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Abstract 

The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact             
on the world's population. A key aspect to providing care for those with COVID-19 and checking                
its further spread is early and accurate diagnosis of infection, which has been generally done via                
methods for amplifying and detecting viral RNA molecules. Detection and quantitation of            
peptides using targeted mass spectrometry-based strategies has been proposed as an           
alternative diagnostic tool due ​to direct detection of molecular indicators from non-invasively            
collected samples as well as the ​potential for high-throughput analysis in a clinical setting; many               
studies have revealed the presence of viral peptides within easily accessed patient samples.             
However, evidence suggests that some viral peptides could serve as better indicators of             
COVID-19 infection status than others, due to potential misidentification of peptides derived            
from human host proteins​, poor spectral quality, high limits of detection etc. In this study we                
have compiled a list of 639 peptides identified from Sudden Acute Respiratory Syndrome             
Coronavirus 2 (SARS-CoV-2) samples, including from in vitro and clinical sources. These            
datasets were rigorously analyzed using automated, Galaxy-based workflows containing tools          
such as PepQuery, BLAST-P, and the Multi-omic Visualization Platform as well as the             
open-source tools MetaTryp and Proteomics Data Viewer (PDV). Using PepQuery for           
confirming peptide spectrum matches, we were able to narrow down the 639 peptide             
possibilities to 87 peptides which were most robustly detected and specific to the SARS-CoV-2              
virus. The specificity of these sequences to coronavirus taxa was confirmed using Unipept and              
BLAST-P. Applying stringent statistical scoring thresholds, combined with manual verification of           
peptide spectrum match quality, ​4 ​peptides derived from the nucleocapsid phosphoprotein and            
membrane protein were found to be most robustly detected across all cell culture and clinical               
samples, including those collected non-invasively. We propose that these peptides would be of             
the most value for clinical proteomics applications seeking to detect COVID-19 from a variety of               
sample types. We also contend that samples taken from the upper respiratory tract and oral               
cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected             
patient samples using mass spectrometry-based proteomics assays. 
 
Introduction 
 
In the latter half of 2019, a pneumonia-like disease arose in the Wuhan Province of China ​1​.                
Subsequent analysis showed the cause to be a betacoronavirus initially called 2019-novel            
coronavirus (2019-nCoV). This disease soon spread throughout the world and came to be             
known as coronavirus disease 2019 (COVID-19) with the clinical classification Sudden Acute            
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As of the writing of this manuscript, there             
are over 106 million patient​s infected world-wide with COVID-19, with a current global death toll               
sitting at 2.3 million people ​2​. Patients report a litany of symptoms, ranging from fever, cough,               
and muscle aches in mild cases to acute respiratory distress syndrome (ARDS), multiple-organ             
failure, and death in the most severe cases​3, 4​. 

While the development of therapeutic treatments for infected patients​5, 6 ​and the eventual             
development of vaccines against SARS-CoV-2 ​7-9 are of great importance for the management of             
this disease, rapid and effective diagnosis of COVID-19 infection has been and continues to be               
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of primary importance. Most testing strategies used in the diagnosis of active COVID-19             
infections utilize quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) of          
viral RNA in samples collected from patients​10, 11​. Rapid COVID-19 testing is generally             
performed on readily accessible patient-derived samples with high viral loads, such as            
nasopharyngeal swabs and saliva. To improve turnover time and increase the volume of tests              
that can be performed, innovations in RNA-based testing have been introduced to cut down on               
the time required. Testing protocols have been developed that eschew the isolation of RNA from               
patient samples, allowing for much faster RT-qPCR analyses​12​. In addition, techniques such as             
Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP)​13 and Specific High         
Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK)​14 diagnostics allow for rapid         
point-of-care detection of SARS-CoV-2 RNA without the need for sophisticated training in PCR. 

While these techniques are generally fast and highly specific for viral RNA, improper sample              
collection, storage, or processing could result in the degradation of RNA yielding potential false              
negative tests. In addition, their reliance on sequence amplification using reverse transcriptases            
and DNA polymerases introduces the potential for false negatives through the inhibition of these              
enzymes by components of the sample ​15, 16​. Due to the better chemical stability of proteins               
compared to RNA, as well as the lack of a need for intermediary enzymes and signal                
amplification via PCR, clinical proteomics has emerged as a potential supplemental test for the              
diagnosis of COVID-19 through direct detection of viral peptides via LC-MS​17​. Specifically,            
targeted methods such as selected reaction monitoring (SRM) and parallel reaction monitoring            
(PRM) to detect peptides specific to the virus could be most useful in a clinical setting ​18, 19​.                 
However, not all the potential viral peptides derived from SARS-CoV-2 infection are equally             
suitable as targets, based on well-known limitations of targeted LC-MS methods for proteomics;             
some tryptic peptides of SARS-CoV-2 could have intrinsic physicochemical properties limiting           
their reproducible detection in a mass spectrometer, as well as co-elution from the LC with more                
abundant peptides that mask their presence in the sample. In addition, proteomics software can              
sometimes make putative peptide spectrum matches (PSMs) with spectra that are of poor             
quality, making for uncertain identification of peptides of interest​20, 21​. Additionally, a key             
requirement for targeting peptides for virus detection is that these are specific to the              
SARS-CoV-2 virus, with no potential overlap with other coronaviruses or other organisms. 

