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Abstract

COVID-19 epidemics have varied dramatically in nature across the United States, where some counties have
clear peaks in infections, and others have had a multitude of unpredictable and non-distinct peaks. In this
work, we seek to explain the diversity in epidemic progressions by considering an extension to the
compartmental SEIRD model. The model we propose uses a neural network to predict the infection rate as a
function of time and of the prevalence of the disease. We provide a methodology for fitting this model to
available county-level data describing aggregate cases and deaths. Our method uses Expectation-Maximization
in order to overcome the challenge of partial observability—that the system’s state is only partially reflected in
available data. We fit a single model to data from multiple counties in the United States exhibiting different
behavior. By simulating the model, we show that it is capable of exhibiting both single peak and multi-peak
behavior, reproducing behavior observed in counties both in and out of the training set. We also numerically
compare the error of simulations from our model with a standard SEIRD model, showing that the proposed
extensions are necessary to be able to explain the spread of COVID-19.
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1 Introduction
Having an accurate understanding of the spread of
COVID-19 is essential to be able to effectively con-
tain the virus, and necessary for the deployment and
allocation of resources. In order to understand why the
spread appears to differ between communities, we re-
quire a mathematical model of disease spread capable
of expressing the differences. A canonical model of dis-
ease spread is the SEIRD model, in which each individ-
ual is either susceptible to (S), exposed to (E), infected
by (I), recovered from (R), or who have died from
(D) the disease (Hethcote, 2000; Kermack and McK-
endrick, 1927). Compartmental SEIRD models con-
sider only the aggregate number of individuals with
each disease state, and specify a set of differential equa-
tions that govern how the compartmental populations
change with time.

The well-studied compartmental SEIRD model is
popular because of its simplicity (Hethcote, 2000). The
standard model, however, predicts a single, clear peak
in infections. While certain counties in the northeast
of United States appeared to exhibit this behavior for
a long duration, most other counties do not.
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In this work, we seek to fit disease models to data
that can account for the diversity in COVID-19 out-
breaks across the US. Specifically, we seek to learn
a model that predicts clear peaks for counties in the
northeast that had them, and predicts multiple, flatter
peaks for those that did not.

In order to build models capable of expressing more
realistic behavior, we relax two assumptions made by
the standard compartmental SEIRD model:

(A1) Stationarity—the disease parameters remain con-
stant over time, and,

(A2) Non-reactivity—the disease parameters remain
constant regardless of the prevalence of the dis-
ease.

We hypothesize that relaxing these assumptions allows
us to better explain the diversity of behavior seen in
reality.

To relax these assumptions, we consider a “reactive”
compartmental SEIRD model (R-SEIRD) in which the
transmission rate is a function of both time and of the
number of infected individuals. To avoid imposing an
incorrect prior on the functional form of this relation-
ship, we use a neural network to model it.

A common difficulty in fitting such models to avail-
able data is that of partial observability. SEIRD mod-
els have states that vary with time according to their
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dynamic parameters. Because the available data are
not time-series of the models’ states, but only partial
observations of it (daily new cases and deaths), we em-
ploy tools from system-identification (Ljung, 1999) in
order to fit these models. Specifically, we use a tech-
nique called Certainty-Equivalent Expectation Maxi-
mization (CE-EM) (Menda et al., 2020), which was re-
cently shown to be a reliable and low-variance method
for learning the parameters of partially observable dy-
namical systems.

In this work, we present a methodology for fitting
R-SEIRD models to available data, and validate our
hypotheses by showing that learned models can ex-
plain the diversity of behavior seen across the United
States. Through our experiments, we show that:
1 Learned R-SEIRD models with appropriate initial

conditions, and when simulated determistically,
produce behavior consistent with what was ob-
served in counties across the United States, and,

2 The simulation error of R-SEIRD models is lower
than that of standard SEIRD models when com-
pared against trajectories from outbreaks across
the United States.

The contributions of this work are therefore to (1)
propose a model that relaxes the assumptions of the
standard SEIRD model, (2) provide a methodology
for fitting this model to available data, and (3) ex-
perimentally demonstrate that this model is capable
of expressing the diversity of behavior observed across
the United States.

