1 2	Association between genes regulating neural pathways for quantitative traits of speech and language disorders
3 4 5 6 7	 Penelope Benchek, Ph.D.^{1*}, Robert P Igo Jr., Ph.D.^{1**}, Heather Voss-Hoynes, Ph.D.^{1*}, Yvonne Wren, Ph.D.⁵, Gabrielle Miller, M.S.², Barbara Truitt, M.S.¹, Wen Zhang, Ph.D.⁷, Michael Osterman, MPH¹, Lisa Freebairn, M.S.², Jessica Tag, M.A.², H. Gerry Taylor, Ph.D.^{3,6}, E. Ricky Chan, Ph.D.¹, Panos Roussos, Ph.D.^{7,8}, Barbara Lewis, Ph.D.^{2,4#}, Catherine M. Stein, Ph.D.^{1#}, Sudha K. Iyengar, Ph.D.^{1#}
8 9 10	 * These authors contributed equally as first authors of this work # These authors contributed equally as senior authors of this work * Recently deceased
11	
12 13 14 15 16 17 18 19 20 21 22	¹ Department of Population & Quantitative Health Sciences, and ² Department of Psychological Sciences, Case Western Reserve University, Cleveland OH; ³ Department of Pediatrics, Case Western Reserve University, and Rainbow Babies & Children's Hospital, University Hospital Case Medical Center, Cleveland, OH; ⁴ Cleveland Hearing and Speech Center, Cleveland, OH; ⁵ Bristol Dental School, Faculty of Health Sciences, University of Bristol, and Bristol Speech and Language Therapy Research Unit, North Bristol NHS Trust, Bristol, UK; ⁶ Nationwide Children's Hospital Research Institute and Department of Pediatrics, The Ohio State University, Columbus, OH; ⁷ Department of Psychiatry, Friedman Brain Institute, and Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; ⁸ Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY
23	Corresponding authors:
24	Catherine M. Stein, Ph.D. or Sudha K. Ivengar, Ph.D.
25	Department of Population and Quantitative Health Sciences
27	Case Western Reserve University
28	2103 Cornell Rd
29	Cleveland, OH 44016 USA
30	
31	Running Title: GWAS of communication disorder endophenotypes
32	
_	

33 ABSTRACT

34	Speech sound disorders (SSD) manifest as difficulties in phonological memory and awareness,
35	oral motor function, language, vocabulary, reading and spelling. Families enriched for SSD are
36	rare, and typically display a cluster of deficits. We conducted a genome-wide association study
37	(GWAS) in 435 children from 148 families in the Cleveland Family Speech and Reading study
38	(CFSRS), examining 16 variables representing 6 domains. Replication was conducted using
39	the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 18 significant
40	loci (combined p<10 ⁻⁸) that we pursued bioinformatically. We prioritized 5 novel gene regions
41	with likely functional repercussions on neural pathways, some which colocalized with
42	differentially methylated regions in our sample. Polygenic risk scores for receptive language,
43	expressive vocabulary, phonological awareness, phonological memory, spelling, and reading
44	decoding associated with increasing clinical severity. In summary, neural genetic influence on
45	SSD is primarily multigenic and acts on genomic regulatory elements, similar to other
46	neurodevelopmental disorders.

48 INTRODUCTION

49 Communication disorders are highly prevalent in the United States with approximately one in twelve children ages 3-17 years demonstrating a disorder ¹. The most common difficulties are a 50 51 speech problem (5%) or language problem (3.3%). Speech Sound disorders (SSD) include 52 both errors of articulation or phonetic structure (errors due to poor motor abilities associated 53 with the production of speech sounds) and phonological errors (errors in applying linguistic rules 54 to combine sounds to form words). SSD have a prevalence of approximately 16% in children 3 55 years. of age², with an estimated 3.8% of children persisting with speech delay at 6 years of 56 age³. More than half of these children encounter later academic difficulties in language, reading, and spelling⁷⁻¹¹. Because of the relative rarity of persistent speech problems and their 57 correlation with other communication domains, endophenotypes are key to the study of genetic 58 59 underpinnings.

60

Vocabulary is core to speech acquisition⁴. Children with difficulties in speech sound 61 development often have difficulties with oral language and later reading and spelling disability^{2,5-} 62 ⁸. Thus, speech, language, reading, and spelling measures are highly correlated and often 63 have common genetic associations^{9,10}. Moreover, speech and other communication 64 65 phenotypes follow a developmental trajectory, where some speech and language disorders resolve with age, whereas others persist; genetic influences on the less easily resolved 66 manifestations are generally stronger^{11,12}. Because of the common genetic underpinnings and 67 pathologic associations between speech and other communication phenotypes, it is conceivable 68 69 that genetic replication interweaves with different communication measures. Of 7 known GWASs, none overlap in their top results (at $p < 5x10^{-5}$, see Table 3¹³), because they only 70 71 focused on a limited number of phenotypes, or these measures were assessed at different ages 72 (either pre-school or early school-age) ¹³⁻²⁰, they only present results from one or a few

measures and/or a binary trait; thus, the complexity of shared genetic influences is poorly
understood. Most have not focused on children with SSD, particularly measures of articulation.
Our sample represents a unique set of deeply phenotyped individuals with information on 6
domains that form the core of speech and language.

77

78 SSD are likely due to deficits in both motor ability and broader neural dysfunction. While motor 79 deficits contribute to problems in speech production, abnormalities in other neural systems likely 80 influence formation of phonological representation, which is common to SSD as well as reading 81 and language impairment. We hypothesize that genetic regulation of these neural pathways is 82 associated with variation common to speech, language, reading, and spelling ability. We 83 conducted a GWAS in the Cleveland Family Speech and Reading Study (CFSRS), a cohort 84 ascertained through a proband with SSD. We also conducted a methylome-wide study (i.e. 85 MWAS) to determine the functional implications of these genetic associations, and replicated findings in a population-based cohort. We utilized a family-based cohort as our discovery 86 sample because we hypothesized it would be enriched for disease-associated variants^{21,22}. In 87 these analyses, we identified new candidate genes for correlated communication 88 endophenotypes, and bioinformatic annotation of these loci revealed that regulation of neural 89 90 pathways is associated with variation in these measures.

91

92 SUBJECTS AND METHODS

93 Subject ascertainment – Cleveland Family Speech and Reading Study

From the Cleveland Family Speech and Reading Study (CFSRS)²³⁻²⁸, we examined 435

- 95 individuals from 148 families who had both DNA and endophenotype data available (Table 1).
- 96 As previously described, families were ascertained through a proband with SSD identified from

97 caseloads of speech-language pathologists in the Greater Cleveland area and referred to the study; detailed inclusion criteria are provided in the Supplemental Methods. Diagnosis of CAS 98 99 was confirmed by an experienced licensed speech-language pathologist upon enrollment into 100 the study. Socioeconomic status was determined at the initial assessment based on parent education levels and occupations using the Hollingshead Four Factor Index of Social Class²⁹. 101 102 This study was approved by the Institutional Review Board of Case Medical Center and 103 University Hospitals and all parents provided informed consent and children older than 5 years 104 provided assent.