In order to evaluate the most robustly detectable SARS-CoV-2 peptides, and make the             
detection of these viral peptides in human samples in a clinical setting all the more feasible, we                 
set out to examine proteomic datasets from three cell culture-based studies​22-24 and five clinical              
studies​25-29​. We utilized automated workflows implemented in the Galaxy platform and made            
accessible via the European Galaxy public instance to first identify as many SARS-CoV-2             
peptides possible in all samples, creating a master list of SARS-CoV-2 peptides identified             
across the samples. We then interrogated these peptides using the PepQuery search engine ​30             
to confirm the quality of these PSMs and determine whether the matched sequences were              
unique to SARS-CoV-2 or could be better ascribed to the human proteome or that of another                
closely related coronavirus. Peptides and their associated PSMs which survived this rigorous            
filtering were then manually validated using the Multi-omics Visualization Platform​31 and further            
analyzed for specificity to the SARS-CoV-2 virus via BLAST-P​32 and MetaTryp ​33​. Taken            
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together, our analyses enable the construction of a high-confidence target peptide list that would              
form the basis of a targeted clinical proteomics assay for SARS-CoV-2 infection. 

Methods 
 
Case Study 
For establishing workflows to evaluate virus-specific peptides, three published cell culture           
datasets​22-24 which used SARS-CoV-2 infected Vero cell lines were chosen, along with five             
clinical datasets​25-29​. 
 
Cell Culture Datasets 
 
Gouveia ​et al. published a dataset (PXD018804) with SARS-CoV-2 infected Vero cells from             
Chlorocebus ​primates to generate a high-resolution mass spectrometry dataset. ​The second           
dataset was published by Grenga ​et al. (PXD018594) wherein a seven-day time course shotgun              
proteomics study was performed on ​Vero E6 cells infected by Italy-INMI1 SARS-CoV-2 virus at              
two multiplicities of infection. The third cell culture dataset chosen was published by Davidson ​et               
al. (PXD018241), which also utilized Vero E6 cells to investigate the viral transcriptome and              
proteome.  
 
Clinical Datasets 

The first clinical dataset chosen was from the study by Cardozo et al. (PXD021328 ​), wherein               
they collected bottom-up mass spectrometry (MS) data on combined oropharyngeal and           
nasopharyngeal samples from ten COVID-19 positive patient samples. ​The second clinical           
dataset was from the ​Ihling group (​PXD019423) to detect SARS-CoV-2 virus proteins from             
saline gargle samples of COVID-19 infected patients. The last dataset was obtained from the              
Rivera group (​PXD020394), where they ​performed comparative quantitative proteomic analysis          
from oro- and naso-pharyngeal swabs used for COVID-19 diagnosis. Datasets derived from            
COVID-19 patient lung biopsies (​PXD018094) and bronchoalveolar lavage fluid (BALF)          
(PXD022085) were analyzed to determine the utility of our workflow to identify SARS-CoV-2 in              
clinically relevant sample types. 

Sequence Database Searching 
 
The Galaxy workflow for peptide identification (​Figure 1, Figure 2a​) includes conversion of             
RAW MS/MS datafiles derived from Thermo Fisher instruments to MGF and mzML format. In              
the case of the cell culture study, the MGF files are searched against the combined database of                 
Chlorocebus sequences, contaminant proteins (cRAP) and SARS-Cov-2 proteins. For the          
clinical database, the resultant MGF files were searched against the combined database of             
Human Uniprot proteome, contaminants, and SARS-Cov-2 proteins database.  
 
For sequence database searching in the workflow, the search algorithms - X! tandem, MSGF+,              
OMSSA were used within SearchGUI​34 to generate PSMs, followed by False Discovery Rate             
(FDR) and protein grouping analysis using PeptideShaker​35​. The search parameters for           
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digestion, modifications, tolerance, and FDR were chosen accordingly from the published           
methods for each of these datasets (​Supplementary Data 1​). The peptide report generated             
using PeptideShaker was used to extract confident COVID-19 peptides. The peptides were            
validated using PepQuery analysis with MS tolerance of 10 ppm and MS/MS tolerance of 0.05               
Da. The SARS-CoV-2 peptides detected from the three cell culture datasets and two clinical              
datasets were merged with the peptide list from ​in silico analysis of genomic sequences by               
Orsburn ​et al​.​36 and target peptides from ​Gouveia et a ​l.​22 to generate a peptide panel for                 
interrogation of clinical data sets. The re-analysis of the dataset using the workflow is available               
online on the COVID-Galaxy website (​https://COVID-19.galaxyproject.org/proteomics​) and the        
workflows and outputs can be found ​online ​ ​(see Data and Workflow Availability​).  