This paper is organized as follows. In Section 2, we
formalize compartmental SEIRD models and review
the CE-EM algorithm, as well as related approaches
to fitting such models to data. In Section 3, we intro-
duce the R-SEIRD model and describe our methodol-
ogy for fitting it to available data. In Section 4, we fit
the model to data from a selection of representative
counties across the United States and show that it is
able to reflect the observed behavior. Finally, in Sec-
tion 5, we discuss possible limitations to the scope of
our work, as well as directions for further study.

2 Background
In this section, we review compartmental SEIRD mod-
els, as well as CE-EM, an algorithm for fitting partially
observed state-space models to data. We also discuss
the literature addressing related problems.

2.1 SEIRD Models
SEIRD models are mathematical models of the spread
of an infectious disease. Every individual in a popula-
tion is in one of five states—they are either susceptible
(S) to the disease, exposed (E) to the disease, infected
(I) by the disease, or who have recovered (R) or died

(D) from the disease (Hethcote, 2000). In this context,
we assume an exposed individual is ‘pre-symptomatic’,
i.e. they are able to spread the disease but have not
yet tested positive for it, while infected individuals are
symptomatic and have tested positive for the disease.
There are numerous extensions to this model. For ex-
ample, a SEIR model typically groups those who have
recovered and died from the disease into a single state.
SEIRD models may also differ in their modeling of re-
infection, limited testing, or asymptomatic and quar-
antined individuals.

2.1.1 Compartmental Models
In reality, each individual interacts with only a subset
of individuals in the population, and thus the spread
of the disease ought to be considered as propagating
over a graph of sparsely connected nodes. However,
by introducing this fidelity into the model, the state
of the system exponentially grows with the number of
individuals, and the task of fitting the model to data
becomes difficult. A compartmental SEIRD model ig-
nores the network structure of a population by making
an assumption that the population is homogeneously
mixed. That is, we assume that every individual in the
population is equally likely to interact with any other
individual in the population on a given day. By mak-
ing this assumption, we can dramatically simplify the
state of the system. We need only track the number
of individuals in each disease state, referred to as the
compartmental populations, and not specific individu-
als.

We can model the dynamics of the state xt =
[St, Et, It, (RD)t]

> as the following deterministic sys-
tem of differential equations:

d

dt


S
E
I
RD

 =


−
(
βE

StEt

N + βI
StIt
N

)
βE

StEt

N + βI
StIt
N − γE

γE − λI
λI

 (1)

Here, the parameters βE and βI (referred to as the
infection rates) are interpreted as the average number
of individuals that an exposed or infected individual
comes in contact with per unit time, multiplied by the
probability that the contact results in disease trans-
mission, respectively. The parameter γ specifies the
average number of exposed individuals who transition
to the infected state, per unit time, and λ specifies the
average number of infected individuals who recover or
die, per unit time. We define infected individuals to
be those who have tested positive for the disease, and
thus γ−1 is the average amount of time it takes for
someone who contracted the disease to test positive
for it. The recovered-deceased (RD) compartment in-
cludes both individuals who have truly recovered from

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.09.21251440doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.09.21251440
http://creativecommons.org/licenses/by-nc-nd/4.0/


Menda et al. Page 3 of 9

the disease and those who have died from it. Hence,
λ−1 is the average amount of time it takes for someone
to no longer be infectious after having tested positive,
as a result of recovery or death. If we assume a fixed
mortality rate µ for the disease, then we can compute
the number of individuals who have died from the dis-
ease as Dt = µ(RD)t, and those who have recovered
from it as Rt = (1− µ)(RD)t.

The above framing describes a deterministic dynam-
ical system. There are many methods for framing com-
partmental SEIR systems using stochastic differential
equations (Greenwood and Gordillo, 2009), and one
such formulation will be discussed in Section 3.

It is worth noting the various effects not modeled
here. In this model, we do not account for individuals
who never develop symptoms. Furthermore, this model
assumes an individual’s infectiousness changes when
they test positive—the truth of which may depend on
the delays experienced with RT-PCR testing. SEIR
models can be extended to account for these effects,
though such extensions may introduce more parame-
ters and not be identifiable from the available data.