105

106 Communication Measures in CFSRS

We examined diadochokinetic rates using the Robbins and Klee Oral Speech Motor Control 107 Protocol³⁰ or Fletcher Time-by-Count Test of Diadochokinetic Syllable Rate³¹. The merged 108 variable is referred to as DDK. Expressive vocabulary was assessed with the Expressive One 109 Word Picture Vocabulary Test-Revised (EOWPVT³²) and receptive vocabulary with the 110 Peabody Picture Vocabulary Test- Third Edition (PPVT³³), and phonological memory with the 111 Nonsense Word Repetition (NSW³⁴), Multisyllabic Word Repetition (MSW³⁴), and Rapid Color 112 113 Naming ³⁵ task. In addition to examining the total number of words correct for the MSW and 114 NSW, we also examined the percent phonemes correct for both of these tasks (NSW-PPC and 115 MSW-PPC, respectively). Phonological awareness was assessed using the *Elision* subtest of the Comprehensive Test of Phonological Processing – 2nd Edition³⁶. Reading was assessed 116 using the Woodcock Reading Mastery Test-Revised, Word Attack subtest (WRMT-AT) and 117 Word Identification Subtest (WRMT-ID), the Reading Comprehension subtest (WIAT-RC) and 118 Listening Comprehension subtest (WIAT-LC) of the Wechsler Individual Achievement Test ³⁷ 119 Spelling was assessed on the Test of Written Spelling-3 (TWS) using the total score³⁸. 120 Expressive and receptive language were assessed using the Test of Language Development 121

(TOLD³⁹) and Clinical Evaluation of Language Fundamentals-Revised (CELF⁴⁰). referred to as
 the CELF-E (expressive) and CELF-R (receptive), respectively. Additional details about these
 measures are provided in the Supplemental Methods. For each of our tests we selected the first
 available assessment for each individual (Supplemental Table 1).

126

127 **GWAS analysis**

128 Genotyping methods and quality control (QC) are described in the Supplemental Methods.

129 Principal components (PC) obtained from principal component analysis (PCA) and the genetic

relationship matrix (GRM) were generated using genotyped markers that met QC criteria. We

131 used PC-AiR and PC-Relate from the Bioconductor package GENESIS⁴¹ to generate our PCs

and GRM, respectively. PC-AiR accounts for sample relatedness to provide ancestry inference

that is not confounded by family structure, while PC-Relate uses the ancestry representative

134 PCs from PC-AiR to provide relatedness estimates due only to recent family (pedigree)

135 structure.

136

To examine cross-trait correlation, we used $GCTA^{42}$ to run a bivariate REML analysis for each pair of tests and tested for genetic correlations equal to 0. GCTA's bivariate REML analysis estimates the genetic variance of each test and the genetic covariance between the two tests that can be captured by all SNPs⁴³. Here we included all SNPs with MAF \ge 0.01. The genetic variance/covariance calculated was adjusted for sex and the first two PCs.

142

We used RVTests, version 2.0⁴⁴ to run our GWAS. We specifically relied on RVTest's
Grammar-gamma test⁴⁵, which performs a linear mixed model association test while allowing for
genotype dosages and accounting for family structure using the Genetic Relationship Matrix

(GRM). Because each of our tests were age-normed we included only sex and the first two PCsas covariates in our regression models.

148

149 In addition, we generated endophenotype-based polygenic risk scores (PRS) in the European 150 subset of the CFSRS where genotype data, as well as clinical group data (no disorder, SSD 151 only, language impairment (LI) only, SSD+LI, CAS) were available. Risk scores were derived from association statistics from our CFSRS GWASs (see GWAS methods section for details) 152 and were constructed using PLINK 1.9⁴⁶ (clump and score functions). Additional details are in 153 the Supplemental Methods. These polygenic risk scores were used to examine the hypothesis 154 155 that an increase in PRS score would associate with more complex clinical phenotypes when 156 comparing SSD only versus SSD+LI and CAS.

157

158 Statistical analysis of Methylome-wide data

159 *Methylome-wide association study (MWAS)*

160 Quality control analysis of methylation data is detailed in Supplemental Methods. We tested for

association between CpG beta values and endophenotypes using the linear mixed model

approach of GRAMMAR-Gamma⁴⁵ as implemented in RVtests⁴⁴. Because our phenotypes

were age-normed, we did not adjust for age, but rather for sex and one to four PCs. We also

164 examined methylation-QTLs (meQTL) as described in the Supplemental Methods.

165

166 **Replication dataset – ALSPAC**

To replicate our GWAS findings, we obtained data from the Avon Longitudinal Study of Parents
 and Children (ALSPAC). The ALSPAC study was a prospective population-based birth cohort
 of babies born from > 14,000 pregnancies between April 1991-December 1992, who were
 followed prospectively with a wide battery of developmental tests, parental questionnaires, child-

171	completed questionnaires, and health outcomes ⁴⁷⁻⁴⁹ . Pregnant women resident in Avon, UK
172	with expected dates of delivery 1st April 1991 to 31st December 1992 were invited to take part
173	in the study. The study website contains details of all the data that is available through a fully
174	searchable data dictionary
175	(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary). Ethical approval for the
176	study was obtained from the ALSPAC Ethics and Law Committee and Institutional Review
177	Board of Case Medical Center and University Hospitals. Because this was a birth cohort, all
178	children were included, regardless of diagnosis. We obtained both parental report data on
179	speech development in the children, and also communication measures similar to those that we
180	analyzed (see Communication Measures above and Supplemental Table 3). As this was a
181	longitudinal study, different measures were given at different ages, and when the same domain
182	was tested at two different ages, the identical measure was not used. At some ages, only
183	random subsets were selected, so the sample size available from each age is not the same. In
184	Supplemental Table 4, we list the measures given in the CFSRS battery along with the most
185	similar measure given in ALSPAC.
186	
187	GWAS in ALSPAC data
188	QC analyses of ALSPAC data are described in Supplemental Methods. Because of the format

of data that were provided, we used slightly different methods for statistical analyses. Genetic
association testing was performed using linear regression in Hail 0.1. Covariates adjustments
included sex and the first two PCs. Age was not a consideration as ALSPAC is a longitudinal
birth cohort study and age differences were negligible for any given measure.

193

194 Functional annotation and results integration

In this analysis, we considered CFSRS the discovery sample, since families were ascertained through a child with SSD, and used ALSPAC as the replication sample. We identified associated loci with SNPs significant at $p<10^{-5}$ in CFSRS and p<0.05 in ALSPAC, with effects in the same direction.

199

200 Functional annotation

201 Because the majority of our findings are intergenic and/or fall in noncoding regions, we relied on 202 annotation tools FUMA and HaploReg to characterize which genes our variants might affect, as well as variants' functionality. We utilized FUMA⁵⁰ for mapping genes to our variants based on 203 204 genomic proximity, eQTL evidence and chromatin interactions evidence. Default settings in FUMA were used, with the exception of tissue specificity. We hypothesized that gene 205 206 expression and regulation would be most relevant in brain and neural tissues, as well as 207 muscles related to speech. In FUMA we focused on eQTL and chromatin interaction evidence 208 in our target tissues (brain, muscle and esophagus). HaploReg v.4.1 was used to examine the 209 chromatin state evidence predicting whether the variant fell in a promoter or enhancer region. In 210 HaploReg we focused on chromatin state evidence in our target tissues (brain and muscle).