Peptide Validation 

The SARS-CoV-2 peptide panel identified by sequence database searching and comprising 639            
peptides was subjected to the Peptide Validation workflow (​Figure 2b​), interrogating the clinical             
MS/MS datasets described above. The peptide validation workflow includes re-analysis by           
PepQuery as well as manual visualization and inspection in the Lorikeet application of             
Multi-omics Visualization Platform (MVP) to ascertain the quality of peptide sequences matched            
to MS/MS spectra. The workflow also included optional in-line characterization of these            
peptides by Galaxy-based searching against NCBI-non redundant (nr) BLAST-P and Unipept​37           
analysis. Further offline analysis (non-Galaxy based) was performed using NCBI BLAST-P           
analysis as well as the MetaTryp ​33​ coronavirus database.  

Results 
 
Sequence Database Searching Results 

Sequence database searching to generate peptide spectrum matches (PSMs) and identify           
peptides from the three cell culture datasets (​Figure 1a​) using the workflow shown in Figure 1a                
led to detection of 139 peptides, 99 peptides and 579 peptides, respectively. For the two clinical                
datasets analyzed using the workflow, we detected 76 and 8 peptides, respectively (​Table 1​).              
These peptides together represented 630 unique peptides corresponding to several proteins           
coded in the SARS-CoV-2 genome; to these we then added a further 6 unique peptides               
generated from ​in silico translated data by Orsburn ​et al​36 and 3 peptides exclusively detected               
by Gouveia ​et al.​22 from the deep proteomic analysis of CoviD-19 virus infected Vero cells, to                
generate a list of 639 unique SARS CoV-2 peptides ​(​Supplemental Table 1 ​). This 639-peptide              
panel was further used to interrogate the clinical datasets and determine the reliability of their               
detection using shotgun MS-based proteomics. BLAST-P analysis of the 639-peptide panel           
showed that these peptides mapped to 27 proteins and open reading frames within the              
SARS-CoV-2 genome (​Figure 3​), with individual protein sequence coverage ranging from 4.7%            
coverage (Proofreading exoribonuclease Guanine-N7 methyltransferase protein) to 93.7%        
coverage (Nucleocapsid protein) (​Supplementary Figure 1​). 

Peptide Validation Results 
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Having derived a comprehensive panel of 639 peptides detected across multiple COVID-19            
datasets, we then utilized a validation workflow based around the PepQuery tool to interrogate              
the dataset PXD020394, derived from oro- and naso-pharyngeal swabs collected in the clinic             
from patients positive and negative for COVID-19. This resulted in validation of 10 SARS-CoV-2              
peptides from our panel matching to MS/MS spectra generated in these clinically relevant             
samples ​(​Supplementary Figure 2​).  

We detected eight of these 10 peptides in COVID-19 positive sample replicates - with the               
peptide RGPEQTQGNFGDQELIR being detected in all positive sample replicates, followed by           
TATKAYNVTQAFGR and AYNVTQAFGR detected in 6 out of 10 replicate samples           
(​Supplementary Figure 2 ​). We also detected two peptides- GVEAVMYMGTLSYEQFK and          
CDLQNYGDSATLPK- from COVID-19 negative samples. 

We also re-analyzed the two clinical datasets used in the generation of the 639 panel (the                
second oro/nasopharyngeal dataset from Cardozo ​et al. as well as the saline gargling dataset),              
using our validation workflow. The validation workflow provides a complementary method to the             
initial sequence database searching method for confirming peptide spectrum matches, based           
primarily on the PepQuery tool. For the oro/nasopharyngeal dataset, we confirmed confident            
identification of 70 peptides using the peptide validation workflow (as compared to 76 detected              
using the initial sequence database searching workflow). For the saline gargling dataset, we             
confirmed the presence of 21 peptides using the peptide validation workflow (as compared to 8               
peptides detected using the peptide search workflow). Considering all peptides detected in            
clinical samples using the peptide validation workflow, we detected 87 peptides with confidence             
(​Table 1 ​). These validated peptides were assigned to known proteins from the COVID-19             
proteome. Most of the peptides detected in the upper respiratory tract were aligned to structural               
proteins making up the viral capsid such as nucleocapsid protein N, the viral matrix protein M,                
and the spike protein S; fewer peptides were aligned to proteins involved in viral replication such                
as papain-like protease, RNA-directed RNA polymerase, non-structural protein,        
2’-O-methyltransferase and host translation inhibitor (​Figure 3​). The highest number of peptides            
were identified in the oro/nasopharyngeal dataset which consisted of combined oropharyngeal           
and nasopharyngeal swabs analyzed by Cardozo ​et al​.; fewer peptides were identified from             
PXD019423 and PXD020493, which were derived from gargled saline samples and a second             
study of combined oropharyngeal and nasopharyngeal samples, respectively. 