It would be straightforward to learn the parame-
ters θ = [βE , βI , γ, λ, µ] from data if we could directly
observe the compartmental populations. However, the
available data is typically only of the aggregate tran-
sitions from the E compartment to the I compart-
ment, when individuals test positive for the disease,
and aggregate transitions from I to R, when individu-
als recover from or die due to the disease. As a result,
estimation of θ must be performed under partial ob-
servability. Methods for doing so, including CE-EM,
will be discussed next.

2.2 Certainty-Equivalent Expectation Maximization
Suppose we seek to find the parameters of the following
state-space dynamical system:

xt+1 = fθ(t, xt) + wt; wt ∼ pw(·)
yt = hθ(t, xt) + vt; vt ∼ pv(·)

(2)

Here, xt is the state of the system, fθ(t, xt) is a param-
eterized model of the dynamics, wt is an additive pro-
cess noise term, and pw is the distribution from which
wt is sampled. Furthermore, yt is an observation of xt,
hθ(t, xt) is a parameterized observation model, vt is the
observation noise term, and pv is the distribution from
which vt is sampled. In a nonlinear Gaussian system,
pw and pv are multivariate Gaussian distributions.

Methods for parameter estimation typically attempt
to quantify the likelihood p(y1:T | θ) of a time-series of
observations y1:T given some choice of parameters θ. A
set of methods called approximate Bayesian computing
(ABC) use this estimate to characterize the Bayesian

posterior p(θ | y1:T ) using approximate methods such
as Markov Chain Monte Carlo (Brown et al., 2018;
Sunn̊aker et al., 2013). Maximum-likelihood (MLE)
methods attempt to find the likelihood maximizing
parameters θML = arg max

θ
p(y1:T | θ). Both meth-

ods rely on being able to estimate the data likelihood
p(y1:T | θ) with low-variance.

In order to estimate the data likelihood, we must
marginalize over the unobserved states of dynamical
system.

p(y1:T | θ) =

∫
p(y1:T , x1:T | θ) dx1:T (3)

Many approaches to fitting SEIR models to data as-
sume known initial conditions x1 when estimating
p(y1:T | θ) (Gu, 2020; He et al., 2020; Korolev, 2021).
Key drawbacks to such approaches are their sensitivity
to the choice of x1, as well as a degradation in their
ability to find global optima if being fit to long time-
series. Since computing this expectation is generally
intractable without knowing initial conditions and for
long time-series, many approaches instead find the pos-
terior distribution over states, i.e. p(x1:T | y1:T , θ), and
then approximate quantities of interest using Monte-
Carlo samples (Kantas et al., 2015).

In a subset of MLE methods, the smoothing distri-
bution distribution p(x1:T | y1:T , θ) is used to estimate
the joint data log-likelihood:

Q(θ, θk) = Ex1:T∼p(·|y1:T ,θk) [log p(y1:T , x1:T | θ)] (4)

The function Q(θ, θk) is then maximized to yield
θk+1, and this two-step procedure is repeated un-
til convergence, in an algorithm called Expectation-
Maximization (EM) (Dempster et al., 1977). Such ap-
proaches overcome the need to precisely know x1 and
can straightforwardly handle long time-series (Menda
et al., 2020).

Various algorithms differ in how they compute
the smoothing distribution. ParticleEM uses particle
smoothing, an approach that uses sequential Monte-
Carlo to approximately sample from the smoothing
distribution (Kantas et al., 2015; Schön et al., 2011).
Though this approach makes very few assumptions, it
can require prohibitive number of Monte-Carlo sam-
ples to yield sufficiently low variance estimates of
Q(θ, θk).

The Certainty-Equivalent EM (CE-EM) algorithm
makes the approximation that p(x1:T | y1:T , θ) can
be modeled by a Dirac-delta function located at the
smoothing distribution’s mode (Menda et al., 2020).
In the case where pw(·) and pv(·) are Gaussian dis-
tributions, CE-EM can efficiently find an estimate for
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θML with low-variance using block-coordinate ascent.
However, by making this approximation, the algorithm
is known to be biased in the presence of large process
noise.

