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ABSTRACT12

Appearing at the end of 2019, a novel virus (later identified as SARS-CoV-2) was characterized in the city
of Wuhan in Hubei Province, China. As of the time of writing, the disease caused by this virus (known as
COVID-19) has already resulted in over 3 million deaths worldwide. SARS-CoV-2 infections and deaths,
however, have been highly unevenly distributed among age groups, sexes, countries, and jurisdictions
over the course of the pandemic. Herein, I present a tool (the covid19.Explorer R package and web
application) that has been designed to explore and analyze publicly available United States COVID-19
infection and death data from the 2020/21 U.S. SARS-CoV-2 pandemic. The analyses and visualizations
that this R package and web application facilitate can help users better comprehend the geographic
progress of the pandemic, the effectiveness of non-pharmaceutical interventions (such as lockdowns and
other measures, which have varied widely among U.S. states), and the relative risks posed by COVID-19
to different age groups within the U.S. population. The end result is an interactive tool that will help its
users develop an improved understanding of the temporal and geographic dynamics of the SARS-CoV-2
pandemic, accessible to lay people and scientists alike.
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INTRODUCTION26

In 2019, a novel infectious disease was identified in Wuhan, a city of approximately 11 million residents27

located in the Hubei Province of central China. This infectious disease, called Coronavirus disease 2019,28

or COVID-19 (Velavan and Meyer, 2020), is now known to be caused by the previously unidentified29

severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (?). Following the Wuhan outbreak,30

cases of SARS-CoV-2 infection and COVID-19 death were subsequently identified in Europe, the United31

States, and (by the time of writing) at least 192 countries worldwide. Counting from the beginning of this32

global pandemic, there have been nearly 3.1 million confirmed COVID-19 deaths, more than 580,000 of33

which have occurred in the United States alone (CDC, 2021).34

R (R Core Team, 2020) is a powerful scientific computing environment and programming language35

that is used by statisticians, data scientists, academic researchers, and students worldwide. I have built36

a multifunctional R package (covid19.Explorer) and corresponding web application (https://covid19-37

explorer.org). The purpose of both is to aid scientists and lay people alike to better understand the 2020/2138

SARS-CoV-2 pandemic in the United States. Although my focus is on U.S. COVID-19 data, readers from39

other countries might also be interested in the project – for instance, because the seasonal dynamics of40

infection or the age distribution of mortality has been broadly similar among different affected areas of41

the globe.42

This R package and website are not designed to be a substitute or replacement for the many other43

excellent software products and web tools that have been developed over the past year (e.g., Brown et al.,44

2020; Johns Hopkins University, 2020; Reiner et al., 2020; Gu, 2020). It nonetheless contains a number45
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of different analytical approaches and methods that distinguish it from other software and web resources.46

For example, the covid19.Explorer R package is the only software that I know of that allows the user47

to specify a custom model of the infection fatality ratio (IFR, the fraction of all SARS-CoV-2 infected48

individuals that ultimately die of COVID-19 in a given population; Blackburn et al., 2021) through time49

and then uses this model to reconstruct daily SARS-CoV-2 infections. Although this strategy has been50

employed by other modelers to estimate daily SARS-CoV-2 infections throughout the pandemic (most51

notably, perhaps, by Gu, 2020 – though other modeling groups also use confirmed daily COVID-19 deaths52

as an important lagging indicator of new infections, e.g., Reiner et al., 2020), mine is, so far as I am aware,53

the only software that puts this model of IFR entirely under user control.54

Likewise, the covid19.Explorer R package and website includes visualization methods not available55

in other software or web resources. For instance, the covid19.Explorer can create a plot of U.S. state-56

wise daily estimated infections in aggregate that is unlike any graphical representation of United States57

SARS-CoV-2 infection data that I have seen in other software, webpages, or media sources. Similarly, the58

package includes an ‘iceberg graph’ showing daily observed SARS-CoV-2 infections above the waterline,59

and estimated unobserved infections below it. I have likewise never encountered a precisely identical60

visual representation of the U.S. COVID-19 pandemic data in other electronic resources or software.61

Lastly, it’s perhaps important to mention one thing that the covid19.Explorer R package most62

adamantly does not do, and that is make predictions about the future. There are numerous different63

individual scientists and research teams that have dedicated enormous effort and resources to predicting64

the epidemic dynamics of SARS-CoV-2 in the United States and globally (e.g., Reiner et al., 2020; Gu,65

2020) with widely varying success (e.g., Chin et al., 2020; Ioannidis et al., 2020; James et al., 2021).66

The covid19.Explorer R package and site have the more modest goal of helping users develop a better67

understanding of what has happened over the course of the United States SARS-CoV-2 pandemic from its68

beginnings to the present day.69

1 METHODS70

1.1 Preamble71

covid19.Explorer is a library of functions and data that can be loaded and run using the R scientific72

computing software (R Core Team, 2020). The covid19.Explorer package is open source and freely73

available from its GitHub page (https://github.com/liamrevell/covid19.Explorer/). The covid19.Explorer74

package in turn depends on the CRAN R packages maps (Becker et al., 2018), phytools (Revell, 2012),75

randomcoloR (Ammar, 2019), and RColorBrewer (Neuwirth, 2014).76

Though the covid19.Explorer R package can be downloaded, installed, and run from R on its own,77

it has primarily been designed to be utilized via a web portal: https://covid19-explorer.org. This web78

portal was built in the integrated development environment Rstudio (RStudio Team, 2020), using the79

web application development system shiny (Chang et al., 2021). In addition to those R libraries already80

mentioned, the web application also uses the package shinyWidgets (Perrier et al., 2021).81