Based on the sample-type from which they were detected (clinical samples versus ​in vitro cell               
culture experiments) and their source (empirically derived from MS/MS data versus theoretically            
determined based on genomic sequence data), we categorized them as being present or absent              
in the various datasets based on their confident detection using our validation workflow. We              
found that the validated peptides clustered into distinct groups based on their source sample              
and dataset of origin, and how they were originally identified (​Supplemental Table 1​). Eleven              
peptides were found to be highly consistent across the upper respiratory clinical datasets as              
well as the in vitro cell culture datasets. In considering theoretical peptides proposed by Orsburn               
et al​., eleven of those predicted peptides were in clinical samples and eight were detected in the                 
in vitro cell culture samples. Twenty-two SARS-CoV-2 peptides that were not initially identified             
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using the database search workflow were identified by matching to MS/MS spectra using the              
PepQuery-based validation workflow across multiple datasets. 

Clinical datasets from lung biopsies (PXD018094) and BALF (PXD022085) were interrogated           
using our PepQuery validation workflow and the 639-peptide panel to determine the applicability             
of our approach in detecting SARS-CoV-2 within the deeper respiratory tract. Our validation             
workflow was able to confidently match MS/MS to 15 peptides in the lung biopsy dataset and 37                 
peptides in the BALF dataset. In comparing the peptides found within the upper respiratory              
samples to those detected within the lung biopsy samples and the BALF samples, it is clear that                 
the majority of the peptides detected in the deep lung datasets are unique to the sample being                 
analyzed, with no peptides common to all three of the upper respiratory tract samples              
(​Supplementary Table 1​). Despite this apparent disparity, BLAST-P analysis reveals the           
alignment of SARS-CoV-2 peptides identified in deep lung tissue corresponding to a similar             
complement of SARS-CoV-2 proteins as the upper respiratory tract datasets, including           
additional structural proteins such as the Spike protein and Membrane glycoprotein as well as              
other nonstructural and replication proteins such as RNA-directed RNA polymerase, Protease           
3CL-PRO, etc. In addition, the lung biopsy and BALF datasets also included MS-data from              
patients negative for COVID-19. In contrast to the 2 SARS-CoV-2 PSMs identified in the              
oro/nasopharyngeal samples from COVID-19-negative patients, samples analyzed from lung         
biopsies of COVID-19-negative patients identified 21 SARS-CoV-2 peptides. Similarly, 37          
peptides were detected in BALF samples isolated from patients that tested negative for             
COVID-19.  

The last category of peptides that we evaluated were detected from COVID-19 cell culture              
studies (​Supplementary Table 1 and Supplementary Figure 3​). These peptides were derived            
from protein sequences that were not available in the initial Uniprot sequence databases but              
were subsequently added as more COVD19 strains were sequenced ​39, 40​. We added these             
sequences to the sequence database to enable the detection of these COVID-19 proteoforms.             
Using this updated sequence database, we detected and validated twelve peptides from            
Accessory protein ORF9b from SARS-CoV-2 and two peptides from ORF1ab polyprotein from            
SARS-CoV-2. These peptides were observed only in the cell culture datasets, and not in the               
clinical datasets (​Figure 3​).  

Identifying detected peptides with highest spectral quality. 

As a quality check on our bioinformatic workflows, we utilized the Multi-omics Visualization             
platform​31 (MVP) to manually assess the spectral quality of the peptides that passed PepQuery              
validation, as well as elucidate the distribution of these peptides throughout the six datasets we               
analyzed. In order to be useful for targeted MS-based assays for detecting SARS-CoV-2, it is               
critical that the peptides used as targets have excellent spectral quality to ensure adequate              
reliability in detecting and quantifying these peptides across a variety of clinical samples. Here,              
we focused on four peptides (AYNVTQAFGR, MAGNGGDAALALLLLDR,       
RGPEQTQGNFGDQELIR, DGIIWVATEGALNTPK) found in the positive patients from the         
second oro/nasopharyngeal dataset (PXD020934) that were also seen in the other clinical            
datasets as well as the two peptides found in the negative patients (CDLQNYGDSATLPK,             
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GVEAVMYMGTLSYEQFK) from the same oro/nasopharyngeal dataset as benchmark examples         
for manually validating our spectra. For these selected peptides, in the four virus-positive             
samples we found a largely complete b- and/or y-ion series with at least three consecutive ions                
detected in either series (​Supplementary Figure 3​). In addition, we found that these reporter              
ions showed intensities considerably higher than the background noise of the spectra. By             
contrast, the two peptides found in the negative samples had a very few fragment ions detected                
which scarcely rose above the level of the background noise (​Supplementary Figure 3​).             
Together, the MS/MS spectra of these six peptides were used to generate guidelines which              
were then used to manually interrogate the rest of the SARS-CoV-2 spectra as being high or                
low confidence by the bioinformatics software and found that 16 of the peptides validated in               
PepQuery had MS/MS​ ​spectra suitable for confident identification.  