211

212 Locus prioritization

In order to further prioritize and synthesize our findings, we annotated associated loci as described above, including annotation of associated effects of these loci in the literature, and incorporated supportive findings from our MWAS. We summarize findings in Table 2, and generated a simple locus priority score as the number of times a locus included an enhancer and/or promoter, included an eQTL, was previously associated with a communication disorder and/or neuropsychiatric disorder, showed eQTL or chromatin state evidence specific to brain

and/or neural tissues, mapped to a gene that was a *FOXP2* target in brain tissue ${}^{51-53}$, and a meQTL in that region (at p< 5×10⁻⁵) with an associated methylation site (at p< 0.05) with the same phenotype as the associated GWAS loci. We applied the EpiXcan pipeline⁵⁴ to identify eQTLs with our associated SNPs that are differentailly expressed in the dorsolateral prefrontal cortex (DLPFC)⁵⁵ (Supplemental Methods).

224

225 RESULTS

The CFSRS sample included 435 subjects from 148 families (Table 1). Of these, 27% had SSD only, 4% had LI only, 16% had SSD+LI without CAS, and 11% had CAS (Table 1). Of the subjects in the ALSPAC sample, the prevalence of speech problems by parental report varied from 4%-6% (Supplemental Table 3).

230

231 Genetic correlation analysis reveals new relationships among endophenotypes

Genetic correlation analysis revealed that while many of the patterns of correlation were 232 consistent with phenotypic correlations we have previously reported¹⁰, polygenic correlations 233 enable a deeper understanding of these measures, which will inform examination of replication 234 235 of association effects both within the CFSRS data set and with measures from ALSPAC (Figure 1). For example, while previous studies have demonstrated a strong genetic correlation 236 between reading and spelling measures, polygenic correlation analysis additionally reveals 237 238 correlations between those skills and Elision. Not surprisingly, expressive and receptive language, as measured on the CELF, are strongly correlated with vocabulary (EOWPVT and 239 240 PPVT) in addition to reading (WRMT-AT and WRMT-ID). Vocabulary is also strongly correlated 241 with listening comprehension (WIAT-LC).

242

243 Most significant findings from GWAS reveal 5 new candidate genes

- The majority of associated SNPs ($p<10^{-5}$) were intergenic, with a lesser number of intronic
- 245 SNPs (Supplemental Figure 2). Noncoding regions harboring a significant proportion of risk
- alleles is consistent with previous findings related to neuropsychiatric disease and behavioral
- traits⁵⁶. We focused on SNPs that had a p-value $<1 \times 10^{-5}$ in CFSRS with replication with a related
- trait in ALSPAC (p<0.05), or Fisher combined p-values $< 1 \times 10^{-7}$, that had functional relevance
- based on our gene priority score (Table 2).

250

251 Among the 5 prominent loci, all had enhancers or promoters for muscle, brain, and/or neuronal 252 progenitor cells, 4 out of 5 had significant methylation and meQTL effects, and 3 out of 5 had eQTLs for brain and/or skeletal-muscle tissue (Figure 2, Supplemental Table 5). EpiXcan 253 254 analysis suggested that the SNP in the chromosome 1 *IFI6* region is associated with expression 255 in the DLPF cortex (Elision p=0.018, TWS p=0.008; Supplemental Tables 6 and 7). The first 256 region on chromosome 14, including NFKBIA and PPP2R3C, shows significant chromatin 257 interaction mapping in adult cortex tissue. NFKBIA, which codes for a component of the NF-κB pathway, is associated with neurogenesis, neuritogenesis, synaptic plasticity, learning and 258 259 memory⁵⁷. The second region on chromosome 14 includes PP2R3C, which is within the 260 topologically associating domain (TAD) boundary of the NFKBIA locus in Hippocampus and 261 DLPFC. EpiXcan analysis showed NFKBIZ, a gene in the same pathway as NFKIBA, is also 262 associated with expression in the DLPFC (Elision p=0.000452, TWS p=0.004939; Supplemental Tables 6 and 7). 263

264

265 Replication of previous communication disorder loci

266	ATP2C2 was associated with WRMT-ID ($p=7.6x10^{-8}$), WRMT-AT ($p=4.6x10^{-5}$), and Elision
267	(p=4.6x10 ⁻⁵), consistent with prior literature ⁵⁸ (Supplemental Figures 3 and 4). Similarly,
268	CYP19A1 was associated with WRMT-AT (p=2.8x10 ⁻⁵), Elision (p=3.3x10 ⁻⁴), and WRMT-ID
269	(p=5.0x10 ⁻⁴), validating a previous association ⁵⁹ . CNTNAP2 was associated with CELF-R
270	(p=5.2x10 ⁻⁶), and DDK (p=2.9x10 ⁻⁵), replicating a previous association ⁵⁸ . While SNPs within
271	ROBO1 and ROBO2 were not significantly associated with our measures, SNPs in the
272	intergenic region were associated with WRMT-ID (p=3.6x10 ⁻⁶); <i>ROBO1</i> was originally
273	associated with dyslexia while ROBO2 was originally associated with expressive vocabulary ^{20,60}
274	Finally, SNPs within the DCDC2-KIAA0319-TTRAP and in FOXP2 regions were associated with
275	various traits at p<0.01. Within the ALSPAC cohort, a different pattern of replication emerged
276	(Supplemental Figure 5), with sometimes different SNPs and/or different phenotypes than those
277	associated with CFSRS.

278

279 In addition, we examined loci (genes and/or SNPs) associated in recently published GWAS studies of language and reading¹³⁻²⁰(Supplemental Table 8); we restricted our examination to 280 the CFSRS data, since the ALSPAC data were included in some of the published studies. In 281 these analyses, we often observed cross-trait replication, with most genes originally associated 282 with dyslexia, and associated with other traits in our sample. These included *ZNF385D*¹⁴, which 283 was associated with all CFSRS traits at p<0.005, CDH13¹⁹, associated with all CFSRS traits at 284 p<0.005, GRIN2B¹⁵, associated with TWS, EOWPVT, and Elision at P<0.0005 and all CFSRS 285 traits at P<0.05, NKAIN¹⁵, associated with CELF-R at 9.7 x 10^{-5} (rs16928927 p=1x 10^{-4}) and 286 WIAT-RC ($p=4x10^{-4}$), and *MACROD2*¹⁷ associated with all CFSRS traits at p<0.005). 287

288

289 Polygenic risk scores are associated with increasing clinical severity

290 In Figure 3, we illustrate polygenic risk scores (PRS) for 6 endophenotypes representing the major domains (receptive language, expressive vocabulary, phonological awareness, 291 292 phonological memory, spelling, and reading decoding), by guintile, across the clinical subgroups 293 (all endophenotypes are illustrated in Supplemental Figure 6). Generally, we found that 294 polygenic load, indicated by increasing risk scores, was associated with clinical severity $(p<1x10^{8} by ANOVA)$, with typical children having the lowest scores, followed by children with 295 296 SSD-only, and children with SSD+LI and CAS having the greatest scores. The exception to this 297 trend is receptive language, where the genetic load is greatest for children with LI, for whom 298 receptive language is a focal deficit. Thus, in general, an increase in PRS score is associated 299 with greater clinical severity.