The data used by the various applications of the covid19.Explorer are all publicly available and were82

obtained (unless otherwise indicated) from the United States Centers for Disease Control and Prevention83

National Center for Health Statistics (https://www.cdc.gov/nchs/; henceforward, the CDC) or the United84

States Census Bureau (https://www.census.gov/). In particular, these data consist of: provisional U.S.85

COVID-19 death counts by sex, age, and week from the CDC; United States confirmed COVID-19 cases86

and deaths by state through time from the CDC; weekly counts of deaths by jurisdiction and age group87

from the CDC, 2015-present; weekly counts of deaths by state and select causes (including COVID-19)88

from 2014-2018, 2019-2020, and 2020-2021 from the CDC; estimated population sizes by U.S. state and89

by age, from 2010-2019 from the Census Bureau; and, finally, the geographic center of each U.S. state (to90

be used for mapping visualizations).91

1.2 Types of functions in covid19.Explorer92

The covid19.Explorer R package (and corresponding web application) consists of two main types of93

functions.94

The first of these (exemplified by the shiny web application webpage tabs denominated U.S. COVID-1995

infections, Iceberg plot, State comparison, Plausible range, and Infection estimator) consists of functions96

that are designed to estimate the true number of COVID-19 infections over the course of the pandemic.97

Since there are a variety of reasons that the true number of infections (rather than simply the number of98
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confirmed cases) is of interest, these various aforementioned applications of the covid19.Explorer package99

are all designed to help users apply a model (of their own design, see below) to estimate the daily number100

of new infections, the plausible range of new infections, the cumulative number of infections, or the daily101

or cumulative infections as a percentage of the total population or per 1M persons.102

Each of these covid19.Explorer applications uses a model – but it is one whose parameters are set103

by the user, rather than estimated from the data. In particular, users of the covid19.Explorer package or104

corresponding web interface will need to specify: (1) a value or set of values for the infection fatality105

ratio, IFR (Roques et al., 2020), of SARS-CoV-2 infection through time; and (2) an average lag time106

from infection to death. Each of these model parameters have been assigned default values that are fairly107

reasonable, as detailed in the sections below; however, users are nonetheless strongly encouraged to apply108

multiple values and examine the sensitivity of their results. (In fact, this is one of the main purposes of109

the project!)110

The second type of function (exemplified by the web application tabs Deaths by age, Excess mortality111

by age, and By state) do not employ an explicit model and exist primarily to permit the user to interact112

directly with CDC COVID-19 death and 2020 excess mortality data, to understand the implications of113

these data, and to generate interesting or useful data visualizations. The names and corresponding web114

application tabs (if applicable) of all functions in covid19.Explorer are given in alphabetical order in115

Table 1, below.116

Table 1. A summary of the functions and corresponding web applications that currently make up the
covid19.Explorer R package.

Function name Application tab Description
age.deaths Excess mortality by

age
Graph weekly or cumulative excess mortality
by age and jurisdiction.

compare.infections State comparison Compare daily or cumulative deaths and esti-
mated daily or cumulative infections between
states and U.S. jurisdictions.

covid.deaths Deaths by age Plot weekly or cumulative confirmed COVID-
19 deaths by age group and compared to all
deaths.

iceberg.plot Iceberg plot Graph observed daily confirmed SARS-CoV-2
cases (above the ‘waterline’ of the graph) and
estimated unobserved infections (below it).

infection.estimator Infection estimator Estimate daily or cumulative SARS-CoV-2 in-
fections based on observed deaths and con-
firmed cases.

infection.range.estimator Plausible range Estimate the plausible range of daily or cumu-
lative infections based on an interval of IFR
values at each time point.

infections.by.state SARS-CoV-2 infec-
tions

Visualize geographic distribution of new or cu-
mulative SARS-CoV-2 infections through time.

state.deaths By state Graph weekly or cumulative excess deaths by
U.S. state.

updateData Not applicable Update the data used by covid19.Explorer from
the web.

1.3 Estimating infections117

Since the beginning of this pandemic, it has been widely understood that confirmed COVID-19 cases118

underestimate the true number of infections, sometimes vastly (Al-Sadeq and Nasrallah, 2020; Wu et al.,119

2020). This underestimation has multiple causes. One important factor is that there has been limited120

testing capacity throughout much of the SARS-CoV-2 pandemic in the United States, but particularly121

when the pandemic was in its earliest days (Rosenberg et al., 2020). A second significant factor affecting122

the disconnect between observed cases and true infections are the facts that in the United States SARS-123
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CoV-2 testing is voluntary, population surveillance testing has been relatively scarce, and many cases124

of SARS-CoV-2 infection present asymptotically or with mild symptoms (Oran and Topol, 2020). As125

such, I consider confirmed COVID-19 deaths to be a much more reliable indicator of disease burden than126

confirmed cases. Deaths, however, are obviously a lagging indicator of infections.127

The key parameter that relates daily COVID-19 deaths to the number of infections is the infection128

fatality ratio (also called the infection fatality rate or IFR). IFR, normally expressed as a percent, is defined129

as the fraction of deaths among all infected individuals, taking into account both observed infections130

(‘cases’) and asymptomatic or unobserved infections (O’Driscoll et al., 2020). An IFR value of 1.5%, for131

example, would mean that, on average, for every 1,000 infections in a specified population, there would132

be 15 deaths.133

I modeled the number of new SARS-CoV-2 infections on the ith day by taking the number of observed134

COVID-19 deaths on day i + k (in which k is the average lag period between initial infection and death,135

where death is the outcome of infection), and then dividing this quantity by the IFR. In other words, given136