As a part of our investigation we detected and validated eight peptides that were predicted by                
Orsburn ​et al. (​Supplementary Table 1, Supplementary Figure 3 ​). However, Lorikeet           
visualization of the PSM quality detected only two peptides (with sequences ADETQALPQR and             
FDNPVLPFNDGVYFASTEK) in the clinical sample PXD021328 dataset; of these the          
ADETQALPQR was also detected in all three cell cultures sample datasets while the             
FDNPVLPFNDGVYFASTEK sequence peptide was detected in two of the three cell culture            
samples (​Supplementary Table 1, Supplementary Figure 3​). All the eight peptides were            
found to have good quality of PSMs in the cell culture datasets by using manual validation. Out                 
of these eight peptides, a peptide with sequence HTPINLVR was detected in all cell culture               
experimental datasets (​Supplementary Table 1​). 

We were able to validate 22 peptides using PepQuery which were not detected in the database                
search workflow (​Supplementary Table 1​). Subsequent manual validation of these peptides           
determined only two peptides had high quality spectral annotations. The peptide of sequence             
DGIIWVATEGALNTPKDHIGTR was validated by using PepQuery and manual visualization in          
the PXD019423 dataset along with another peptide with sequence FTALTQHGKEDLK from the            
PXD02132 dataset (​Supplementary Figure 3​).  

In order to determine the optimal candidates for the detection of SARS-CoV-2 using clinical              
MS-based assays, we resolved to focus on those peptides that passed PepQuery with the              
highest confidence, and subject these to manual inspection of spectral quality. We therefore             
sorted the results of our PepQuery analyses to include only those which had the highest               
confidence possible (p-value < 0.0001) to maximize the likelihood of passing our spectral             
annotation thresholds. In filtering the clinical datasets, we see a notable difference between the              
datasets derived from the upper respiratory tract (oro/nasopharyngeal datasets 1 and 2 as well              
as the saline gargling dataset) and those derived from deep lung tissue (the lung biopsy and                
BALF datasets) (​Figure 4​). In filtering the PepQuery results from the upper respiratory tract              
datasets, we noted that the structural proteins that had the most identified peptides- the              
nucleocapsid, membrane protein, and spike proteins- show relatively little elimination of PSMs            
based on our statistical thresholds, while the proteins involved in viral replication are generally              
lost, indicating relatively high confidence in the PepQuery validation of the peptides of the viral               
structural proteins. By contrast, peptides found in all proteins in the lung biopsy and BALF               
datasets were filtered out at this step, yielding only 3 and 4 high confidence peptides in each                 
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dataset, respectively, leaving single peptides of nucleocapsid, membrane protein, and spike           
protein in the lung biopsy samples and single peptides of the spike protein, papain-like              
protease, non-structural protein 2, and RNA-dependent RNA polymerase. 

The spectra of those peptides found to have high-confidence in the clinical datasets (based on               
PepQuery scoring) were then analyzed using MVP, which leverages the Lorikeet viewer for             
visualization of annotated peptide MS/MS spectra. Manual analysis of the high confidence            
peptides detected in the lung biopsy and BALF datasets using our previously established             
guidelines showed only the single peptide FLALCADSIIIGGAK, a component of Non-structural           
protein 2 in the BALF dataset as having a good quality spectrum, suggesting that the use of                 
clinical samples collected using more invasive methods from deep within the lung may be              
unsuitable for detection of SARS-CoV-2 using a clinical proteomics strategy. In contrast, 11             
peptides in the upper respiratory tracks had high-confidence and high-quality MS/MS-spectra.           
Of these, we then chose four peptides- MAGNGGDAALALLLLDR, DGIIWVATEGALNTPK,         
RGPEQTQGNFGDQELIR, and IGMEVTPSGTWLTYTGAIK- which were identified in at least         
two of the three upper respiratory clinical datasets, determining these to be the most reliable               
peptides for proteomics-based detection of SARS-CoV-2 (​Figure 5​).  

Viral specificity of high-quality peptides detected in SARS-CoV-2 

We performed taxonomic analysis using MetaTryp 2.0 to validate the specificity of the four              
highest-quality peptides detected in clinical samples to coronaviruses (​Figure 6a​). Using this we             
found that these peptides mapped to proteomes of several coronaviruses, with each showing             
alignment to SARS-CoV-2. To gauge the degree of specificity of these peptides for             
SARS-CoV-2 over other coronaviruses and their potential human host, we performed BLAST-P            
analysis of these peptides against proteomes for SARS-CoV-2, humans, and eight known            
pathogenic human coronaviruses. To interrogate all possible matches to the target organisms, a             
relatively relaxed E-value cutoff of 1 was used. In considering the sequence alignment of these               
peptides, the peptides examined found a high degree of alignment to the nucleocapsid protein              
(N-protein) of SARS-CoV-2 (​Figure 6b​). Each of the four distinct peptides that showed             
alignment to the N-protein also showed 100% sequence homology uniquely to SARS-CoV-2,            
with decreased sequence alignment in other closely related coronaviruses. One peptide           
sequence, MAGNGGDAALALLLLDR, showed perfect alignment to the SARS-CoV-2        
nucleocapsid protein with no alignment to the same protein in any other viruses. In all cases, no                 
alignment to any human proteins was noted. 