In this work, we propose to use CE-EM to fit SEIRD
models, including our proposed extension to them, to
available county-level data. As one might expect, such
an approach should yield inaccurate results if the dis-
ease progression is highly stochastic, or poorly mod-
eled by a compartmental model. However, we will show
that even when fitting a single model to data from six
counties with diverse epidemics, simulations from the
model appear to reflect reality.

2.3 Related Work
Since the dawn of the COVID-19 pandemic, many ef-
forts have been directed at forecasting its evolution, as
well as fitting modified SEIR models to specific out-
breaks (Ahmad et al., 2020; Naudé, 2020). Approaches
vary in their characterization of the model, and their
methodology for parameter estimation under partial
observability. Korolev (2021) demonstrates issues with
the identifiability of the SEIRD model and presents an
estimation technique for the basic reproduction num-
ber R0. They fit a standard SEIRD model to COVID-
19 data but assume known initial conditions to ad-
dress partial observability—an assumption that can
only made in restricted settings. He et al. (2020) use
particle swarm optimization to optimize the param-
eters of a SEIR model extended to account for hos-
pitalized and quarantined individuals. They also ad-
dress partial observability by assuming known initial
conditions, but only fit to a single, short trajectory
of data from the Hubei province in China. Arik et al.
(2020) introduce additional data sources such as mo-
bility as covariates to expand the explanatory power
of SEIR models, and specify a distribution over ini-
tial conditions to overcome partial observability. One
of the more successful approaches to forecasting the
early pandemic progression also fit SEIR models with
a subset of variables allowed to vary with time (Gu,
2020). Their approach also assumes a known initial
condition, and finds parameters by minimizing simu-
lation error.

Recent works (Dandekar and Barbastathis, 2020;
Melin et al., 2020; Wieczorek et al., 2020) have also
attempted to use neural networks for the purpose of
forecasting the spread of COVID-19. While Melin et al.
(2020); Wieczorek et al. (2020) do not use neural-
networks to model relationships within a SEIR model,
Dandekar and Barbastathis (2020) use them to model
a quarantine control function. Similar to other dis-
cussed methodologies, they assume initial conditions
to overcome partial observability. Yang et al. (2020)

fit both a SEIR model with additional compartments,
as well as a black-box LSTM to a short time-series
of COVID-19 infection data from Hubei, China, and
compare their forecasting ability. Their SEIR model is
not fit to the data by attempting to reproduce a time-
series, but by linearizing the model around certain set
points and assuming values for unknown quantities.

To our knowledge, our work is the first to use a
neural network to model the relationship between
time, prevalence, and infection rate, the first to use
Certainty-Equivalent EM for the purpose of parame-
ter estimation under partial observability, and also the
first to fit a single model to multiple time-series from
across the United States.

3 Methodology
In this section, we describe data sources used in
this work, the proposed modification to SEIRD mod-
els yielding R-SEIRD models, the formulation of R-
SEIRD models as nonlinear Gaussian systems, and a
procedure for fitting these models to available data.

3.1 Data Sources
In this work, the primary data source considered is the
Novel Coronavirus (COVID-19) Cases Dataset, pro-
vided by JHU CSSE (Dong et al., 2020), which pro-
vides a time-series of daily reported COVID-19 cases
and deaths for every county in the United States.

3.2 R-SEIRD Models
As stated in Section 1, we propose to relax that the
assumption that the infection rate βE is constant with
time. Instead, we model it to be a function of time and
the observed prevalence of the disease. Specifically, we
let:

βE(t) = β̃E · σ
(

NNθ̃

(
t,
It
Nt

))
(5)

Here, Nt = St +Et + It + (RD)t is the effective popu-
lation size at time t, a quantity that we allow to vary
with time (Li et al., 1999) and be dynamically inferred
during learning. Additionally, It/Nt is the observed
prevalence, NNθ̃ is a neural network mapping R2 → R,

σ(·) is the sigmoid function, and β̃E is a learned coeffi-
cient. For simplicity, we assume βI = 0, which implies
that the number of infections caused by an individual
after they test positive for COVID-19 is negligible com-
pared to the number of infections prior to them know-
ing they have the disease. Furthermore, since much
is now known about the typical duration between ex-
posure and symptom onset, and symptom onset and
death, we rely on literature to provide estimates of γ
and λ (Bi et al., 2020; Lauer et al., 2020). Our method-
ology does, however, allow us to treat them as learned
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parameters. We treat the mortality rate µ as learned,
and thus θ = [β̃E , θ̃, µ] are the learned parameters.