50 COVID-19 deaths on day i + k, and an IFR of 0.5%, we would predict that 10,000 new SARS-CoV-2137

infections had occurred on day i. Both k, the average lag time from infection to death (in cases of138

SARS-CoV-2 infections resulting in death), and the IFR are to be specified by the user.139
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Figure 1. a) Observed U.S. daily COVID-19 deaths (red bars) and user-specified infection fatality rate
(IFR) function (blue line) through time. Note that this panel of the figure has two vertical axes. The axis
on the left shows IFR in %, corresponding to the user-specified IFR model indicated by the blue curved
line. The axis on the right shows the number of new daily COVID-19 deaths, corresponding to the
vertical red bars. b) The ratio of daily confirmed SARS-CoV-2 infections over estimated infections (grey
points) and a fitted sigmoid function of the implied case detection rate (CDR) through time. This fitted
curve is used to extrapolate the true number of daily new SARS-CoV-2 infections from reported cases in
the most recent reporting days.

A fairly reasonable lag time between infection and death might be approximately three weeks. (Not to140

be confused with the median lag time between symptom offset and death, e.g., Wilson et al., 2020.) For141

example, during a large outbreak in Melbourne, Australia the time difference between the peak recorded142
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cases and peak confirmed COVID-19 deaths was around 17 days. Infected persons normally test negative143

for the first few days following exposure (Kucirka et al., 2020), so this more or less corresponds with a144

three week lag.145

Likewise, IFR values ranging from about 0.2% to over 1.0% have been reported over the course of the146

pandemic. For instance, a study based on an early, super-spreader event in Germany estimated an IFR147

(corrected to the demographic distribution of the local population) of 0.36% (Streeck et al., 2020). Other148

researchers have reported higher estimated IFR (e.g., Rinaldi and Paradisi, 2020). In a large meta-analysis149

O’Driscoll et al. (2020) estimated IFR of SARS-CoV-2 infection across 45 different countries and obtained150

median estimates ranging from 0.24% to 1.49%, with higher IFRs typically reported for countries with151

older populations. In general, it is probably reasonable to suppose that IFR has fallen through time152

as treatment of severely ill patients has improved (Fan et al., 2020). Likewise, even within the U.S.,153

IFR is unlikely to be precisely the same at a given date in different jurisdictions, due to differences in154

demographic structure between areas as well as other factors.155

I suspect that it is within reason for users of covid19.Explorer to specify an IFR that is no greater than156

about 1.5% and that declines gradually from the start of the pandemic towards the present, with a current157

IFR that is perhaps around 0.3% - 0.5% (O’Driscoll et al., 2020; Blackburn et al., 2021). Nonetheless,158

covid19.Explorer permits the user to specify a time-varying IFR by fixing the IFR at each quarter (on159

the website), or at any arbitrary time interval (using the R package directly), and then interpolating daily160

IFR between each period using local regression smoothing (LOESS; Cleveland, 1979). As such, it is161

also possible to build a model for IFR through time that both falls and rises, perhaps as stresses on local162

healthcare resources increase or decrease through time with rising and falling COVID-19 case numbers.163

Reporting can vary through time including regularly over the course of the week. (For instance, fewer164

COVID-19 deaths tend to be reported on the weekends compared to Monday through Friday; e.g., Figure165

1a.) To take these reporting artifacts into account, I used both moving averages and local regression166

(LOESS) smoothing. Both the window for the moving average and the LOESS smoothing parameter are167

controlled by the user.168

The approach of using only confirmed COVID-19 deaths – though robust – does not permit us to169

estimate the true number of infections between k days ago and the present. To do this, I assumed a170

sigmoidal relationship (by default) between time and the ratio of daily confirmed cases over the estimated171

true number of infections – a quantity called the case detection rate or CDR (Figure 1b). Since the number172

of confirmed cases cannot exceed the true number of new infections, logic dictates that the CDR should173

have a value that falls between 0 and 1.174

I decided on a sigmoidal relationship between the case detection rate and time because it seemed175

reasonable to presume the ratio was very low early in the pandemic when confirming a new infection was176

limited primarily by testing capacity, but that CDR has probably risen (in many localities) to a more or less177

consistent value as testing capacity increased. Since getting tested is voluntary, and since many infections178

of SARS-CoV-2 are asymptomatic or only mildly symptomatic, this ratio seems unlikely to rise to very179

near 1.0 in the U.S. regardless of the availability of testing. Figure 1, created using covid19.Explorer,180

shows daily confirmed cases / daily estimated infections (under our model) for all U.S. data over the181

entire course of the pandemic to date (Figure 1b), given observed daily deaths (red bars) and assumed IFR182

evolution through time (blue curved line; Figure 1a). Our plot seems to indicate a CDR of about 0.42 at183

the present; however, the reader should keep in mind that in practice this value is estimated separately for184

each jurisdiction that is being analyzed, and as such might be lower in some states and higher in others,185

even for a constant IFR value or function.186

In the event that a sigmoid function cannot be fit to the implied daily CDR for a given state or187

jurisdiction, the software automatically substitutes the mean CDR from the last 30 days of data. Since I188

only used the CDR to estimate daily infections for the most recent time period of our data (see below), and189

since CDR tended to increase asymptotically towards a more or less constant value in most jurisdictions190

