

Transcriptomic (RNA-seq) data associated with this study was obtained from (Govaere et al., 2020);
also available in the NCBI GEO repository (accession GSE135251). Differentially expressed genes
between a paired conditions were either obtained (Govaere et al., 2020), or estimated by a method
stated in (Govaere et al., 2020). All genes that were differentially expressed between the case vs.
control at (p-values corrected for FDR < 0.05) were included in the RM analysis.

Genotyping

Genotypes were obtained from the GWAS data described in detail in (Anstee et al., 2020). Some data
was also obtained from RNA-seq as reported elsewhere (Govaere et al., 2020).
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Analysis of lipids and polar metabolites
Lipidomics analysis

Serum samples were randomized and extracted using a modified version of the previously-published
Folch procedure (Nygren et al., 2011). In short, 10 pL of 0.9% NaCl and, 120 pL of CHCI3: MeOH
(2:1, v/v) containing the internal standards (c = 2.5 pg/mL) was added to 10 pL of each serum sample.
The standard solution contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3-
phosphoethanolamine (PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine
(SM(d18:1/17:0)), N-heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadecanoyl-
sh-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-
phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine
(PC(16:0/d31/18:1)), were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA), and,
triheptadecanoylglycerol (TG(17:0/17:0/17:0)) was purchased from Larodan AB (Solna, Sweden). The
samples were vortex mixed and incubated on ice for 30 min after which they were centrifuged (9400
x g, 3 min). 60 pL from the lower layer of each sample was then transferred to a glass vial with an
insert and 60 pyL of CHCI3: MeOH (2:1, v/v) was added to each sample. The samples were stored at
-80 °C until analysis.

Calibration curves using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine

(PC(16:0e/18:1(92))), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
(PC(18:0p/18:1(92))), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:0)), 1-oleoyl-2-
hydroxy-sn-glycero-3-phosphocholine (LPC(18:1)), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (PE(16:0/18:1)), 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-
phosphocholine (PC(18:0p/22:6)) and 1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/18:2)), 1-(9Z-
octadecenoyl)-sn-glycero-3-phosphoethanolamine (LPE(18:1)), N-(9Z-octadecenoyl)-sphinganine
(Cer(d18:0/18:1(92))), 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine
(PE(16:0/18:1)) from Avanti Polar Lipids, 1-Palmitoyl-2-Hydroxy-sn-Glycero-3-Phosphatidylcholine
(LPC(16:0)), 1,2,3 trihexadecanoalglycerol (TG(16:0/16:0/16:0)), 1,2,3-trioctadecanoylglycerol
(TG(18:0/18:0/18:)) and  3B-hydroxy-5-cholestene-3-stearate  (ChoE(18:0)), 3p-Hydroxy-5-
cholestene-3-linoleate (ChoE(18:2)) from Larodan, were prepared to the following concentration
levels: 100, 500, 1000, 1500, 2000 and 2500 ng/mL (in CHCI3:MeOH, 2:1, v/v) including 1250 ng/mL
of each internal standard.

The samples were analyzed by ultra-high-performance liquid chromatography quadrupole time-of-
flight mass spectrometry (UHPLC-QTOFMS). Briefly, the UHPLC system used in this work was a
1290 Infinity Il system from Agilent Technologies (Santa Clara, CA, USA). The system was equipped
with a multi sampler (maintained at 10 °C), a quaternary solvent manager and a column thermostat
(maintained at 50 °C). Injection volume was 1 yL and the separations were performed on an ACQUITY
UPLC® BEH C18 column (2.1 mm x 100 mm, particle size 1.7 pm) by Waters (Milford, MA, USA).
The mass spectrometer coupled to the UHPLC was a 6545 QTOF from Agilent Technologies
interfaced with a dual jet stream electrospray (Ddual ESI) ion source. All analyses were performed in
positive ion mode and MassHunter B.06.01 (Agilent Technologies) was used for all data acquisition.
Quality control was performed throughout the dataset by including blanks, pure standard samples,
extracted standard samples and control serum samples, including in-house serum and a pooled QC
with an aliquot of each sample was collected and pooled and used as quality control sample.

Relative standard deviations (% RSDs) for identified lipids in the control serum samples (n = 13) and
in the pooled serum samples (n = 54) were on average 22.4% and 17.5%, respectively.