300

301 DISCUSSION

Communication disorders are genetically complex, manifested by a variety of deficiencies in 302 303 articulation, vocabulary, receptive and expressive language, phonological awareness, reading 304 decoding and comprehension, and spelling. This GWAS ascertained children through an 305 earlier-presenting clinical disorder and examined several key communication measures, and is 306 thus one of the first studies of its kind. This study is also novel in that it is the first GWAS to 307 include a measure of phonological awareness, as well as a motor speech measure. By 308 analyzing several endophenotypes together, we can draw conclusions about the common 309 genetic basis across these seemingly dissimilar skills. Here, we have identified five new 310 candidate regions, some containing multiple genes, that have connections to neurological 311 function and regulation of neurological pathways. We also found that increased polygenic load 312 is associated with more severe communication disorders. Finally, by examining genetic 313 correlations among these traits, we conclude that different domains of communication have

some common genetic influences. All of these aspects together add new clarity regarding thegenetic underpinnings of speech and language skills.

316

317 First, the novel candidate genes that we have identified all have roles in neurological function as 318 evidenced by expression levels of those genes in brain and/or neural tissue, and associations 319 with other communication and/or psychiatric phenotypes. This commonality between 320 communication traits and brain and neural pathways was also demonstrated by a mouse study 321 of vocalization⁶¹, and pleiotropy between brain, learning, and psychiatric phenotypes was 322 recently demonstrated by a large GWAS of brain phenotypes⁶². Existence of enhancers, 323 promoters, and methylation effects in the associated regions further emphasizes the importance 324 of regulatory effects on these traits. Deletions spanning SETD3 and CCNK have been associated with syndromic neurodevelopmental disorders⁶³ and variants in SETX, within this 325 same family of genes, have been associated with CAS⁶⁴. In addition, CCNK is in the FOXP2 326 pathway in brain tissue⁵¹⁻⁵³. *NFKBIA* is involved in regulation of the NF- κ B pathway, which is 327 328 involved a number of brain-related processes including neurogenesis, neuritogensis, synaptic plasticity, learning, and memory⁶⁵. *PPP2R3C* has been associated with schizophrenia⁶⁶. *IFI6* 329 expression has been associated with autism⁶⁷ and overexpression of *IFI6* in the brain is present 330 in chronic neurodegeneration⁶⁸. Finally, *DACT1* may be involved in excitatory synapse 331 organization and dendrite formation during neuronal differentiation⁶⁹ and is mainly expressed 332 333 within the first two trimesters of pregnancy, just before the first evidence of speech processing is observed in preterm neonates⁷⁰. Interestingly, SETD3, NFKBIA, and IFI6 are all also tied to the 334 immune system, and a recent study identified an excess of T cells in brains of individuals with 335 autism⁷¹. 336

337

338 Second, understanding the genetic architecture across these endophenotypes is essential for 339 understanding how loci are associated with different measures in different study cohorts or 340 across the developmental trajectory. Strong genetic correlations are observed between 341 spelling, reading comprehension and decoding, expressive and receptive language, vocabulary, 342 and phonological awareness. The strongest replications were for a variety of measures 343 collected in CFSRS with ALSPAC from older youth. Consistent with these findings, we 344 previously demonstrated that spelling at later ages has a higher estimated heritability than spelling at school-age¹¹. Measures administered in older youth may also be more sensitive to 345 346 variations in clinical manifestation of SSD. Examination of the ALSPAC measures suggests that many of those administered at younger ages may have tapped different domains than intended. 347 or may have been less sensitive to later emerging reading and spelling skills. Methods of cohort 348 349 ascertainment may also be important in comparing our findings to those of other studies. Our 350 families were ascertained through a child with SSD whereas other studies ascertained subjects 351 through LI or dyslexia. These different ascertainment schemes affect both the available 352 measures, as well as the distribution of scores and power to detect association. Since both LI 353 and dyslexia emerge later than SSD, longitudinal studies that ascertain through a proband with 354 SSD will be able to capture variants associated with all three disorders, as there is high 355 comorbidity. In addition to the plethora of studies ascertaining children at a variety of ages, which has an impact on the heritability of traits¹⁰, these studies use a wide variety of measures, 356 357 even for the same endophenotype. Moreover, these studies have been conducted in populations that speak different languages of varying orthographic transparency, which makes 358 them difficult to compare. As noted by Carrion-Castillo et al.¹³, most of the novel loci identified 359 through GWAS have been unique to each study, and these aforementioned issues may explain 360 361 that lack of replication. Thus, examination of the genetic correlation matrix is essential for 362 interpretation of results across studies, as it is nearly impossible to analyze the same exact traits, as we have demonstrated with our replication study cohort (ALSPAC). 363

364

365	Third, we replicated candidate genes that had been previously primarily associated with reading
366	and/or language impairment: CNTNAP2, ATP2C2, and CYP19A1. These analyses extend
367	previous findings to show that these genes are associated with articulation (CNTNAP2) and
368	phonological awareness (ATP2C2 and CYP19A1). This further illustrates the pleiotropic nature
369	of these genes. While we did not observe association with SNPs within the coding regions of
370	ROBO1 and ROBO2, we did observe significant associations with SNPs between these two
371	genes, which may have regulatory influences on $ROBO1/ROBO2$. We also replicated (p<5x10 ⁻
372	³) loci identified in recent GWAS of reading and/or language traits. Similar to another
373	association study between FOXP2 variants and language ⁷² , we did not observe statistically
374	significant association between FOXP2 and measures in CFSRS, though there was replication
375	of some traits at a less stringent ($p<0.01$) level ⁷² .

376

377 Finally, our analysis of polygenic risk scores shows strong associations between these risk 378 scores and clinical outcomes of increasing severity. Because of the strong significance of these 379 findings, this suggests that the genetic architecture of communication disorders maybe largely 380 polygenic, which may additionally explain the lack of replication and/or genome-wide 381 significance. While other studies have examined polygenic risk scores associated with language^{15,73}, ours is the first to examine polygenic risk associated with other communication 382 383 endophenotypes. It is noteworthy that our associated SNPs fell outside of gene coding regions but resided in regulatory regions, even having potential regulatory effects themselves. This 384 385 further illustrates the genetic complexity of communication disorders; perhaps the search for 386 single gene dysfunction is misplaced, and rather regulatory functions are more relevant.