With this modification, we allow the model to re-
flect changes in the infection rate that may depend on
changing behaviors over time, season, and in response
to the level of infection in a county.

3.3 R-SEIRD as a Nonlinear Gaussian System
In order to effectively learn the parameters of an R-
SEIRD model using CE-EM, we represent it as a non-
linear Gaussian system. To do so, we must specify the
state xt, discrete-time dynamics function fθ(t, xt), ob-
servation yt, and observation function hθ(t, xt).

Though the state of a SEIRD system is described by
the number of individuals in each compartment, we
note two facts about these quantities:

• The number of individuals in any compartment is
a positive quantity, and,

• These quantities scale various orders of magni-
tude (Dong et al., 2020).

For this reason, it is sensible to let the state xt of the
system correspond to the logarithm of each compart-
ment’s population as opposed to their absolute value.
As a result, applying Gaussian process or observation
noise to these quantities loosely corresponds to assum-
ing that noise is proportional to the absolute value of
the quantity it is applied to. Specifically, let the state
of the system be xt = log [St, Et, It, (RD)t], and the
observation be yt = log [∆Ct,∆Dt]. Here, ∆Ct corre-
sponds to the number of new confirmed cases on day
t, and tracks the total number of individuals that have
transitioned from the E to the I compartment, and
∆Dt corresponds to the number of new deaths on day
t.

The dynamics and observation models for the R-
SEIRD model are then specified as follows:

∆ log


S
E
I
RD


t

=

∫ t+1

t


−βE(τ)SE

N
βE(τ)SE

N − γE
γE − λI
λI


τ

◦


1/S
1/E
1/I

1/RD


τ

dτ

+ wt; wt ∼ N (0,Σw)

(6)

log

[
∆Ct
∆Dt

]
= log

[
γE
µλI

]
+ vt; vt ∼ N (0,Σv) (7)

where βE(t) is computed according to Equation (5).
The process noise covariance Σw and observation noise
covariance Σv are hyperparameters that can be chosen
to be identity or diagonal matrices scaled by σ2

w and σ2
v

respectively. Integration is performed using a Runge-
Kutta method (Runge, 1895).

Since the parameters β̃E and µ are positive, we op-
timize their logarithms as opposed to their absolute
values. Framed as a nonlinear Gaussian system, the R-
SEIRD model can be straightforwardly fit to a batch
of observation time-series from multiple counties si-
multaneously by using CE-EM (Menda et al., 2020).
To improve fit reliability and eliminate periodic drops
from weekends, we apply a 7-day moving average filter
to daily case and death data before fitting to them.

In our experiments, we fit the R-SEIRD model to
data from six counties in the United States exhibiting
diversity in how COVID-19 has spread, and show that
it is capable of expressing this diversity.

4 Experiments
Our experiments aim to achieve the following goals:

1 Fit a single R-SEIRD model to data from a variety
of counties across the United States,

2 Show that the learned model, when simulated
with realistic initial conditions, is able to repro-
duce observed behavior, and,

3 Justify the modifications to the SEIRD model by
showing that the mean squared error (MSE) of
simulations under R-SEIRD model is much lower
than that of a fit SEIRD model.

To achieve these goals, we fit models to data from three
counties in the northeast of the United States (Mid-
dlesex, MA, Kings, NY, and Fairfield, CT), as well as
three counties across the United States that have had
diverse epidemics (Los Angeles, CA, Miami-Dade, FL,
and Cook, IL). We consider data from the February
22, 2020 to the September 27, 2020, because during
this period the counties in the northeast exhibit single,
clear peaks in infection, though the remaining counties
exhibit multiple peaks. The remaining worst-hit coun-
ties in each of the United States compose a test-set to
evaluate the model.