Mass spectrometry data processing was performed using the open source software package
MZmine 2.18 (Pluskal et al., 2010). The following steps were applied in this processing: (i) Crop
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filtering with a m/z range of 350 — 1200 m/z and an RT range of 2.0 to 12 minutes, (ii) Mass detection
with a noise level of 750, (iii) Chromatogram builder with a minimum time span of 0.08 min, minimum
height of 1000 and a m/z tolerance of 0.006 m/z or 10.0 ppm, (iv) Chromatogram deconvolution using
the local minimum search algorithm with a 70% chromatographic threshold, 0.05 min minimum RT
range, 5% minimum relative height, 1200 minimum absolute height, a minimum ration of peak
top/edge of 1.2 and a peak duration range of 0.08 - 5.0, (v), Isotopic peak grouper with a m/z
tolerance of 5.0 ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the most intense
isotope set as the representative isotope, (vi) Peak filter with minimum 12 data points, a FWHM
between 0.0 and 0.2, tailing factor between 0.45 and 2.22 and asymmetry factor between 0.40 and
2.50, (vii) Join aligner with a m/z tolerance of 0.009 or 10.0 ppm and a weight for of 2, a RT tolerance
of 0.1 min and a weight of 1 and with no requirement of charge state or ID and no comparison of
isotope pattern, (viii) Peak list row filter with a minimum of 10% of the samples (ix) Gap filling using
the same RT and m/z range gap filler algorithm with an m/z tolerance of 0.009 m/z or 11.0 ppm, (X)
Identification of lipids using a custom database search with an m/z tolerance of 0.009 m/z or 10.0
ppm and a RT tolerance of 0.1 min, and (xi) Normalization using internal standards PE(17:0/17:0),
SM(d18:1/17:0), Cer(d18:1/17:0), LPC(17:0), TG(17:0/17:0/17:0) and PC(16:0/d30/18:1)) for identified
lipids and closest ISTD for the unknown lipids followed by calculation of the concentrations based
on lipid-class concentration curves. Identification of lipids was based on in house laboratory based
on LC-MS/MS data on retention time and mass spectra.

Analysis of polar metabolites

Serum samples were randomized and sample preparation was carried out as described previously
(Castillo et al., 2011). The maternal samples were analysed as one batch and the cord blood samples
as a second batch. In summary, 400 uL of MeOH containing ISTDs (heptadecanoic acid, deuterium-
labeled DL-valine, deuterium-labeled succinic acid, and deuterium-labeled glutamic acid, ¢ = 1
pg/mL) was added to 30 pul of the serum samples which were vortex mixed and incubated on ice for
30 min after which they were centrifuged (9400 x g, 3 min) and 350 pL of the supernatant was
collected after centrifugation. The solvent was evaporated to dryness and 25 pL of MOX reagent was
added and the sample was incubated for 60 min at 45 °C. 25 yL of MSTFA was added and after 60
min incubation at 45 °C 25 pL of the retention index standard mixture (n-alkanes, c=10 pg/mL) was
added.

The analyses were carried out on an Agilent 7890B GC coupled to 7200 QTOF MS. Injection volume
was 1 pL with 100:1 cold solvent split on PTV at 70 °C, heating to 300 °C at 120 °C/minute. Column:
Zebron ZB-SemiVolatiles. Length: 20m, I.D. 0.18mm, film thickness: 0.18 pm. With initial Helium flow
1.2 mL/min, increasing to 2.4 mL/min after 16 mins. Oven temperature program: 50 °C (5 min), then
to 270°C at 20 °C/min and then to 300 °C at 40 °C/min (5 min). El source: 250 °C, 70 eV electron
energy, 35pA emission, solvent delay 3 min. Mass range 55 to 650 amu, acquisition rate 5 spectra/s,
acquisition time 200 ms/spectrum. Quad at 150 °C, 1.5 mL/min N2 collision flow, aux-2 temperature:
280 °C.