(e.g., Figure 1), this seemed fairly reasonable. When using the covid19.Explorer in R (rather than through191

the web interface), this option can also be selected explicitly by the user. An important point to make in192

this context is that I intend the sigmoidal functional form to be a heuristic (rather than literal) means of193

capturing the approximate relationship between CDR and time since the start of the pandemic – and thus194

estimate the CDR for the most recently reported cases. If users are unsatisfied with the fit of the sigmoid195

curve to CDR, they are encouraged to substitute the mean implied CDR from the last 30 days of data. The196

reason I chose the sigmoid fit to begin with was primarily to avoid distortions driven by so-called ‘data197
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dumps,’ in which a state or jurisdiction releases a large number of previously misclassified or unreported198

cases or deaths on a single day. In practice, using the mean implied CDR from the past 30 days or the199

fitted value of CDR from a sigmoid fit will not make much of a difference in the majority of jurisdictions200

represented in our data.201

After fitting this sigmoidal curve to our observed and estimated cases through now −k days (or202

calculating the mean implied CDR from the most recent 30 days), we then must turn to the last period. To203

obtain estimated infections for these days, we merely divide our observed cases from the last k days of204

data by the fitted CDR values of our curve. Figure 2 shows the result of this analysis applied to data for205

the U.S. state of Massachusetts.206
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Figure 2. a) Observed daily COVID-19 deaths and an assumed model of IFR in which the infection
fatality ratio is initially high ( 1.5%), but then declines and stabilizes at around 0.6% through the present
day. As in Figure 1, panel a) has two vertical axes. The axis on the left shows IFR in %, corresponding to
the user-specified IFR model indicated by the blue curved line. The axis on the right shows the number of
new daily COVID-19 deaths, corresponding to the vertical red bars of the plot. b) Estimated daily
infections (green), cases (blue), and deaths (red).

In addition to computing the raw number of daily infections, this method can also be used to estimate207

infections as a percentage of the total population. To make this calculation, I obtained state populations208

through time from the U.S. Census Bureau. Data was only given through 2019 at the time of writing, so209

to estimate state-level 2020 population sizes, I used a total mid-year 2020 U.S. population estimate of210

331,002,651) to ‘correct’ each 2019 state population size to a 2020 level. Finally, CDC mortality data211

splits New York City (NYC) from the rest of New York state. Since this contrast is interesting (e.g.,212

Gonzalez-Reiche et al., 2020), I maintained the separation – and used a mid-2019 population estimate of213

(8,336,817) for NYC, then simply assumed that the population of NYC has changed between 2015 and214

2020 in proportion to the rest of the state. (Since they have a part : whole relationship, this seemed pretty215

reasonable. In fact, according to the U.S. Census Bureau from 2010 to 2019 the fraction of New York216

State residents living in New York City is estimated to have grown by around 0.1% per year, from 41.8%217

in 2010 to about 42.8% in 2019. If this trend continued through 2020, then I may have underestimated218
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the population of New York City by about 0.2%. Since this is only relevant when considering per capita219

SARS-CoV-2 infections and COVID-19 deaths, I suspect it is a relatively minor source of error compared220

to other simplifying assumptions of this software.)221

1.4 Assumptions about estimating infections222

This model is very simple. In using it, we start by merely imagining that if we knew the true number of223

infections and the IFR for our population of interest on day i, then we could predict the number of deaths224

on day i + k, in which k is the lag-time from infection to death (for SARS-CoV-2 infections leading to225

death). Having observed the deaths, and supposing a particular value of IFR for day i, we can likewise226

work backwards and reconstruct the most plausible number of infections on that day.227

Although the model does not pre-suppose a specific value or function for IFR, it does require that228

one be specified by the user. As such, it is probably worth mentioning the effect of setting an IFR value229

that is either too high or too low compared to the (invariably unknown) true IFR for the population230

of interest. An IFR that is too high (overall or at a specific time during the pandemic) will have the231

general effect of causing us to systematically underestimate the number of infections that have occurred.232

This makes sense because if we imagine observing 50 COVID-19 deaths, an IFR of 0.5% would imply233

that these deaths correspond to a total of 10,000 SARS-CoV-2 infections. By contrast, a higher IFR of,234

say, 1.0% would instead imply that only 5,000 infections had occurred. Assuming an IFR value that is235

too low will (obviously) have exactly the opposite effect and thus cause us to overestimate the number236

of infections that have occurred. The default values for IFR through time specified in the web portal237

(https://covid19-explorer.org) are 0.85% on Feb. 1, 2020 and then decline every 3 months: 0.65%, 0.55%,238

0.5%, and 0.5% on January 31, 2021, with intermediate values interpolated using LOESS smoothing.239

The purpose of the software and web resource is to allow the user to explore alternative (reasonable)240

scenarios for IFR through time and examine their effects on estimated daily or cumulative SARS-CoV-2241

infections in different jurisdictions; however, the default values are not arbitrary. First, they are largely242

consistent with population-wise IFR estimates from seroprevalence research (e.g., O’Driscoll et al., 2020).243

Second, they yield estimated daily infections that are qualitatively if not quantitatively similar to those244

obtained by several other leading models of the SARS-CoV-2 pandemic in the United States (e.g., Gu,245

2020; Reiner et al., 2020).246

I also assume a homogeneous value of k at any particular time. In fact, literature sources report247

lag-times between two and eight weeks (e.g., Yang et al., 2020). Nonetheless, I suspect that inferences248

by this method should not be badly off – so long as the true IFR does not swing about wildly from day249

to day, and so long as the number of deaths is not extremely few for any reporting period. I likewise250

assume a constant lag-period, k, through time. This assumption is perhaps a bit more dubious as it seems251

quite reasonable to suppose that, for a specific state or jurisdiction, as IFR falls k might also increase. If252

k increased as a function of time, this would mean that recent peaks in daily new infections would be253

systematically biased forward in time (that is, they occurred earlier than it seems) compared to peaks that254

occurred early in the pandemic. (The converse would also be true if k decreased rather than increasing255

through time.) This is a complexity that I explicitly chose to ignore in the model.256