We fit both an R-SEIRD model and a standard
SEIRD model (where we learn just the constant pa-
rameters βE and µ) to data from these six counties,
and then attempt to see if the learned models can re-
produce the behavior of all six counties, as well as
of counties not trained on, from appropriate initial
conditions. We visually compare simulations on select
counties to show that deterministic simulations of the
R-SEIRD system are capable of expressing multiple
peaks while those of a SEIRD system are not. We also
visualize the learned relationship between time, preva-
lence, and infection rate, to provide an intuition for
how the model is able to express such behavior. We
then compare MSE of simulations from both learned
models on the worst-hit county of each of the United
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Figure 1: Simulations of the learned R-SEIRD and learned SEIRD systems on the six counties the models are trained
on.
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Figure 2: Simulations of the learned R-SEIRD and learned SEIRD systems on the three counties the models are not
trained on.

States (not in the training set), showing that simu-
lation error is much lower when using the R-SEIRD
model[1].

4.1 Experimental Setup
Here we detail the hyperparameters used when train-
ing the R-SEIRD and SEIRD models, the methodology
for selecting appropriate initial conditions for states
when evaluating the models, as well as metrics for eval-
uation.

4.1.1 Hyperparameters
When learning the R-SEIRD model or SEIRD model,
we specify the values of γ and λ. The literature sug-
gests that the median time from exposure to develop-
ing symptoms is five days (Lauer et al., 2020) and that
the median time between symptom onset and recovery
is 21 days (Bi et al., 2020). As a result, we let γ = 1/5
and λ = 1/21. We let σw = σv/10, assuming that

[1]The codebase for running these experiments can be
found at https://github.com/sisl/rseird.

corruptions to observations are an order of magnitude
noisier than corruptions to the process. Furthermore,
we let the observation noise on deaths be double that
on cases, since reporting of deaths is typically more
noisy when the number of deaths is small. The neural
network used in the R-SEIRD model has three hidden
layers with 32 hidden units each and TanH activation
functions. Both models are optimized in the CE-EM
learning step using an Adam optimizer with a learning
rate of 5 × 10−4, which is harmonically decayed over
time, and CE-EM trust-region parameters of ρx = 0.5
and ρθ = 0.01 (Menda et al., 2020).[2]

4.1.2 Initial Condition Selection

When evaluating learned models, partial observability
makes it such that we do not know the initial condi-
tions (i.e. x1) to simulate the models from. Related

[2]Experiments were run on 2.9 GHz Quad-Core Intel
Core i7 MacBook Pro with 16 GB of RAM, and each
model took under 15 minutes to train.
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Figure 3: Comparison of prediction errors between R-
SEIRD and SEIRD for the epidemic in the worst-hit
county of each of the United States.
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Figure 4: The learned mapping between time and preva-
lence to the infection rate.

work often assumes the population is almost com-
pletely unexposed at t = 1, and assumes the suscepti-
ble population is a community’s true population (He
et al., 2020). However, as stated in Section 3, we allow
the population size to be determined by the sum of
the compartmental population, and therefore be a free
parameter, and also work with trajectories in which it
is unreasonable to assume an unexposed initial popu-
lation.

For these reasons, we optimize for the initial con-
ditions from which deterministically simulated trajec-
tories minimize the MSE of the observed number of
daily cases. We optimize the initial conditions by us-
ing the Cross Entropy Method (Rubinstein, 1999), se-
lecting the top 100 candidates at each epoch, perturb-
ing each candidate to generate 1000 candidates for the
next epoch, and running the optimizer for 10 epochs.

4.1.3 Evaluation Metrics
When selecting initial conditions, we measure the MSE
between the log of the daily cases in simulation (i.e.

log(γEt)), and reality (i.e. log ∆Ct), and use the dis-
tribution over this metric to compare the R-SEIRD
and standard SEIRD models. We compare histograms
of these errors on data from counties not in the train-
ing set.

4.1.4 Results
In Figure 1, we see the simulated number of cases
from optimized initial conditions for the six counties on
which the R-SEIRD model was trained. As is clearly
seen, the model is capable of expressing both a sin-
gle clear peak present in the northeastern counties, as
well as the multiple irregular peaks present in the other
counties. Since the simulations are deterministic, they
are smooth and only approximately reflect the trends
in the trajectories they are supposed to match, but do
not reflect the volatility in the real data.

