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Abstract 28 

To understand the geographical and temporal spread of SARS-CoV-2 during the first wave of 29 

infection documented in the canton of Vaud, Switzerland, we analysed clusters of positive 30 

cases using the precise place of residence of 33’651 individuals tested (RT-PCR) between 31 

January 10 and June 30, 2020. We identified both space-time (SaTScan) and transmission 32 

(MST-DBSCAN) clusters; we estimated their duration, their transmission behavior 33 

(emergence, growth, reduction, etc.) and relative risk. For each cluster, we computed the within 34 

number of individuals, their median age and viral load.  35 

Among 1’684 space-time clusters identified, 457 (27.1%) were significant (p ≤ 0.05), i.e. 36 

harboring a higher relative risk of infection, as compared to other regions. They lasted a median 37 

of 11 days (IQR 7-13) and included a median of 12 individuals per cluster (IQR 5-20). The 38 

majority of significant clusters (n=260; 56.9 %) had at least one person with an extremely high 39 

viral load (above 1 billion copies/ml). Those clusters were considerably larger (median of 17 40 

infected individuals, p < 0.001) than clusters with subjects showing a viral load lower than 1 41 

million copies/ml (median of 3 infected individuals). The highest viral loads were found in 42 

clusters with the lowest average age, while clusters with the highest average age had low to 43 

middle viral load. Interestingly, in 20 significant clusters  the viral load of three first cases were 44 

all below 100’000 copies/ml suggesting that subjects with less than 100’000 copies/ml may still 45 

have been contagious. Noteworthy, the dynamics of transmission clusters made it possible to 46 

identify three diffusion zones, which mainly differentiated rural from urban areas, the latter 47 

being more prone to last and spread in a new nearby clusters. 48 

The use of geographic information is key for public health decision makers to mitigate the 49 

spread of the virus. This study suggests that early localization of clusters help implementing 50 

targeted protective measures limiting the spread of the SARS-CoV-2 virus.  51 

 52 

Introduction 53 

The novel coronavirus SARS-CoV-2 causing the COVID-19 disease has impacted our 54 

societies on an unprecedented scale. The number of infected people increased rapidly 55 
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globally, with more than 84 million confirmed cases as of January 2021 and more than 1.8 56 

million deaths (1, 2). The quick spread of the disease has challenged international experts and 57 

policymakers to implement strategies according to the local virus spread, healthcare 58 

resources, economic and political factors (Nicola et al., 2020; see also the cross-country 59 

analysis of COVID-19 response: https://analysis.covid19healthsystem.org/). Around the globe, 60 

tracing, lockdowns and quarantines have been implemented to contain the spread and 61 

impacted more than four billion people worldwide (4). These measures aim to protect the 62 

significant fraction(~22%) of the world population at risk of severe COVID-19 (5). They raise 63 

major challenges related to their dramatic impact on individual health, the capacities of our 64 

healthcare system and on our economy (4, 6, 7). 65 

COVID-19 outbreaks occur by spreading via close contact forming clusters of cases. A critical 66 

challenge to contain the spread of the virus lies (i) in the early detection of these clusters, which 67 

reflects active viral transmission (8) and (ii) in the understanding of their spatial and temporal 68 

evolution (9). Geospatial tools using the precise location of the place of residence of tested 69 

individuals are highly effective to oversee an epidemic (10, 11). They allow for implementation 70 

of strategies to control the local disease spread in space and time (12).  71 

Although widely used, there is no general agreement on the definition and the concepts of 72 

cluster, outbreak and hotspot, and more specifically in a spatial context. The information 73 

available from public health departments around the world globally converge, despite 74 

differences exist. The term “cluster” generally refers to a temporal aggregation and a spatial 75 

concentration of infections cases. COVID-19 clusters are constituted of two or more test-76 

confirmed cases – three or more in France (www.santepubliquefrance.fr) and Switzerland, 77 

even 10 or more in New Zealand (www.health.govt.nz) – among individuals associated with a 78 

specific non-residential setting with illness onset dates within 7 to 14 days. To further label 79 

clusters as outbreak, one must also either 1) have identified direct exposure between at least 80 

two of the test-confirmed cases in that setting (for example under one meter face to face) and 81 

this during the infectious period of one of the cases, or 2) when there is no sustained local 82 