Calibration curves were constructed using alanine, citric acid, fumaric acid, glutamic acid, glycine,
lactic acid, malic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, linoleic acid, oleic acid, palmitic
acid, stearic acid, cholesterol, fructose, glutamine, indole-3-propionic acid, isoleucine, leucine,
proline, succinic acid, valine, asparagine, aspartic acid, arachidonic acid, glycerol-3-phosphate,
lysine, methionine, ornithine, phenylalanine, serine and threonine purchased from Sigma-Aldrich (St.
Louis, MO, USA) at concentration range of 0.1 to 80 pg/mL. An aliquot of each sample was collected
and pooled and used as quality control samples, together with a NIST SRM 1950 serum sample and
an in-house pooled serum sample. Relative standard deviations (% RSDs) of the metabolite
concentrations in control serum samples showed % RSDs within accepted analytical limits at
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averages of 27.2% and 29.2% for in-house QC abd pooled QC samples.
Genome-scale metabolic modeling
Development of stage-specific GEMs of human hepatocytes along the NAFLD spectrum

Stage-specific functional GEMs of human hepatocytes were developed by step-wise combining
iMAT (Zur et al., 2010) and E-Flux (Colijn et al., 2009) algorithms, applied to iHepatocytes2322 as a
template model (GEM). iMAT approach finds the optimal trade-off between inclusion and exclusion
of high and low-expression reactions. It does not explicitly depends on an metabolic objective
function (Opdam et al., 2017; Zur et al., 2010). iMAT requires three sets of input reactions such as
high, low and moderately expressed. The reaction weights were determined by integrating the
NAFLD stage-specific gene expression data to iHepatocytes2322 using gene-protein-reaction
associations (GPR) rules. To categorize the model reactions into high, low and moderately expressed,
we estimated the (mean = sd) of the log-normal distribution of the reaction weights / expression
(Opdam et al., 2017; Zur et al., 2010). Accordingly, the feasibility of a particular reaction(s) to be
included or discarded in the draft model was determined. Mixed-integer linear programming (MILP)
was used to determine the functionality of a model, i.e., reactions that can carry fluxes were kept and
blocked reactions were rectified or removed. The ‘FASTCC’ algorithm implemented in COnstraint-
Based Reconstruction and Analysis Toolbox (COBRA Toolbox v3.0)(Heirendt et al., 2017) was used
for testing the functionality / consistency of the model. Next, E-Flux (Colijn et al., 2009) algorithm was
used to apply constrain to these models by using transcriptomics data. E-Flux depends on a
metabolic objective function, maximization of lipid droplet accumulation via ‘reaction ID: HMR_0031’
in iHepatocytes2322 model was set as an objective function. All the models were tested to carry out
256 metabolic tasks as given in (Mardinoglu et al., 2013; Mardinoglu et al., 2014), using 'CheckTask'
function implemented in the Reconstruction, Analysis and Visualization of Metabolic Networks)
(RAVEN) 2.0 suite (Wang et al., 2018). The draft models were manually curated.

Mixed integer linear programming (MILP) was performed using 'MOSEK 8' solver (licensed for the
academic user) integrated in the RAVEN 2.0 suite (Wang et al., 2018). Linear programming (LP) and
optimization was performed using 'I[LOG-IBM CPLEX (version 128)' solver. Quality control and sanity
checks (Thiele and Palsson, 2010) were performed using Cobra toolbox v3.0 (Heirendt et al., 2017).
Simulations were performed using Cobra toolbox v3.0 (Heirendt et al., 2017) and RAVEN 2.0 suite
(Wang et al., 2018). All the operations were performed in MATLAB 2017b (Mathworks, Inc., Natick,
MA, USA).

By integrating NAFLD stage-specific whole tissue transcriptomics (RNASeq) data with
iHepatocytes2322, we contextualized and developed hepatocyte-GEMs for different stages of
NASH-associated fibrosis, i.e., ‘minimal’ NAFL + NASH (FO-1) (n= 85); ‘mild’ NAFL + NASH (F0-2)
(n= 138); ‘clinically significant’ non-cirrhotic fibrosis (NASH F2-3) (h= 107); and ‘advanced’ fibrosis
(NASH F3-4) (n= 68). A similar approach was adapted to contextualize GEMs (iHepatocytes2322) for
hepatocytes in the individuals exhibiting carriage of gene variants, PNPLA3 (GC, GG) (n=69), TM6SF2
(CT, TT) (n=13), HSD17B13 (-T, TT) (n=21) and wild type (WTs) (n=36) (Table 1 and S1).