Discussion and Conclusions: 

Bottom-up proteomics has been used to characterize tumors in biopsied breast cancer tissues​42,             

43​, to explore the phenotypic changes that occur with opportunistic fungal infections in HIV/AIDS              
patients​44​, and even differentiate between COVID-19 patients at differing WHO severity           
grades​45​. While these experiments effectively measure the phenotype of patients to infer a             
disease state, direct detection of proteins using targeted MS-based methods (SRM) from            
disease organisms can be used as a diagnostic assay for diseases. For these, it is critical that                 
the most reliable peptides, specific to the protein of interest, are determined. 
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The pressing nature of the COVID-19 pandemic presents an opportunity for the use of targeted               
MS-based proteomics to supplement conventional RT-qPCR diagnostic procedures​11 to mitigate          
the false negatives inherent in the detection of viral RNA​46​, along with other advantages of direct                
detection of peptides, such as chemical stability of the target molecules. Ideally, direct detection              
of diagnostic peptides would be achieved in samples easily collected in the clinic using              
non-invasive methods. While many labs have begun proteomic analysis of samples to identify             
SARS-CoV-2 infection in both in-vitro models and clinical samples, the development of targeted             
assays based on this work requires preliminary work to determine those peptides which are              
most reliably detected and most specific for unambiguous diagnosis of infection. To mitigate this              
and establish the best targets possible for a SARS-CoV-2 clinical proteomics assay, we             
identified detectable SARS-CoV-2 peptides using Galaxy-based workflows. To narrow this list           
down to the most confident and reliably detected peptides, we then utilized a bioinformatics              
workflow built around the PepQuery search engine. Developed by Wen et al.​30​, this search              
engine interrogates raw mass spectrometry data for spectral matches to pre-chosen peptide            
sequences of interest and compares these matched spectra to reference proteomes to see             
whether the peptide of interest is a better match to the data than any reference peptide, scoring                 
the peptide match much faster and with much less processing power needed than a              
conventional sequence database search. By using PepQuery on peptides that have already            
been designated as potential matches, we can utilize the increased statistical power of using              
multiple peptide search engines​47 common to many proteomics software suites on a much faster              
time scale. Using this as well as other tools available in the Galaxy platform (e.g. the MVP and                  
Lorikeet tools for MS/MS visualization) we were able to interrogate publicly available data to              
ascertain the most reliable peptides for detecting SARS-CoV-2. 

In the two oro/nasopharyngeal datasets and gargled saline dataset we examined, we found 75              
peptides within the original list of 639 detected peptides that showed a high-confidence match to               
SARS-CoV-2 proteins over human proteins or other coronavirus proteins, suggesting that the            
unambiguous detection of SARS-CoV-2 in patients using proteomics technology is theoretically           
possible. These peptides were found in proteins throughout the viral particle (​Figure 3​), with              
more structural protein peptides detected than replication proteins. It was observed that the             
datasets stemming from the clinical samples had noticeably fewer peptides validated in them             
compared to those from ​in vitro ​experiments; this is potentially due to larger amounts of               
material, the differential abundance of host proteins in clinical samples compared with cultured             
samples​48​, and the lack of viral clearance from cultured cells​49​. Of these, manual annotation              
found that 16 peptides could be truly said to have good quality MS/MS spectra, based on our                 
thresholds for PSM quality and annotation. 

From the 16 validated peptides with high-quality spectra, 11 peptides also were known to be               
high-confidence matches in PepQuery. From these we chose 4 peptides that had            
high-confidence matches in PepQuery, were consistently seen in clinical samples, and were            
unique to SARS-CoV-2, making them the best candidates for diagnosis of COVID-19 using             
targeted MS-based methods. It is notable that these are all found within the nucleocapsid              
phosphoprotein, or N-protein. The nucleocapsid phosphoprotein is common to coronaviruses          
and serves to complex with and stabilize the viral RNA genome and package it into the viral                 
particle ​50, 51​. The viral ribonucleoprotein complex of N-protein and gRNA is localized beneath the              
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matrix proteins (M-proteins) and spike proteins (S-proteins) that make up the capsid surface ​52, 53​.              

As many copies of N-protein are needed to stabilize the viral RNA, the N-protein is thought to be                  
one of the most abundant proteins in the assembled SARS-CoV-2 viral particle ​54​; analysis of              
SARS-CoV transcript levels in infected cells show the N-protein to be the most abundant              
RNA-based sub-genome within the cell ​55​. Taken together, these phenomena explain the           
prominence of N-protein peptides across the proteomic datasets we examined. As the N-protein             
is a frequent amplification target for RT-qPCR assays as per FDA guidelines for diagnosis​56​, we               
believe that our results are complementary to current protocols in screening for and diagnosis of               
COVID-19. 