In contrast, and consistent with expectation, a
SEIRD model fit to the same data and simulated from
optimized initial conditions is incapable of reflecting
the multiple peaks in the training data. Furthermore,
in an attempt to fit the multi-peak behavior in three of
the counties, the fit is severely compromised in coun-
ties in which there is a single, clear peak.

In Figure 2, we compare the learned R-SEIRD and
SEIRD models on three hard-hit counties not in the
training set. Again, the SEIRD model is unable to ex-
press more than a single peak, and thus is not able
to capture the behavior reflected in reality. Despite
not being trained on data from these counties, the R-
SEIRD model is, however, able to reflect the double-
peaks seen in the data, which vary in onset and mag-
nitude.

We quantify the difference in simulation quality by
measuring the MSE between the simulations (from op-
timized initial conditions) with the observed trajecto-
ries. In Figure 3, we show a histogram of these errors
for simulations on the worst-hit county of each of the
United States (not in the training set). Consistent with
the improvement visible in Figure 2, we see that the
MSE of simulations by the learned R-SEIRD model is
significantly lower than that of the SEIRD model.

To gain an intuition for how the R-SEIRD model is
able to express multiple irregular peaks, we visualize
the learned mapping between time, the prevalence of
the disease (It/Nt) and the basic reproduction num-
ber R0 = βE(t, It/Nt)/γ, which indicates an growing
epidemic for values greater than 1. In Figure 4, we see
the learned mapping, which suggests that βE deceases
initially as prevalence increases, up until a point, af-
ter which it begins to surge again before decreasing.
This behavior would be a consistent with a two-tiered
response, in which weak restrictions are adopted un-
til they lose effect, and then stronger restrictions are
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imposed. Over time, we see that βE begins to require
larger levels of prevalence to decay and bring R0 below
one, which could suggest that communities are grow-
ing more reluctant to adopt the weak restrictions when
infection rates are low.

5 Conclusion
In this work, we proposed an extension to the com-
partmental SEIRD model that relaxes the assump-
tions of stationarity and non-reactivity called the R-
SEIRD model. We did so by training a neural network
to map the time and the prevalence of the disease to
the infection rate. In order to fit to available data,
we employed Certainty-Equivalent Expectation Maxi-
mization (CE-EM), which a technique suited to fitting
nonlinear Gaussian state-space models to data with-
out direct observation of the system’s state variables.
We provided a methodology for framing the R-SEIRD
model as a nonlinear Gaussian system, and for fitting
it to available data on daily confirmed cases and deaths
using CE-EM.

In our experiments, we fit both the R-SEIRD and
standard compartmental SEIRD models to data from
six counties across the United States. We showed that
the R-SEIRD model learned is capable of expressing
the range of multi-peak behavior exhibited not only
in the training data, but also on counties not trained
on. We showed quantitatively that the simulation error
when trying to reproduce the behavior of the worst-hit
counties in the United States is much lower when using
the R-SEIRD model, when compared to the standard
SEIRD model.

This work showed that by allowing the infection rate
to be time-varying and reactive, the range of behav-
iors exhibited by the epidemic across the United States
can be recovered. We do not, however, suggest that the
R-SEIRD model definitively explains why a given out-
break progressed the way it did, but rather proposes
a hypothesis that is consistent with observations. To
come closer to a definitive explanation, we must de-
part from another assumption made by both standard
compartmental SEIRD and R-SEIRD models—that of
homogeneous mixing. By modeling a counties’ popula-
tions as individuals connected by a topological graph,
we gain the capacity to account super-spreading indi-
viduals, as well as non-uniform population densities.

In a follow-on to this work, we aim to propose a
SEIRD model that accounts for the network structure
of a community, as well as an estimation procedure for
fitting it to data. With such a model, we not only gain
another explanatory tool to analyze the diversity in
outbreaks, but also a model that can be used to eval-
uate localized containment strategies at a community
level.
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Discussion 
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Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, 

for the original study on which the present article is based 
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