Normalized flux differences

We deployed an unbiased and non-uniform random sampling (RS) method (Bordel et al., 2010) that
finds solutions among the feasible flux distributions of the metabolic network. RS does not explicitly
depends on an metabolic objective function (Bordel et al., 2010; Herrmann et al., 2019). By applying
RS on the context / stage-specific GEMs, we estimated the flux distribution (sampled, n=1000). RS
was performed using RAVEN 2.0 suite using 'MOSEK 8' solver (Wang et al., 2018). Only reactions
having non-zero measurable fluxes (>1e-6 mmol/gDW/hr) fluxes were considered in the pairwise
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(case — control) comparision. The absolute values of the reaction fluxes were grouped by their
corresponding subsystems or pathways. The fluxes per subsystem were averaged and subjected to
quantile normalization. Thereby, the flux differences between the case vs. control was estimated by
performing a two sample t-test applied to log-normal distribution of data. The p-values were
subjected to multiple testing and False Discovery Rates (FDR) corrections. FDR corrected p-value <
0.05 was considered as statistically significant.

Partial least squares discriminant analysis

Multiclass and two groups partial least squares discriminant analysis (PLS-DA) (Le Cao et al., 2011)
models were developed across the NAFLD spectrum, and for the three major gene variants
respectively; by using the 'plsda' function coded in the 'mixOmics v6.3.2' package, implemented in
R statistical programming language (R Development Core Team, 2018). Variable Importance in
Projection (VIP) scores (Farrés et al., 2015) of the features (subsystems) were estimated. PLS-DA
models were cross-validated (Westerhuis et al., 2008) by 7-fold cross-validation and models
diagnostics were generated using 'perf' and ‘auroc’ functions. All features that passed (VIP scores >
1) were listed as significantly altered between or among the groups.

Reporter metabolite analysis

RM analysis (Cakir et al., 2006; Patil and Nielsen, 2005) was performed by using 'reporterMetabolites’
function of the RAVEN 2.0 suite (Wang et al., 2018). As the hepatocyte GEMs were parameterized by
the transcriptomics data; determined by the two-step contextualization approach, the boundaries of
the exchange reactions were not relaxed between [-inf, +inf]. Multiple testing was performed and the
nominal p-values were subjected to FDR corrections. The RMs that passed the threshold (FDR
corrected p-values < 0.05) were considered as significantly altered between the differential condition
(case - control).

Analysis of metaboliomics data

The metabolomics dataset was log. transformed. Homogeneity of the samples were assessed by
principal component analysis (PCA) (Carey et al., 1975) and no outliers were detected (95%
confidence interval). The log-normalized intensities of the total identified lipids and polar metabolites
were stratified into various NAFLD groups (Table $1). Multiple comparision was performed using
one-way analysis of variance (ANOVA), followed by Tukey's honest significant difference (HSD) — a
post hoc test. p-values (HSD) < 0.05 was considered as statistically significant.

Data visualization and graphics

Several libraries / packages of R v3.6.0, a statistical programming language such as ‘Heatmap.2’,
‘boxplot’, 'beanplot', ‘gplot’, and ‘ggplot2’ and Cytoscape v3.8.0 software were used for data
visualization and network analysis.