In addition to upper respiratory tract clinical samples, we profiled datasets derived from deep              
within the respiratory tract, comprising a dataset derived from COVID-19 patient lung biopsies             
as well as a separate dataset of bronchoalveolar lavage fluid (BALF) samples from COVID-19              
patients; we analyzed these MS-data against our 639 peptide panel to determine whether our              
methodology was suitable for SARS-CoV-2 detection in these samples. We found a lack of              
high-confidence peptides with high-quality spectral annotations in these samples, with only a            
single MS run from the PXD022085 sample yielding the peptide FLALCADSIIIGGAK which was             
not found in the datasets derived from higher up in the respiratory tract. Our results would                
suggest that samples collected using invasive methods (biopsy, lung fluid extraction), in addition             
to being taxing on the patients to collect, demonstrate insufficient concentrations of viral             
particles to be robustly detected using MS-based methods and the workflows presented here;             
Conversely, our results also suggest that samples collected using minimally invasive methods            
from the upper respiratory tract (oropharyngeal/nasopharyngeal swabs and gargling samples)          
could be suitable for reliable detection of the SARS-CoV-2 virus targeting the high-confidence             
peptides we identify here – offering an optimal method for high-throughput diagnosis of             
infection.  

While we believe the peptides presented here constitute promising targets for COVID-19            
diagnosis, there are further experiments required to establish targeted proteomics as a viable             
methodology for detection of SARS-CoV-2 infection in the clinical setting. The limits of detection              
of these peptides need to be reliably established in larger numbers of human samples collected               
in the clinic to determine the minimal number of viral particles that can be detected. This could                 
help determine the optimal sample type and procedure for collection to ensure reliable results.              
Two of the four most reliably detected peptides also contain methionines, and one carries a               
mis-cleaved tryptic site – all potential factors affecting accurate quantification by SRM that             
require further testing for developing robust targeted detection methods. In addition, proteomic            
analysis of samples collected at different stages of SARS-CoV-2 infection should be performed             
to determine viability of targeted proteomics for detection during the full life cycle of infection.               
Finally, the sample processing that accompanies bottom-up proteomics​57 should be optimized to            
be performed on a rapid time scale. Most conventional bottom-up proteomics experiments            
utilize trypsin digestions which occur overnight with incubation at 37°C, meaning a single             
sample would have to be processed and analyzed over the course of two days; this would have                 
to be significantly reduced as the conventional 24-48 hour complete turnaround of RT-qPCR             
assays is being decreased through the use of strategies such as direct RT-qPCR​12​, RT-LAMP​13​,              
and CRISPR-based amplification strategies​14, 58, 59​. The turnaround time of clinical proteomics            

10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.09.21251427doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.09.21251427
http://creativecommons.org/licenses/by-nc-nd/4.0/


can potentially be decreased for individual samples using modified or alternative protein            
digestion enzymes with higher rates of reactivity​60​; in addition, automation of clinical proteomics             
technology can provide reproducible, robust analyses of patient samples​61, 62​. 

In addition to peptides derived empirically from clinical and ​in vitro datasets, we also included               
theoretical SARS-CoV-2 peptides predicted bioinformatically by Orsburn ​et al​. in our panel for             
validation; in doing so we were able to validate eight peptides in both clinical and ​in vitro                 
datasets. It is worth noting, however, that of these eight peptides only two peptides were               
observed to have good quality PSMs in the clinical data, supporting the need for caution in                
accepting peptide identifications. The validation workflow presented here was also able to            
identify peptides in MS data which conventional unbiased algorithms, such as our database             
search workflow presented in Figure 2b, are unable to identify; this may be of use in the                 
analysis of complex patient and environmental mass spectrometry data collected for alternate            
purposes in the detection of SARS-CoV-2 under various conditions. With the increased            
surveillance for genomic variants of the SARS-CoV-2 virus​63​, we also anticipate the utility of the               
peptide validation workflow in detecting variants when the variant peptide sequences are added             
to the 639-peptide panel. 

In conclusion, we interrogated multiple proteomic datasets from COVID-19 patients and ​in vitro             
experiments using bioinformatics workflows in order to determine which peptides from           
SARS-CoV-2 would make suitable targets for a clinical proteomics assay and which would make              
poor targets, potentially resulting in false negatives. Through our analyses we found that of the               
639 peptides that are readily detected across all samples, 87 of these were found to have a                 
significant match within the SARS-CoV-2 proteome than that within the human proteome or             
other coronavirus proteomes. These peptides were narrowed down to 4 high-confidence           
peptides with excellent quality spectral annotations matching these sequences, found across           
most of the upper-respiratory tract clinical datasets analyzed in this study which we believe              
would be ideal candidates for diagnosis of COVID-19 via targeted proteomics.  