387

388 This study has several limitations. The sample size of the CFSRS cohort was modest. 389 potentially reducing power. There was not clear correspondence between measures obtained 390 in ALSPAC with those in CFSRS, necessitating consideration of cross-trait replication. We 391 restricted analyses in both cohorts to individuals of European descent because of low sample 392 size in other ethnic groups, reducing generalizability. 393 394 In summary, this first GWAS of communication measures ascertained through families with SSD 395 identified five new candidate genes, all with potential relevance in central nervous system 396 function. Polygenic risk is strongly associated with more severe speech and language 397 outcomes. Careful consideration of genetic correlation among domains of verbal and written 398 language shows that these loci have general effects on communication, not specific to any 399 single domain, suggesting a common genetic architecture. Further research is needed to more 400 closely examine the impact of regulatory variants on these outcomes.

401

402 ACKNOWLEDGMENTS

403 We would like to thank the families who have so generously participated in this study for many 404 years. This research was supported by the Genomics Core Facility of the CWRU School of 405 Medicine's Genetics and Genome Sciences Department. This work made use of the High 406 Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. This work was supported by NIH grant R01DC000528 407 awarded to Dr. Lewis and R01DC012380 awarded to Dr. lyengar. We are extremely grateful to 408 409 all the families who took part in the ALSPAC study, the midwives for their help in recruiting 410 them, and the whole ALSPAC team, which includes interviewers, computer and laboratory 411 technicians, clerical workers, research scientists, volunteers, managers, receptionists and

- 412 nurses. The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the
- 413 University of Bristol provide core support for ALSPAC. This publication is the work of the
- 414 authors and Dr. Sudha lyengar will serve as guarantor for the contents of this paper. GWAS
- data for ALSPAC was generated at the Genotyping Facilities at Wellcome Sanger Institute.
- 416
- 417 DATA AVALABILITY
- 418 Data from the Cleveland Family Speech and Reading study are not available for broad genetic
- data sharing because of IRB restrictions. Please contact the corresponding author, Dr. Sudha
- 420 Iyengar, to request data, which will require an IRB application.
- 421
- 422 CONFLICT OF INTEREST
- 423 The authors have no conflicts of interest to report.
- 424
- 425 MATERIALS AND CORRESPONDANCE
- 426 Please contact Dr. Sudha lyengar, <u>ski@case.edu</u>, regarding access to summary statistics.

427 TABLES

428 **Table 1. Characteristic table for CFSRS GWAS sample**

N*	435
Number of Families	148
Age range	[2.5, 64]
Female N (%)	194 (45%)
Speech Disorder Subgroup N (%)	
CAS	47 (11%)
SSD + LI (no CAS)	70 (16%)
SSD only	119 (27%)
Lang only	17 (4%)
No CAS/SSD/Lang	177 (41%)
Missing	5 (1%)
Hollingshead SES	
1 (lowest)	3 (1%)
2	30 (7%)
3	67 (15%)
4	167 (38%)
5 (highest)	147 (34%)
Missing	21 (5%)
*Sample considered is the union of	all samples across the
16 tests. Specific test sample sizes	and age ranges are
shown in supplemental Table 1.	

429

431 Table 2. Annotation of most significant loci with replication in CFSRS and ALSPAC

Locus (Chr location)	Gene(s)	# Associated SNPs	# independently associated SNPs (after conditional analysis)	Gene priority score	Expression in brain / neural tissue	Associated with Communication and/or psych phenotype	Associated with multiple CFSRS traits	Promoter (esophogus, muscle, brain, neural)	Enhancer (esophogus, muscle, brain, neural)	eQTL (esophagus, muscle, brain,neural)	Target of FOXP2 (brain)	Methylation / meQTL
1:30732871	LINC01648;MATN1	1	1	3	1	1	0	1	0	0		
1:55494735*	BSND; PCSK9	5	1	4	1	0	1	1	0	0		1
1:146988760	LI NC00624	1	1	5	1	1	0	0	1	1		1
1:159028378	IFI16, AIM2	23	1	5	0	1	0	0	1	1		2
2:143378805	LRP1B;KYNU	4	1	4	1	1	1	1	0	0		
2:169280713	STK39;CERS6	1	1	3	1	1	0	0	1	0		
3:1942898	CNTN6; CNTN4	1	1	3	1	1	0	0	1	0		
3:39743136	MOBP; MYRIP	1	1	2	0	1	0	0	0	0		1
4:27297733	LINC02261;MIR4275	9	1	2	1	0	0	0	1	0		
4:73572756	ADAMTS3; COX18	7	1	4	1	1	1	0	1	0		
4:77531588	SHROOM 3	1	1	3	1	0	0	1	1	0		
5:72144005	TNPO1	1	1	4	1	1	0	1	1	0		
5:132043351	KIF3A	1	1	4	1	1	0	0	1	1		
5:170102906	KCNIP1	2	1	1	0	0	0	0	0	0		1
5:172924967	MIR8056;LOC285593	15	1	4	1	0	0	1	1	0		1
7:123604182	SPAM1	10	1	4	1	1	0	1	1	0		
7:154706515	DPP6; PAXIP1-AS2	1	1	5	1	1	0	1	1	0	1	
9:114335864	PTGR1;ZNF483	0	1	6	1	1	0	1	1	1		1
10:46027420	MAR CH8	2	1	4	1	1	0	0	1	1		
12:21002703	SLCO1B3	2	1	1	0	0	0	0	0	0		1
12:103677691**	LOC101929058; C12orf4	1	1	1	0	1	0	0	0	0		
12:131389783	RAN; ADGRD1	1	1	0	0	0	0	0	0	0		
13:28329109	POLR1D; GSX1	18	1	1	0	0	0	1	0	0		
13:79839523	LINC00331; RBM26	10	1	2	0	1	0	0	0	1		
14:35837476	PSMA6; NFKBIA	26	1	7	1	1	0	1	1	1		2
14:59210646	DACT1; LINC01500	7	1	5	1	1	0	1	1	0		1
14:93195374	LGMN	1	1	4	1	1	0	1	1	0		
14:94993936*	SERPINA12; SERPINA4	5	1	5	0	1	1	1	1	0		1
14:99858970	BCL11B; SETD3	1	1	8	1	1	0	1	1	1	1	2
16:77231207	MON1B	1	1	7	1	1	0	1	1	1		2
18:4023876	DLGAP1	1	1	3	1	1	0	0	1	0		
18:40822793	RIT2; SYT4	1	1	1	0	1	0	0	0	0		
18:56462735	MALT1; LINC01926	1	1	3	0	1	0	0	1	0		1
# Associated SNPs incl *Alspac led locus. No (** CFSRS P = 1.3 * 10^-	*A lspac led locus. No CFSRS SNPs showed association at P < 10^-5.											

433 FIGURES (attached separately)

Figure 1. Genetic correlation matrix across traits in CFSRS. Figure 1 shows cross-trait correlation results for each pair of tests using GCTA's bivariate REML analysis. Cross-trait correlation was tested under the null hypothesis of 0 correlation. Circles shown are for results significant at P<0.05, with increasing diameter/color corresponding with increasing correlation (circles omitted otherwise).