I assume that a more or less consistent fraction of COVID-19 deaths are reported as such – that is,257

that COVID-19 is neither systematically under- or overreported as the cause of death at any point during258

the course of the pandemic. A violation of this assumption is not quite as grave as it might seem, however,259

because it can simply be ‘baked in’ to our model for IFR. For instance, if we think that COVID-19 deaths260

were under-reported near the start of the pandemic (e.g., Weinberger et al., 2020), perhaps due to limited261

testing capacity, this can be accommodated into our model for daily infections simply by specifying a262

slightly lower IFR value for SARS-CoV-2 infection at that time (keeping in mind, of course, that the true263

IFR has generally decreased through time; e.g., Levin et al., 2020).264

In estimating the number of daily infections from k days ago to the present, we assume that the265

relationship between time (since the first infections) and the ratio of confirmed and estimated infections266

(i.e., the case detection rate, CDR) is sigmoidal in shape (Figure 1b). This is a testable assumption that267

seems to hold fairly well across the entire U.S. (Figure 1b) and for some jurisdictions, but less well for268

others. It is equally plausible to suspect that CDR could shift not only as a function of time, but also as269

demands on testing capacity rise and fall with case numbers, or as different populations become infected.270

This should be the subject of additional study, but my suspicion is that this would not be likely to have a271

large effect on our model compared to other simplifications. Additionally (as mentioned above), when272
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using covid19.Explorer from within R it is straightforward to substitute the mean implied CDR from the273

last 30 days for the fitted values of CDR from the sigmoidal fit.274

One slightly problematic possibility is that the true CDR in the most recent k days is much lower or275

higher than estimated CDR. This could happen if, for example, in jurisdictions with low surveillance276

testing, changes in the demographic distribution of new SARS-CoV-2 infections (due to, for instance,277

age-prioritized vaccination) mean that relatively few infections present symptomatically and get tested.278

This would have the effect of causing CDR to be overestimated and would result in a concomitant279

underestimation of daily new SARS-CoV-2 infections towards the right side of the graph. The opposite280

effect is expected if surveillance testing was to be increased (for instance, in a jurisdiction with high281

numbers of in-person college or university students simultaneously returning to campus), thus increasing282

true CDR relative to its estimated value in the most recent period compared to time periods prior to k days283

before the present.284

Finally we assume no or limited reporting delay. This is obviously incorrect. There are two main285

sources of reporting delay: the delay between when an individual is infected and when they go on to286

test positive for SARS-CoV-2; and the delay between when an infected patient dies and their death is287

reported to the CDC. Given this delay in reporting, a more precise interpretation of the estimated number288

of daily infections, is a (rough) estimate of the number of new individuals who would be reported as289

testing positive for SARS-CoV-2 on any given day under a hypothetical scenario of universal daily testing.290

1.5 Showing observed and estimated unobserved infections using an ‘iceberg plot’291

As noted above, it has long been well-understood that the number of daily confirmed COVID-19 cases is292

an underestimate of the true number of daily SARS-CoV-2 infections, sometimes by a very wide margin293

(Wu et al., 2020). To visualize this phenomenon, I devised an iceberg plot in which we simultaneously294

graph the number of observed infections (above the ‘waterline’ of the graph) and the estimated number of295

unobserved SARS-CoV-2 infections (below it). Figure 3 gives this analysis for New York state, in which I296

assumed the same IFR model through time as was used to generate Figures 1 and 2.297

60k

40k

20k

0

20k

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

confirmed COVID−19 infections New York
estimated unobserved infections

Figure 3. Iceberg plot showing the confirmed daily new infections (above the ‘waterline’ of the plot)
and estimated unobserved infections (below it) for New York state.

1.6 Mapping the distribution of infections across states298

A hallmark feature of the U.S. COVID-19 pandemic has been the shifting geographic distribution299

of infections through time among states. To capture this dynamic, I devised a plotting method for300
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covid19.Explorer in which I overlay the daily or cumulative SARS-CoV-2 infections under our model301

(outlined above), separated by state.302

For this visualization, I selected a geographic color palette such that RGB color values were made303

to vary as a function of latitude, longitude, and (arbitrarily) geographic distance from Florida. This is304

intended to have the effect of making the regional geographic progression of infection more apparent in305

the graph. The result can be seen in Figures 4 and 5.306
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Figure 4. Daily estimated infections separated by state. The color palette is designed to capture the
geographic distribution of new infections through time, rather than the severity of the pandemic in each
state.

This plotting method shares all the assumptions of our infection estimator, above, but adds the307

additional assumption that our model of IFR is the same for all states. This assumption is quite dubious,308

in fact, as IFR could be expected to rise in locations were hospital resources are overtaxed by high disease309

burden; and, conversely, fall in hospitals where staff have more experience in treating COVID-19 patients.310

On an individual level, IFR is also very strongly influenced by age (e.g., O’Driscoll et al., 2020), as311

well as by other risk factors such as obesity (e.g., Kompaniyets et al., 2021) and socioeconomics (e.g.,312

Lone et al., 2021). As such, even if IFR falls through time in different jurisdictions in a similar way,313

one would nonetheless expect to observe higher IFR in states with higher median age, higher obesity, or314

higher poverty rates, compared to younger, less obese, and higher median income states. Although I do315

not doubt that these nuances are important in making specific, quantitative statements about the particular316

number of infections in each state, I nonetheless believe that my method is effective at visually capturing317

the overall geographic dynamics of the COVID-19 pandemic in the United States.318