Finally, the workflows employed here for peptide identification and validation are           
well-documented, open-source, and hosted on the Galaxy Europe platform where they can be             
edited, modified, or interfaced with other relevant bioinformatics tools to aid in analysis of              
proteomics data. We believe that these workflows will be extremely useful for developing and              
evaluating diagnostic proteomic assays for pathogenic infections​64​, protein sequence mutations          
arising from DNA damage, oncogenesis, etc., beyond the current application to COVID-19. 
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a) 

 
b) 

 
Figure 1: MS/MS datasets used in the determination of optimal SARS-CoV-2 peptides for COVID-19              
diagnosis. a) Cell culture, clinical, and bioinformatic datasets used to generate the SARS-CoV-2 peptide panel. b)                
Clinical datasets queried using the initially characterized peptide panel from a) to determine the feasibility of                
COVID-19 diagnosis via targeted proteomics as well as determine the optimal peptide targets for those assays.                
Figures were made using BioRender. 
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Table 1: Peptides generated from MS datasets 
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Manuscript 

(Proteome 

Xchange ID) 

SARS-CoV-2 peptides 

detected using 

Database Search 

Workflow 

Detected 

peptides 

SARS-CoV-2 peptides 

detected using Peptide 

Validation Workflow 
 

Cell-culture 

datasets 

Gouveia et al. 

(PXD018804) 
139 peptides 

630 

distinct 

peptides 

- 
 

Grenga et al. 

(PXD018594) 
99 peptides - 

 

Davidson et al​. 
(PXD018241) 

579 peptides - 
 

     

Clinical 

datasets 

Cardozo et al. 

(PXD021328) 
76 peptides 70 peptides 

87 

distinct 

peptides 

Ihling et al. 

(PXD019423) 
8 peptides 21 peptides 

Rivera et al. 

(PXD020394) 
- - 10 peptides 

Leng et al. 

(PXD018094) 
- - 14 peptides  

Zeng et al. 

(PXD022085) 
- - 10 peptides  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.09.21251427doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.09.21251427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 

a) 

 

b) 

 

 

20 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.09.21251427doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.09.21251427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Workflows used in the interrogation of MS-data to identify and validate SARS-CoV-2 peptides ​a)                
Galaxy-based sequence database searching workflow to detect and confirm SARS-CoV-2 peptides. MS/MS spectra             
from cell culture or clinical datasets were searched against appropriate protein sequence databases (protein              
sequences from COVID-19, contaminants, and Human Protein sequences) using SearchGUI/ Peptide Shaker. The             
peptide output was filtered to extract COVID-19 peptides and the output was confirmed using PepQuery to extract                 
confident peptides. mzidentML generated through this workflow was subsequently used for analysis in the Lorikeet               
viewer; b) Workflow to validate detected SARS-CoV-2 peptides. A list of 639 Peptides (theoretical and validated                
peptides obtained from the cell-culture and clinical datasets) was subjected to PepQuery analysis of COVID-19               
datasets to identify the presence of SARS-CoV-2 peptides. The quality of the peptide spectral matches (PSMs) was                 
reviewed using Lorikeet visualization within the Multi-omics Visualization Platform for further validation. Peptides were              
also searched against the NCBI-non redundant database and Unipept 4.3 for taxonomic annotation. 

 

 

Figure 3: Protein assignment of detected and validated SARS-CoV-2 peptides​: Circos plot of peptides against               
SARS-CoV-2 proteins (outermost ring). Of the 639-peptide panel (2 ​nd outermost ring), many peptides could be               
identified using our validation workflow in clinical and cell culture datasets (3 ​rd outermost ring). Peptides derived from                 
ORF9b, papain-like protease, Nsp4, Nsp10, uridylate endoribonuclease (Nsp15) and certain spike protein peptides             
were only found in cell culture datasets (2 ​nd innermost ring). Final peptides chosen for targeted analysis are                 
annotated in the innermost ring. Circos plot was generated in Galaxy​38​. 
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Figure ​4​: Peptide spectral matches (PSMs) of SARS-CoV-2 peptides in the upper respiratory clinical datasets               
are of higher confidence than deep lung datasets ​. PSMs validated in oro/nasopharyngeal datasets, saline              
gargling samples, lung biopsy samples, and bronchoalveolar lavage fluids (BALF) using PepQuery as grouped into               
the proteins they aligned to; columns correspond to those peptides that passed PepQuery validation with minimal                
required confidence (left) as well as those associated with higher confidence (right).  
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Figure 5: MS/MS spectra of SARS-CoV-2 peptides most confidently identified in PepQuery (p-value < 0.001) and                
across the most clinical samples. Spectral annotation quality was interrogated using the Lorikeet viewer implemented               
within the Multi-Omics Viewing Platform (MVP); images for annotated PSMs for these peptides were created using                
the PDV platform from the Zhang lab​41​. 
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Figure 6: Specificity of target peptides as for coronaviruses and for SARS-CoV-2 a) MetaTryp taxonomic analysis of                 
the 4 most consistently found peptides. Coronaviruses with matches to peptides are highlighted in red and font size is                   
correlated with the number of peptides that show a match in that coronavirus. b) Sequence identity of peptides that                   
show BLAST-P alignment with viral nucleocapsid protein 
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