Discussion

GSMM of human hepatocytes in NASH-associated fibrosis (n=206) identified several metabolic
signatures and pathways markedly regulated at different stages of fibrosis. The previous GSMM
study of human NAFLD (Mardinoglu et al., 2014) also identified altered metabolic pathways in NAFLD,
however, that study was confined to a relatively small patients group, not representing the full
spectrum of NAFLD. Here, we used genome-wide transcriptomics (RNA-seq) (Govaere et al., 2020)
data that provided a dynamic range of genes, enzymes / reactions, metabolites and their interactions,
to model stage-specific GEMs for human hepatocytes in NAFLD (Fig 1). In addition, the study cohort
allowed us to stratify and model the metabolic differences in three major genetic variants (PNPLAS,
TM6SF2 and HSD17B13) associated with risk and severity of NAFLD.
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Our results implicate changes in the levels of vitamins (A, E) in the NASH-associated fibrosis
progression. In the hepatocytes, a significant increase in the RMs of retinoic acid derivatives were
observed in NASH F2, F3 (vs. NAFL) and in ‘clinically significant’ non-cirrhotic fibrosis (vs. ‘minimal
disease’). A small increase in the serum levels of Vitamin A (retinol) and retinyl palmitate was observed
at NASH FO-1 stage, whilst retinyl palmitate was markedly decreased at NASH F4 stage. At the F4
stage, the activated hepatic stellate cells tend to lose the retinyl esters stored in the liver, ultimately
leading to vitamin A deficiency (Pettinelli et al., 2018; Saeed et al., 2017). Vitamin A is a regulator of
glucose and lipid metabolism in the liver and adipose tissue and may attenuate in the development
of NAFLD (Pettinelli et al., 2018; Saeed et al., 2017). The PNPLA3 gene product is known to have
retinyl ester hydrolase activity, and PNPLA3-1148M is associated with low serum retinol level with
enhanced retinyl esters in the liver of NAFLD patients (Kovarova et al., 2015; Mondul et al., 2015).
However, GSMM has not identified any differences in vitamin A metabolism related to PNPLA3
variant carriage. Intriguingly, Vitamin E derivatives were subsequently decreased across the stages
of fibrosis. High dose of Vitamin E supplementation has been shown to improve histological
steatohepatitis over placebo in the PIVENS randomized controlled trial of pioglitazone or vitamin E
in patients with NASH (Sanyal et al., 2010).

We observed a dynamic regulation of complex GSLs in the advanced fibrosis. At that stage, the
majority of cerebrosides (HexCers: glucosylceramides (GlcCers) and lactosylceramides (LacCers)),
and globosides were decreased in the patient groups. Intriguingly, the serum concentrations of GSLs
(HexCers, GlcCers) were markedly decreased in the patients with advanced fibrosis or cirrhosis
(NASH F4). Cers are the key intermediates of sphingolipid metabolism that promote cellular
proliferation, differentiation and cell death (Gault et al., 2010; Turpin-Nolan and Bruning, 2020). Cers
interact with several pathways involved in insulin resistance, oxidative stress, inflammation, and
apoptosis, that are linked to NAFLD (Gault et al., 2010; Pagadala et al., 2012). Understanding the role
of Cers in the staging of NASH-associated fibrosis is of great diagnostic interest (Pagadala et al.,
2012). In normal physiological conditions, Cers converts to GSLs, which prevents its excessive
accumulation in the cells (Ishay et al., 2020). Our data suggest that in patients with advanced fibrosis,
the serum concentrations of Cers increase up to NASH F3, and decrease at NASH F4 stages.
Differential flux analysis showed an increase of Cer production via de novo pathway, whilst
production of GSLs (GlcCer, GalCer and LacCers) decreased in patients with advanced fibrosis.
Thus, the conversion of Cers to GSLs (via glucosylceramide synthase, GCS) might have been
compromised in ‘advanced’ fibrosis. Intriguingly, we found that the GSLs (LacCers and globosides)
were associated with GAGs (heparin, keratin sulphate), which was also altered in the progression of
NASH-associated fibrosis. It is well demonstrated that inhibiting GSL synthesis in obese mice has
improved glucose homeostasis and markedly reduced the development of NAFL (Zhao et al., 2009).

Taken together, we identified several novel metabolic signatures and pathways in progressive stages
of NAFLD, which enabled us to understand how different metabolites and their intermediates are
regulated across various stages of NASH-associated fibrosis. While some of our key results
corroborate with the earlier findings, others allowed us to elucidate the dys(regulation) of metabolic
pathways in NAFLD. Moreover, GSMM has demonstrated several stage-specific metabolic changes,
which might help discover biomarkers, identify drug targets, and ultimately lead to effective
therapeutic strategies for NASH. To this end, our data indicate the significance of GSL pathways and
targeting these pathways might ameliorate the liver pathology associated with NAFL and NASH-
associated fibrosis. However, some of these findings remains to be validated by in vivo and/or in vitro
experiments.
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Data and software availability

Scripts for GSMM, contextualization and data analysis can be downloaded from
(https://github.com/parthoBTK/Personalized_Liver_Models.qgit). The personalized GEMs (.mat files)
of human-hepatocytes contextualized for different stages of NAFLD, and three major gene variants
are available upon request. The RNA-Seq data are available in the NCBI GEO repository (accession
GSE135251). The lipidomic / metabolomic datasets generated in this study were submitted to the
Metabolomics Workbench repository (https://www.metabolomicsworkbench.org) and were assigned
a project ID PR001091 (doi: 10.21228/M8P97V).
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Table 1. Demographic characteristics of the EPoS RNA-Seq Cohort.