One point that may be worth noting about this lattermost assumption is that use of a constant IFR319

model across all U.S. states does not, in and of itself, have the effect of distorting the total number of320

estimated new infections on each day. To see this, let’s start by imagining (for instance) 3,000 infections321

in jurisdiction A on day 1 and 30 resultant deaths k days later (IFR of 1.0%). Meanwhile, perhaps, 2,000322

infections have occurred in jurisdiction B on day 1, but only 10 deaths k days later (IFR of 0.5%). Using323

the global IFR of (30+ 10)/(3,000+ 2,000)× 100% = 0.8% gives us the same estimate of the total324

number of new infections on day 1 (40/0.008= 5,000) whether it is applied to each jurisdiction separately,325

or to the total number of deaths taken all together. What is affected, however, are the proportions of new326

infections attributed to each jurisdiction. In the constant IFR model the number of infections attributed327

to jurisdiction A (30/0.008 = 3,750) would be too few; while the number of new infections attributed328

to jurisdiction B (10/0.008 = 1,250) is too many. Thus the distribution of daily new infections among329

sites, but not their grand total across jurisdictions, can be affected by an assumption that the IFR of330

SARS-CoV-2 (and the way that it changes through time) is the same across all of the jurisdictions in our331

dataset.332
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1.7 Visualizing COVID-19 mortality data333

In addition to modeling the number of infections through time, the covid19.Explorer R package and334

website also allows users to visualize the distribution of COVID-19 deaths by age and sex, as well as335

mortality in excess of normal during 2020 compared to other recent years (2015-2019).336

Excess mortality (also called mortality displacement; e.g., Huynen et al., 2001) is defined as the337

number of deaths (for any period) in excess of the ‘normal’ number of deaths for the same period. To338

compute the raw death counts for each jurisdiction, I tabulated the 2015-2018 counts with the 2019-2020339

provisional counts. To correct observed deaths in prior years to 2020 levels, I simply multiplied the340

past-year death tally by the ratio the jurisdiction population in 2020 compared to the population in the341

past year. Finally, to compute excess deaths for any jurisdiction, I then took the death counts (or corrected342

death counts) for 2020, and subtracted the mean of years 2015 through 2019. This treats 2015 through343

2019 as ‘normal’ years, and 2020 as unusual.344

One factor that I did not account for in this lattermost calculation is movement of people between345

jurisdictions. In fact, some studies indicate that the COVID-19 pandemic has disrupted normal immigration346

patterns of humans (e.g., Smith and Wesselbaum, 2020). Areas harder-hit by SARS-CoV-2 may have347

experienced a net loss of residents (even apart from direct mortality due to COVID-19) due to emigration348

of people from the affected jurisdiction, or reduced immigration to the area (Smith and Wesselbaum,349

2020). Fortunately, the covid19.Explorer R package and web application will be easy to update when350

final census and estimated population sizes for the states and jurisdictions of my dataset are published for351

2020 and 2021.352

1.8 The covid19.Explorer web interface353

Though the covid19.Explorer package can be used within an interactive R session, it has also been354

interfaced to the web by way of the web application that I developed in Rstudio (RStudio Team, 2020)355

using the shiny web development system (Chang et al., 2021). The covid19.Explorer web application is356

hosted at the website https://covid19-explorer.org.357

Figure 5 shows a screenshot of this web application, illustrating an analysis of the estimated cumulative358

number of SARS-CoV-2 infections through time across U.S. states. In this web application, the user359

must specify the value of IFR at the beginning of each three month period, and that at the end of the year,360

beginning on Feb. 1, 2020, and ending on Jan. 31, 2021. Values on these intervals are interpolated using361

LOESS smoothing.362

Figure 5. The covid19.Explorer web interface (https://covid19-explorer.org) showing estimated
cumulative SARS-CoV-2 infections among states under the same IFR model as Figures 1 – 4.

Although the default values for the IFR of SARS-CoV-2 and the average lag time from infection to363
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death on the web interface are somewhat arbitrary (and are meant to be adjusted by the user), they both364

fall on the range of most estimated values for these parameters from other research (e.g., O’Driscoll et al.,365

2020; Wilson et al., 2020), and result in estimated daily new SARS-CoV-2 infections that are qualitatively366

and/or quantitatively similar to other leading resources (e.g., Gu, 2020; Reiner et al., 2020).367

2 RESULTS368

The purpose of this article is to describe a software tool, which I have largely done in the preceding369

section. Here, I will attempt to highlight some results and insights that can be obtained by users via370

interaction with the covid19.Explorer R package or web application.371

2.1 Herd immunity and the cumulative proportion of the population infected372

The question of cumulative percent infected is relevant to the (unnecessarily controversial) concept of373

‘herd immunity’ (Randolph and Barreiro, 2020). The herd immunity threshold (HIT), whether reached374

via natural infection or vaccination, is typically defined as the proportion of the population that must375

be immune in order to cause the basic reproductive number of the virus at time t (Rt) to fall below 1.0,376

absent mitigations (Anderson and May, 1985). When Rt has fallen below 1.0, daily new infections should377

progressively decline.378
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Figure 6. a) Observed daily COVID-19 deaths and an assumed model of IFR. As in Figure 1 and 2,
panel a) has two vertical axes. The axis on the left shows IFR in %, corresponding to the user-specified
IFR model indicated by the blue curved line. The axis on the right shows the number of new daily
COVID-19 deaths, corresponding to the vertical red bars of the plot. b) Estimated cumulative
SARS-CoV-2 infections (green), cases (blue), and deaths (red), as a percentage of the total population of
the state.