439

440 Figure 2. Locus zoom plots for most significant findings. Figure 2 shows association results for the top loci. P-values displayed are for CFSRS and are for the test for which the top 441 442 SNP was observed. Circles show P-values for SNP associations and triangles show P-values for methylation associations (specifically those for which the top SNP is an meQTL). The larger 443 plot shows the top SNP for each region +/-200 kb. The window highlights the region that spans 444 significant association results ($P \le 1 \times 10^{-5}$ in CFSRS. **A**. IFI16 region (window spans 445 chr1:159001292-159028378) rs855865 was associated with NSW in CFSRS (p=7x 10⁻⁶) and 446 447 with vocabulary (WISC-V) in ALSPAC (p=0.01). This region also includes an meQTL $(rs12124059, p=4x10^{-8})$ for methylation marker cg07196514, and this methylation marker was 448 also associated with NSW (p=0.018). B. NFKBIA region (window spans chr14:35770806-449 35846092). rs57645874 was associated with Elision in CFSRS ($p=1 \times 10^{-6}$) and with reading 450 451 accuracy (NARA-A) in ALSPAC (p=0.02). This region also contains an meQTL, rs4981288, for cg07166546 ($p=2x10^{-50}$), and this methylation marker was associated with Elision ($p=3.x10^{-5}$), 452 TWS (p= 0.0005) and WRMT-ID (p=0.002). C. DACT1 region (window spans chr14:59210335-453 59221002), rs856379 was associated with MSW in CFSRS ($p=3x10^{-6}$) and with nonword 454 455 reading (ALSPACread) in ALSPAC (p=0.036). This SNP is an meQTL for methylation marker cg13972423 (p=3x10⁻⁵), **D**. SETD3 region (window spans chr14:99858970-99942692). 456 457 rs1257267 was associated with WRMT-AT in CFSRS (p=6.58x10⁻⁶) and with nonsense word

458 repetition (CNrep5) in ALSPAC (p=0.05). While only 1 SNP replicated between CFSRS and ALSPAC, 14 additional SNPs showed association in CFSRS at p<10⁻⁵. This SNP is an meQTL 459 for cg18949721 ($p=4x10^{-12}$), which was also associated with WRMT-AT (p=0.003). **E**. MON1B 460 461 region (window spans chr16:77231207-77248555). rs4888606 was associated with MSW in CFSRS ($p=9 \times 10^{-6}$) and with nonword reading (ALSPACread) in ALSPAC (p=0.046). While 462 only 1 SNP replicated between CFSRS and ALSPAC, 18 additional SNPs showed association 463 in CFSRS at p<10⁻⁵. This SNP falls in an intron of *MON1B* and is an meQTL for cg06128999 464 $(p=4x10^{-23})$ and cg05007098 $(p=1x10^{-15})$, which were also associated with MSW $(p=0.045 \text{ and } 10^{-23})$ 465 p=0.12, respectively). Functional annotation is in Supplemental Figure 2. 466

468 **Figure 3. Polygenic risk scores across major domains.** We constructed polygenic risk

scores for 587 individuals who were both genotyped and had clinical subgroup information

470 available. Polygenic risk scores are displayed by quantile across the clinical subgroups for six

- 471 endophenotypes representing the major domains (A Receptive language; B Expressive
- 472 vocabulary; C Phonological awareness; D Phonological memory; E Spelling; F Reading
- 473 decoding).
- 474
- 475
- 476 DESCRPTION OF SUPPLEMENTAL DATA
- 477 Supplemental Methods: Describes behavioral phenotypes in detail and detailed methods for
- 478 genetic methylation analysis
- 479 Supplemental Tables and Figures:
- 480 Supplemental Table 1. Descriptive statistics for CFSRS measures
- 481 Supplemental Table 2. Results of methylation analysis of candidate gene regions
- 482 Supplemental Table 3. Descriptive statistics for ALSPAC sample
- 483 Supplemental Table 4. Correspondence between CFSRS and ALSPAC measures
- 484 Supplemental Table 5. Annotation of functional implications of most significant loci from GWAS
- 485 Supplemental Table 6. PsychEncode EpiXcan method using Meta-analysis results of Elision
- 486 GWAS
- 487 Supplemental Table 7. PsychEncode EpiXcan method using Meta-analysis results of TWS
- 488 GWAS

- 489 Supplemental Table 6 Association results from regions identified from published GWAS of
- 490 reading and language phenotypes
- 491 Supplemental Figure 1. Distribution of associated SNPs
- 492 Supplemental Figure 2. Functional annotation corresponding to Figure 3.
- 493 Supplemental Figure 3. Clustering of Significant Variants (P < 0.01) among Known Speech
- 494 Genes across CFSRS Tests
- 495 Supplemental Figure 4. LocusZoom plots of candidate genes where at least one trait had a SNP
- 496 significant at $p < 10^{-4}$
- 497 Supplemental Figure 5. Clustering of Significant Variants (P < 0.01) among Known Speech
- 498 Genes across ALSPAC Tests
- 499 Supplemental Figure 6. Polygenic Risk score across all individual measures
- 500
- 501 REFERENCES
- 502
- Almost 8 percent of US children have a communication or swallowing disorder, 2015).
- 5042Catts, H. W., Adlof, S. M., Hogan, T. P. & Weismer, S. E. Are specific language impairment and505dyslexia distinct disorders? Journal of speech, language, and hearing research : JSLHR 48, 1378-5061396, doi:10.1044/1092-4388(2005/096) (2005).
- 5073Shriberg, L., Tomblin, J. & McSweeny, J. Prevalence of speech delay in 6-year-old children and508comorbidity with language impairment. Journal of Speech, Language, and Hearing Research 42,5091461-1481 (1999).
- 510 4 McLeod, S. B., E. in *Children's speech: an Evidence-based approach to assessment and* 511 *intervention* (ed S. McLeod, Baker, E) 181-184 (Pearson Education, 2017).
- 512 5 Lemons, C. J. & Fuchs, D. Phonological awareness of children with Down syndrome: its role in
 513 learning to read and the effectiveness of related interventions. *Research in developmental* 514 *disabilities* **31**, 316-330, doi:10.1016/j.ridd.2009.11.002 (2010).
- Al Otaiba, S., Puranik, C., Zilkowski, R. & Curran, T. Effectiveness of Early Phonological Awareness
 Interventions for Students with Speech or Language Impairments. *The Journal of special education* 43, 107-128, doi:10.1177/0022466908314869 (2009).