Clinical features Patients (n) Values
(mean + SD and / or patients ‘n’)
Age (mean = SD) 206 54 (= 11.87)
Sex
male 206 123
female 83
BMI (mean = SD) 204 31.34 (= 5.04)
T2DM 206
no 96
yes 110
HBA1C (mmol/mol + SD) 135 48.06 (+ 14.54)
ALT (mean+ SD) 204 67.12 (= 41.61)
AST (mean+ SD) 201 44.67 (+ 23.08)
Steatosis grade 206
0 0
1 60
2 73
3 73
Ballooning 206
0 52
1 98
2 56
Kleiner lobular 206
Inflammation
0 16
1 95
2 80
3 15
SAF lobular 206
inflammation
0 16
1 140
2 50
Brunt fibrosis 206
stage
0 38
1 47
2 53
3 54
4 14
NASH 206
no 53
yes 153
NAS score > 4 206
no 58
yes 148
SAF activity score > 2 206
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no 53
yes 153

HSD17B13 rs72613567 (--/- 188 120/61/7 [18]
T/TT) [unknown]
PNPLAS3 rs738409 206 75/89/42
(CC/GC/GG)
TMG6SF2 rs58542926 206 156/48/2
(CC/CT/TT)
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Figure Legends
Figure 1. Study design and schematic illustration.

Key steps in the reconstruction of stage-specific genome-scale metabolic models (GEMs) of human
hepatocytes in NAFLD. Labels F(0-4) represents different stages of fibrosis.

Figure 2. Metabolic pathways along the NAFLD spectrum.

(A) PLS-DA-score plot showing metabolic pathway differences across NAFL and NASH (F0-4) patient
groups. (B) Metabolic pathways/subsystems with (PLS-DA, VIP score >1). (C) Class-specific AUCs and
ROC curves of the PLS-DA model.

Figure 3. Reporter metabolites of NASH F3 vs. NAFL.

A metabolic-centric view of reporter metabolite (RM) modules that were significantly altered (p<0.05)
between NASH F3 vs. NAFL. Orange and blue color denotes up and downregulated respectively. Each
node represents a ‘RM’ and single or double lines represent reversible or irreversible metabolic reactions
respectively. RMs that belong to a particular chemical class are color coded.

Figure 4. Regulation of sphingolipid metabolism in NAFLD.
(A) A schematic illustration of sphingolipid (SL) metabolism in human hepatocytes.

Abbreviations: SPT, serine palmitoyl-CoA transferase; CerS, ceramide synthase; and DES,
dihydroceramide desaturase; SMase, sphingomyelinase pathway S1P, sphingosine-1-phosphate;
CDase, ceramidases; SK, sphingosine kinase; S1PPase, sphingosine phosphate phosphatases GCDase,
glucosidase; GalCDase, galactosidase; C1P, ceramide 1-phosphate. The modeled reactions are labeled
with ‘R#’.

(B) Averaged normalized flux differences across the SL reactions of the hepatocytes at different stages
of NAFLD. Red and blue color denotes up- and downregulation of reaction fluxes within at two different
stages of NAFLD. Reaction fluxes at a particular NAFLD stage was estimated by using a non-uniform
random sampling method that finds solutions among the feasible flux distributions of the metabolic
network. *p<0.05 (two-sample t-test, corrected for FDR)

(C) Log: fold change (FC) of the differentially expressed (p<0.05 corrected for FDR) metabolic genes
(MGs) of SL pathways at two different stages of NAFLD. Expression of multiple genes mapped to a
particular reaction was determined by GPR rules.

Figure 5. Serum metabolic levels of ceramides, glycosphingolipids in the patients at different
stages of NAFLD.

Beanplots showing the log: intensities of the metabolites across different stages of NAFLD. The dotted
line denotes the mean of the population, and the black dashed lines in the bean plots represent the
group mean. (A-D) Ceramides, (E-F) Glucosyl- (GlcCers) and Hexosylceramides (HexCers). *p<0.05
(Tukey’s HSD)

Figure 6. Metabolic pathway differences across the genetic modifiers of NAFLD.