The HIT is normally estimated by taking the reproductive number when 100% of the population is379

susceptible (i.e., when a new disease emerges, R0), and computing 1−1/R0. For SARS-CoV-2 various380

values of R0 have been represented in the literature, from as low as around R0 = 2.4 (e.g., D'Arienzo381
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and Coniglio, 2020), to as high as about R0 = 5.8 (e.g., Ke et al., 2020). A value of R0 equal to 3.0,382

for example, would imply that herd immunity should be reached after 1− 1/3 or around 67% of the383

population has acquired immunity through natural infection or vaccination (not accounting for waning384

acquired immunity from natural infection, which some studies have indicated for SARS-CoV-2; e.g.,385

Long et al., 2020).386

The covid19.Explorer R package and web application can be used to evaluate the proportion of387

individuals in the total population that have been potentially infected with SARS-CoV-2, given our model388

for COVID-19 IFR through time. Figure 6 shows cumulative estimated SARS-CoV-2 infections as a389

fraction of the total population for the U.S. state of Texas, using the same IFR model as in Figures 1, 2,390

3, and 4. Though the plot suggests that perhaps around 25-30% of the population in Texas has already391

been infected, users should keep in mind that this result is entirely dependent on how we decided to392

specify our model of IFR through time! Likewise, though this fraction is considerable, it is still well393

below the level of infection (e.g., 67%) required to achieve herd immunity given the majority of published394

estimates for R0 of SARS-CoV-2. It may be worth noting that some authors have pointed out that the herd395

immunity threshold from a natural epidemic could be considerably lower than the 1−1/R0 level expected396

for random vaccination (e.g., Britton et al., 2020; Gomes et al., 2020). This is an intriguing possibility,397

and one that could be qualitatively examined with some of the tools of the covid19.Explorer package.398

2.2 Computing a plausible range of infection numbers399

A relatively simple extension of the infection estimation method, described above, is to admit uncertainty400

about the specific value of the infection fatality rate at any particular time during the pandemic, and then401

measure the sensitivity of our prediction to a wide range of different values for IFR.402

This is a potentially valuable exercise, precisely because the question of the IFR for COVID-19 has403

been the subject of considerable controversy and confusion (e.g., Vermund and Pitzer, 2020). This model404

can be design to accommodate an assumption of broad uncertainty in IFR early during the pandemic, with405

both decreasing IFR, as well as decreasing uncertainty in IFR, towards the present. This is illustrated for406

data from the U.S. state of Louisiana in Figure 7.407

It should be noted that although the shaded region around the mean number of daily or cumulative408

infections in Figure 7 looks like a confidence band, it would only be valid to consider it as such if our409

high and low values of the IFR through time represented a confidence interval around the true infection410

fatality rate (and, even then, this confidence band would only take into account one source of uncertainty411

about the real daily number of infections – the IFR). As an increasing number of studies are able to412

provide us with better and better estimates of the IFR of SARS-CoV-2 throughout this pandemic (e.g.,413

O’Driscoll et al., 2020) it may be possible to parameterize this model in a way that genuinely accounts for414

changing uncertainty in the value of IFR through time in the U.S. pandemic. For the time being, however,415

I recommend employing the method as a heuristic approach to obtaining a credible range of daily new or416

cumulative SARS-CoV-2 infections under an explicit model for the United States or any particular U.S.417

jurisdiction.418

2.3 Comparing daily and cumulative infections between states419

Another straightforward extension of our above-described model involves directly comparing daily (or420

cumulative) infections between states. This, likewise, could be a useful activity because many readers421

have undoubtedly observed how common it has become for (particularly) popular press sources to attribute422

different infection dynamics in different states to one public health intervention or another. This attribution423

may be valid in many instances, but is often confounded by varying infection dynamics through time in424

the different states being compared. In general, evaluation of non-pharmaceutical interventions on the425

spread of SARS-CoV-2 (e.g., Bennett, 2021; Liu et al., 2021) has been both very difficult and problematic.426

In Figure 8, I compare the daily confirmed deaths and estimated infections between the U.S. states of427

California and Florida.428

This plotting method obviously shares all of the assumptions of our infection estimator, and (just like429

our method for visualizing the geographic dynamics of the pandemic across all U.S. states) requires that430

we use the same IFR model for each state. Since the daily and cumulative number of infections scales431

with population size, valid state-to-state comparisons really only make sense if done on a per-capita basis432

(e.g., infections or deaths / 1M population), just as shown here in Figure 8.433
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Figure 7. a) Confirmed COVID-19 deaths and a plausible range of scenarios for the evolution of
SARS-CoV-2 infection fatality rate (IFR) through time. As in Figures 1, 2, and 6 panel a) has two vertical
axes. The axis on the left shows IFR in %, corresponding to the user-specified IFR model (in this case,
given as a plausible range of IFR values for each time period) indicated by the blue curved line and
shaded area. The axis on the right shows the number of new daily COVID-19 deaths, corresponding to
the vertical red bars of the plot. b) A corresponding plausible range of daily new infections, under our
model, for the U.S. state of Louisiana.