518	7	Larivee, L. C., HW. Early reading achievement in children with expressive phonological disorders.
519		Am J Speech Lang Pathol 8 , 119-128 (1999).
520	8	Scarborough, H. in Specific Reading Disabilities: A view of the spectrum (ed BK; Accardo Shapiro,
521		PJ; Capute, AJ) 75-119 (York Press, 1990).
522	9	Lewis, B. A. et al. The Genetic Bases of Speech Sound Disorders: Evidence From Spoken and
523		Written Language. <i>J Speech Lang Hear. Res</i> 49 , 1294-1312 (2006).
524	10	Stein, C. M. <i>et al.</i> Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and
525		reading. A <i>m J Hum Genet 74,</i> 283-297 (2004).
526	11	Lewis, B. A. et al. Heritability and longitudinal outcomes of spelling skills in individuals with
527		histories of early speech and language disorders. <i>Learning and individual differences</i> 65, 1-11,
528		doi:10.1016/j.lindif.2018.05.001 (2018).
529	12	Stevenson, J., Graham, P., Fredman, G. & McLoughlin, V. A twin study of genetic influences on
530		reading and spelling ability and disability. Journal of child psychology and psychiatry, and allied
531		<i>disciplines</i> 28 , 229-247, doi:10.1111/j.1469-7610.1987.tb00207.x (1987).
532	13	Carrion-Castillo, A. et al. Evaluation of results from genome-wide studies of language and
533		reading in a novel independent dataset. <i>Genes Brain Behav</i> 15, 531-541, doi:10.1111/gbb.12299
534		(2016).
535	14	Eicher, J. D. <i>et al.</i> Genome-wide association study of shared components of reading disability
536		and language impairment. <i>Genes Brain Behav</i> 12 , 792-801, doi:10.1111/gbb.12085 (2013).
537	15	Gialluisi, A. et al. Genome-wide association scan identifies new variants associated with a
538		cognitive predictor of dyslexia. Translational psychiatry 9, 77, doi:10.1038/s41398-019-0402-0
539		(2019).
540	16	Gialluisi, A. et al. Genome-wide screening for DNA variants associated with reading and
541		language traits. <i>Genes Brain Behav</i> 13 , 686-701, doi:10.1111/gbb.12158 (2014).
542	17	Harlaar, N. et al. Genome-wide association study of receptive language ability of 12-year-olds. J
543		Speech Lang Hear Res 57 , 96-105, doi:10.1044/1092-4388(2013/12-0303) (2014).
544	18	Kornilov, S. A. <i>et al.</i> Genome-Wide Association and Exome Sequencing Study of Language
545		Disorder in an Isolated Population. <i>Pediatrics</i> 137 , doi:10.1542/peds.2015-2469 (2016).
546	19	Luciano, M. et al. A genome-wide association study for reading and language abilities in two
547		population cohorts. <i>Genes Brain Behav</i> 12 , 645-652, doi:10.1111/gbb.12053 (2013).
548	20	St Pourcain, B. et al. Common variation near ROBO2 is associated with expressive vocabulary in
549		infancy. Nature communications 5, 4831, doi:10.1038/ncomms5831 (2014).
550	21	Morris, N., Elston, R. C., Barnholtz-Sloan, J. S. & Sun, X. Novel approaches to the analysis of
551		family data in genetic epidemiology. <i>Front Genet</i> 6 , 27, doi:10.3389/fgene.2015.00027 (2015).
552	22	Ott, J., Kamatani, Y. & Lathrop, M. Family-based designs for genome-wide association studies.
553		Nat Rev Genet 12 , 465-474, doi:10.1038/nrg2989 (2011).
554	23	Lewis, B. & Freebairn, L. Speech production skills of nuclear family members of children with
555		phonology disorders. <i>Speech and Language</i> 41 , 45-61 (1998).
556	24	Lewis, B., Freebairn, L. & Taylor, H. Follow-up of children with early expressive phonology
557		disorders. <i>Journal of Learning Disabilities</i> 33 , 433-444 (2000).
558	25	Lewis, B. A. et al. Literacy outcomes of children with early childhood speech sound disorders:
559		impact of endophenotypes. J Speech Lang Hear. Res 54, 1628-1643 (2011).
560	26	Lewis, B. A. et al. Family pedigrees of children with suspected childhood apraxia of speech.
561		Journal of Communication Disorders 37 , 157-175 (2004).
562	27	Lewis, B. A., Freebairn, L. A., Hansen, A. J., Iyengar, S. K. & Taylor, H. G. School-age follow-up of
563		children with childhood apraxia of speech. Language, speech, and hearing services in schools 35,
564		122-140 (2004).

565	28	Lewis, B. A. <i>et al.</i> Speech and language skills of parents of children with speech sound disorders.
566	20	Am J Speech Lang Pathol 16 , 108-118 (2007).
567	29	Hollingshead, A. (Department of Sociology, Yale University, New Haven, CI. 06520, 1975).
568	30	Robbins, J. & Klee, T. Clinical assessment of oropharyngeal motor development in young
569		children. Journal of Speech and Hearing Research 52 , 271-277 (1987).
570	31	Fletcher, D. (C.C. Publications, Inc., Tigard, OR, 1977).
571	32	Gardner, M. (Academic Therapy Publications, Novato, CA, 1990).
572	33	Dunn, L. & Dunn, L. (American Guidance Service, Inc, Circle Pines, MN, 1997).
573	34	Catts, H. Speech production/phonological deficits in reading disordered children. Journal of
574		Learning Disabilities 19 , 504-508 (1986).
575	35	Denkla, M. & Rudel, R. Rapid 'automatized' naming (R.A.N.): dyslexia differentiated from other
576		learning disabilities. <i>Neuropsychologia</i> , 471-479 (1976).
577	36	Wagner, R. T., J; Rashotte, C; Pearson, NA. (Pearson, London, England, 2013).
578	37	Wechsler, D. (The Psychological Coporation, San Antonio, TX, 1991).
579	38	Larsen, S. H., D. (The Psychological Corporation, San Antonio, TX, 1994).
580	39	Newcomer, P. & Hammill, D. Test of language development - Primary, Second Edition. (Pro-Ed.,
581		1988).
582	40	E, S., Wiig, E. & Secord, W. Clinical evaluation of language fundamentals-Revised. (The
583		Psychological Corporation, 1987).
584	41	GENESIS: GENetic EStimation and Inference in Structured samples (GENESIS): Statistical methods
585		for analyzing genetic data from samples with population structure and/or relatedness. R
586		package version (2019).
587	42	Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait
588		analysis. <i>Am. J. Hum Genet</i> 88 , 76-82 (2011).
589	43	Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy
590		between complex diseases using single-nucleotide polymorphism-derived genomic relationships
591		and restricted maximum likelihood. <i>Bioinformatics (Oxford, England</i>) 28 , 2540-2542,
592		doi:10.1093/bioinformatics/bts474 (2012).
593	44	Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and comprehensive tool
594		for rare variant association analysis using sequence data. <i>Bioinformatics (Oxford, England)</i> 32,
595		1423-1426, doi:10.1093/bioinformatics/btw079 (2016).
596	45	Svishcheva, G. R., Axenovich, T. I., Belonogova, N. M., van Duijn, C. M. & Aulchenko, Y. S. Rapid
597		variance components-based method for whole-genome association analysis. <i>Nature genetics</i> 44,
598		1166-1170, doi:10.1038/ng.2410 (2012).
599	46	Purcell, S. <i>et al.</i> PLINK: a tool set for whole-genome association and population-based linkage
600		analyses. Am J Hum Genet 81 , 559-575 (2007).
601	47	Fraser, A. <i>et al.</i> Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC
602		mothers cohort. International journal of epidemiology 42, 97-110, doi:10.1093/jie/dvs066
603		(2013).
604	48	Golding, L. Pembrey, M. & Jones, R. Al SPACthe Avon Longitudinal Study of Parents and
605		Children Study methodology Paediatric and perinatal enidemiology 15 74-87
606		d_{0i} 10 1046/i 1365-3016 2001 00325 x (2001)
607	49	Boyd A <i>et al.</i> Cohort Profile: the 'children of the 90s'the index offspring of the Avon
608	75	Longitudinal Study of Parents and Children. International journal of enidemiology 12 111-127
600		doi:10.1093/iie/dvs064 (2013)
610	50	Watanahe K Taskesen E van Bochoven Δ & Posthuma D Eurotional manning and
611	50	annotation of genetic associations with FIIMA Nature communications 9 , 1926, 1926
612		doi:10.1038/c/1/67.017.01261.5.(2017)
UTT		401.10.1030/34140/01/01/01201-3 (201/).