PLS-DA-score plot showing metabolic pathway differences across three major gene variants vs. WT
groups. (A) PNPLA3 vs. WT. (B) TM6SF2 vs. WT. (C) HSD17B13 vs. WT. (D) Metabolic
pathways/subsystems commonly regulated among three different gene variants with (PLS-DA, VIP
score >1). (E) Normalized flux differences across the metabolic subsystems between three major gene
variants associated vs. WT groups. Red and blue color denotes up- and downregulation (two-sample t-
test, p<0.05 corrected for FDR) of reaction fluxes across the metabolic subsystems within at two
different stages of NAFLD.
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fjownregulated fluxes across the metabolic subsystems within two different stages of NAFLD.
' and ™ denotes statistical signifance (two-sample t-test, p.adj<0.05 and p.adj<0.01
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Figure S9. Heatmap showing RM clusters of (A) glycosphingolipids (GSLs) and (B)
glycosaminoglycans (GAGs) that are significantly (**p<0.01, **p<0.05, corrected for FDR)
downregulated (blue color) along the different stages NAFLD.
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Figure S10. Serum metabolic levels of ceramides, glycosphingolipids and retinoids in the
patients at different stages of NAFLD.

(A-C) Beanplots showing the log. intensities of the metabolites across different stages of
NAFLD. The dotted line denotes the mean of the population, and the black dashed lines in the
bean plots represent the group mean.
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Figure S11. Personalized genome-scale metabolic models of human hepatocytes
contextualized for gene variants and WT.

Boxplots showing distribution of number of reactions (A), genes (B) and metabolites (C) (marked
by dots) contained in the genome-scale metabolic models (GEMs) of human hepatocytes
developed for (h=139) subjects, and contextualized for three major genetic variants (PNPLAS,
TM6SF2 and HSD17B13) and WT; associated with risk and severity of NAFLD. ‘WT’ is a wild-
type model.
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Figure S‘! 2. Metabolic tasks carried out by the personalized GEMs contextualized for the
gene variants and wild type (WT).

[0-1] cj_gnot‘es low to high occurrence scores (OS). OS acquired by a GEM is based on its
capability ("Yes’ or ‘No’) to perform the assigned metabolic task.
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Figure S13. (A-C) Metabolic subsystems sorted by their (VIP scores >1) retrieved by fitting
pairwise PLS-DA models for (A) PNPLA3 (B) TM6SF2 and (C) HSD17B13 gene variants vs. WT.
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Table S1. Selection of individuals carrying variants for PNPLA3, TM6SF2 and HSD17B13 genes
associated with risk and severity of NAFLD.

RNA-seq cohort
(Govaere et al, 2020)
Gene variants (Individuals) No. of participants
PNPLAS3 rs738409
(CC/GC/GG) 206 69 individuals exclusively exhibiting
PNPLA3 rs738409 (CC) 75 carriers of PNPLA3 rs738409 (GG, GQC)
and homozygous / wild types for TM6SF2
PNPLA3 5738409 (GG) 42 rs58542926 (CC) and HSD17B13
PNPLA3 rs738409 (GC) 89 rs72613567 (--).
TMG6SF2 rs58542926
(CC/CT/TT) 206
TMG6SF2 rs58542926
(CC) 156
TMG6SF2 rs58542926 e . I
(CT) 2 13 individuals exclusively exhibiting
carriers of TM6SF2 rs58542926 (CT, TT)
TM6SF2 rs58542926 and homozygous / wild types for PNPLA3
(TT) 48 rs73840 (CC) and HSD17B13 rs72613567
(--).
HSD17B13 rs72613567
(--/-T/TT) 188
HSD17B13 rs72613567
(--) 120 21 individuals exclusively exhibiting
carriers of HSD17B13 rs72613567 (-T,
HSD17B13 rs72613567 7 TT) and homozygous / wild types for
(Tn) TMBSF2 rs58542926 (CC) and PNPLA3
HSD17B13 rs738409 (-T) 61 rs73840 (CC).
Wild types, WTs
(PNPLA3 rs738409 (CC) 36 individual wild types for PNPLA3
+ TM6SF2 rs58542926 rs738409, TM6SF2 rs58542926 and
(CC) + HSD17B13 HSD17B13 rs72613567)
rs72613567 (--)) -
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