2.4 COVID-19 mortality and age434

Lastly, in addition to modeling the number of SARS-CoV-2 infections through time, the covid19.Explorer435

package can be used to analyze and graph COVID-19 deaths by age and sex, as well as excess mortality436

by age and jurisdiction.437

This functionality, too, can sometimes lead to valuable insights. For instance, it was widely predicted438

by media and public health experts that school and college reopening in the fall was likely to increased439

SARS-CoV-2 infections and increased COVID-19 deaths among U.S. children and young people, as well440

as increased SARS-CoV-2 transmission in the community (e.g., Bansal et al., 2020). In my opinion, the441

minimum standard of evidence required to establish that reopening of colleges and universities for the442

fall semester of 2020 had led to increased community transmission overall (remembering the adolescents443

and young adults live in communities, regardless of whether they are on campus or at home) would be444

increased SARS-CoV-2 infections of college-aged youth, as a proportion of all infections, during the fall445

than in spring or summer.446

In fact, and keeping in mind that COVID-19 deaths are always a better (though lagging) indicator of447

SARS-CoV-2 infections than observed cases, CDC mortality data show precisely the opposite pattern.448

Figure 9 gives the weekly COVID-19 deaths over all ages (in panel a) and for 15-24 year olds (in panel b).449

We see that although the highest peaks of weekly COVID-19 deaths in the general population occurred in450

the spring of 2020 and the fall/winter of 2020/21, peak deaths among 15-24 are similar between summer451

and fall, and much higher (as a proportion of all COVID-19 deaths) during the summer – precisely452

when schools and colleges were out of session for all students. This implies in turn that adolescents and453

13/18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2021. ; https://doi.org/10.1101/2021.02.15.21251782doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251782
http://creativecommons.org/licenses/by/4.0/


es
tim

at
ed

 c
um

ul
at

iv
e 

de
at

hs
 / 

1M

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

0

500

1k

1.5k

California
Florida

a) cumulative deaths / 1M

es
tim

at
ed

 c
um

ul
at

iv
e 

in
fe

ct
io

ns
 / 

1M

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

0

50k

100k

150k

200k

250k

300k California
Florida

b) estimated cumulative infections / 1M

Figure 8. Daily confirmed COVID-19 deaths (a) or estimated SARS-CoV-2 infections (b) in the U.S.
states of California vs. Florida.

college-aged adults may have been more (rather than less) likely to become infected with SARS-CoV-2454

when schools were in summer recess then when they returned to campus in the fall.455

3 DISCUSSION456

The SARS-CoV-2 global pandemic of 2020 and 2021 has upended economies and civil society worldwide.457

With widespread vaccination campaigns underway in many countries, and particularly in the United458

States, the COVID-19 pandemic may finally be in its waning days (even if SARS-CoV-2 ultimate becomes459

endemic and never entirely goes away, e.g., Shaman and Galanti, 2020). Nonetheless, understanding460

the temporal and geographical dynamics of SARS-CoV-2 infections and COVID-19 deaths remains a461

critically important endeavor. The COVID-19 pandemic is neither the first, nor will it be the last, global462

respiratory virus pandemic (Saunders-Hastings and Krewski, 2016; Piret and Boivin, 2021). Lessons463

learned from this pandemic will be of substantial and lasting consequence in managing or failing to464

manage future public health emergencies.465

In this article, I present an accessible tool – the covid19.Explorer R package and corresponding web466

application – that is designed to be used to model U.S. SARS-CoV-2 infections through time, to understand467

the differences in epidemic dynamics between states and jurisdictions, to visualize the geographic progress468

of infection among U.S. states, to graph confirmed COVID-19 deaths by age and sex, and to compute and469

visualize excess mortality by age and jurisdiction.470

Given the impact the SARS-CoV-2 pandemic has had on almost all of our daily lives over the471

past year, most readers of this article will know (or will be unsurprised to learn) that many other472

software tools and web-based applications have been developed to help visualize or better understand the473

temporal or geographic dynamics of COVID-19 in the United States. I nonetheless believe, however, that474

covid19.Explorer application, which has now been online (in one form or another) for nearly seven months,475

contains a number of different functionalities and graphics not readily available in other competing tools.476

Firstly, no other software or web application, to my knowledge, lets the user build a custom model for477

the evolution of infection fatality rate through time. This facility, offered by covid19.Explorer, allows478

the scientists and lay people that interact with the software to design their own parameter function (be it479
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Figure 9. Weekly confirmed COVID-19 deaths for (a) all ages; and (b) individuals aged 15-24 years old
in the U.S.

based on specific hypothesis about IFR through time, or external information – e.g., from seroprevalence480

studies – about the value of IFR for SARS-CoV-2 at a specific time and place) that will then be used to481

estimate infections under the model. Likewise, the tool allows covid19.Explorer users to progressively482

adjust the parameter values and other assumptions of this model and see how their results change in turn.483

Secondly, multiple visualization methods of the covid19.Explorer R package and webpage are simply484

not represented in other software packages. For instance, I have never observed a graph similar to that485

of Figure 4 of this article in a publication or popular media source (other than those reporting on this486

application). Similarly, while it is extremely common to see graphs in the New York Times or other media487

showing the number of confirmed COVID-19 cases per day (the part above the ‘waterline’ in our iceberg488

graph of Figure 3), I have likewise never once seen a similar plot giving an estimate of the daily number489

of unobserved infections (below it).490

Lastly, the covid19.Explorer package is completely transparent and open source. It pulls its data491

directly from public, government repositories. All model assumptions (even those not explicitly described492

in this paper) are readily identified from the software source code of the package functions.493

Even if the SARS-CoV-2 pandemic eventually becomes a distant memory, I hope that this tool (which494

I plan to make available indefinitely) will continue to be of use to scientists and educated lay people495

interested in the learning from the successes and failures of policy during the 2020/21 pandemic – perhaps496

to ensure that there are more of the former and fewer of the latter in our next global infectious disease497

pandemic.498
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