613	51	MacDermot, K. et al. Identification of FOXP2 truncation as a novel cause of developmental
614		speech and language deficits. Am J Hum Genet 76 , 1074-1080 (2005).
615	52	Spiteri, E. <i>et al.</i> Identification of the transcriptional targets of FOXP2, a gene linked to speech
616		and language, in developing human brain. American journal of human genetics 81 , 1144-1157,
617		doi:10.1086/522237 (2007).
618	53	Vernes, S. C. et al. High-throughput analysis of promoter occupancy reveals direct neural targets
619		of FOXP2, a gene mutated in speech and language disorders. American journal of human
620		genetics 81 , 1232-1250, doi:10.1086/522238 (2007).
621	54	Zhang, W. et al. Integrative transcriptome imputation reveals tissue-specific and shared
622		biological mechanisms mediating susceptibility to complex traits. <i>Nature communications</i> 10 ,
623		3834, doi:10.1038/s41467-019-11874-7 (2019).
624	55	Wang, D. et al. Comprehensive functional genomic resource and integrative model for the
625		human brain. <i>Science</i> 362 , doi:10.1126/science.aat8464 (2018).
626	56	Goriounova, N. A. & Mansvelder, H. D. Genes, Cells and Brain Areas of Intelligence. Front Hum
627		<i>Neurosci</i> 13 , 44-44, doi:10.3389/fnhum.2019.00044 (2019).
628	57	Zhang, Y. & Hu, W. NFKB signaling regulates embryonic and adult neurogenesis. <i>Front Biol</i>
629		(Beijing) 7 , 10.1007/s11515-11012-11233-z, doi:10.1007/s11515-012-1233-z (2012).
630	58	Newbury, D. F. & Monaco, A. P. Genetic advances in the study of speech and language disorders.
631		Neuron 68, 309-320 (2010).
632	59	Anthoni, H. et al. The aromatase gene CYP19A1: several genetic and functional lines of evidence
633		supporting a role in reading, speech and language. <i>Behav Genet</i> 42 , 509-527,
634		doi:10.1007/s10519-012-9532-3 (2012).
635	60	Hannula-Jouppi, K. <i>et al</i> . The axon guidance receptor gene ROBO1 is a candidate gene for
636		developmental dyslexia. <i>PLoS Genet</i> 1 , e50 (2005).
637	61	Ashbrook, D. G. et al. Born to Cry: A Genetic Dissection of Infant Vocalization. Front Behav
638		<i>Neurosci</i> 12 , 250-250, doi:10.3389/fnbeh.2018.00250 (2018).
639	62	Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants
640		influencing regional brain volumes and refines their genetic co-architecture with cognitive and
641		mental health traits. <i>Nature genetics</i> 51 , 1637-1644, doi:10.1038/s41588-019-0516-6 (2019).
642	63	Fan, Y. et al. De Novo Mutations of CCNK Cause a Syndromic Neurodevelopmental Disorder with
643		Distinctive Facial Dysmorphism. American journal of human genetics 103 , 448-455,
644		doi:10.1016/j.ajhg.2018.07.019 (2018).
645	64	Worthey, E. A. et al. Whole-exome sequencing supports genetic heterogeneity in childhood
646		apraxia of speech. <i>Journal of neurodevelopmental disorders</i> 5 , 29, doi:10.1186/1866-1955-5-29
647		(2013).
648	65	Lanzillotta, A. <i>et al.</i> NF-кB in Innate Neuroprotection and Age-Related Neurodegenerative
649		Diseases. Front Neurol 6 , 98-98, doi:10.3389/fneur.2015.00098 (2015).
650	66	Gusev, A. <i>et al.</i> Transcriptome-wide association study of schizophrenia and chromatin activity
651		yields mechanistic disease insights. <i>Nature genetics</i> 50 , 538-548, doi:10.1038/s41588-018-0092-
652		1 (2018).
653	67	El-Ansary, A. & Al-Ayadhi, L. GABAergic/glutamatergic imbalance relative to excessive
654		neuroinflammation in autism spectrum disorders. <i>J Neuroinflammation</i> 11 , 189-189,
655		doi:10.1186/s12974-014-0189-0 (2014).
656	68	Nazmi, A. <i>et al.</i> Chronic neurodegeneration induces type I interferon synthesis via STING,
657		shaping microglial phenotype and accelerating disease progression. <i>Glia</i> 67 , 1254-1276,
658		doi:10.1002/glia.23592 (2019).

659 660 661	69	Okerlund, N. D. <i>et al.</i> Dact1 is a postsynaptic protein required for dendrite, spine, and excitatory synapse development in the mouse forebrain. <i>J Neurosci</i> 30 , 4362-4368, doi:10.1523/JNEUROSCI.0354-10.2010 (2010).
662	70	Le Guen, Y. et al. A DACT1 enhancer modulates brain asymmetric temporal regions involved in
663		language processing. <i>bioRxiv</i> , 539189, doi:10.1101/539189 (2019).
664	71	DiStasio, M. M., Nagakura, I., Nadler, M. J. & Anderson, M. P. T lymphocytes and cytotoxic
665		astrocyte blebs correlate across autism brains. Ann Neurol 86, 885-898, doi:10.1002/ana.25610
666		(2019).
667	72	Mueller, K. L. et al. Common Genetic Variants in FOXP2 Are Not Associated with Individual
668		Differences in Language Development. <i>PLoS One</i> 11 , e0152576,
669		doi:10.1371/journal.pone.0152576 (2016).
670	73	Nudel, R. et al. Language deficits in specific language impairment, attention deficit/hyperactivity
671		disorder, and autism spectrum disorder: An analysis of polygenic risk. Autism research : official
672		journal of the International Society for Autism Research, doi:10.1002/aur.2211 (2019).
673		

77.1 77.2 Position on chr16 (Mb)

교

rate (cM/Mb

* _ -log2(E) 1.76 0.6 Proportion 0.4 -2.17 * * p<0.05 0.2 ** p<0.05/11 0.0 ⁿcRNA_intronic ncRNA_SDIICing intergenic intronic downstream nchNA exonic exonic upstream UTR3 UTRS splicing