community transmission, one must have noticed the absence of an alternative source of 83 
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infection outside the setting for the initially identified positive cases (13).  Clusters are also 84 

assimilated to the concept of “hotspot”, which is not clearly defined neither but often used in 85 

spatial epidemiology (14). The World Health Organization (WHO) defined a set of methods 86 

and procedures to identify epidemic hotspots and to use them for global surveillance of a 87 

population (UNAIDS/WHO, 2013). Beside, infectious diseases studies have proposed 88 

methods to identify spatial clusters and characterize them (16, 17).  89 

The identification of areas of high prevalence of any phenomenon constitutes a specific 90 

research domain in spatial statistics. Point pattern analysis (18) and local spatial 91 

autocorrelation methods were applied for the detection of disease clusters (19). In the current 92 

COVID-19 pandemic, Zhang et al. (2020) used local Moran’s statistics to identify clusters in 93 

China, but at a large geographic scale and using incident cases aggregated at the level of 94 

large administrative units. Among studies involving geospatial information reviewed by Franch-95 

Pardo et al. (2020), few characterized the spread of COVID-19 in space and time (e.g. 96 

Desjardins et al., 2020) and even less used spatial statistics to detect clusters at a local scale 97 

(22, 8). More studies on local and regional scales that consider demographic characteristics 98 

of a population at risk are needed to provide timely information to enable accurate prevention 99 

and containment measures (10). Indeed, the precise detection of spatial clusters, the 100 

description of their dynamics and evolution over time in a geographic context are key to inform 101 

decision-makers, to deploy smart testing overtime and to provide targeted health and 102 

prevention interventions at a local scale (23).  103 

The persistence in time of clusters was shown to be associated with socio-economic 104 

deprivation (22), but their size and duration are also likely to be due to so-called “super-105 

spreader” individuals or events (24). They relate to the evidence for large variation in individual 106 

reproductive number (25). A super-spreader is considered to greatly contribute to the 107 

transmission of an infectious disease. Stein (2011) estimates that it would correspond to a 108 

20/80, i.e. 20% of individuals for up to 80% of the transmission. Super-spreaders exist among 109 

the SARS-CoV-2 infected persons (27); they are more likely to be highly infectious, a 110 

mechanism suggested to be related to high viral loads (28). Noteworthy, as shown recently 111 
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(29), viral load found in SARS-CoV-2 infected people appears to be similar to that observed 112 

with other respiratory viruses such as influenza B and to be similar across ages. Why SARS-113 

CoV-2 exhibits such a high reproductive number (R0) of about 2 to 3.5 (30), and whether 114 

transmission pattern, cluster duration and size correlate somehow with viral load remains to 115 

be explored in a detailed spatio-temporal context. 116 

Here, we characterized the spatial and temporal dynamics of the first wave of SARS-CoV-2 117 

infection in the canton of Vaud (western Switzerland) through the detection and the location of 118 

clusters, as well as of their characteristics such as size, duration and composition (number and 119 

age of individuals and their viral load). We used the results of the SARS-CoV-2 RT-PCR tests 120 

(n= 33’651) performed by the Microbiology Laboratory of the Lausanne University Hospital 121 

(CHUV) between January 10 and June 30, 2020 (with a first positive case on 2nd March). The 122 

data collected are results of RT-PCR tests, viral load (copies/ml) when the test is positive, age 123 

and geographic location of the address of residence of individuals tested. We used on the one 124 

hand a spatial scan approach (31, 32) (i) to detect spatio-temporal clusters of COVID-19 on a 125 

daily basis, (ii) to disentangle the relationships between cluster size, duration and composition, 126 

and (iii) to assess the importance of viral load in the evolution of the clusters. On the other 127 

hand, we implemented the Modified Space-Time DBSCAN (MST-DBSCAN) algorithm (33) to 128 

characterize the diffusion dynamics of transmission clusters. Finally, we discussed the effect 129 

of a soft lockdown such as deployed in Switzerland from March 19 to April 27, 2020, on the 130 

dynamics of the spread of the virus. 131 

 132 

Material and Methods 133 

Patients 134 

Patients exhibiting symptoms compatible with COVID-19, such as fever, cough, dyspnea, 135 

smell loss or taste loss were tested by RT-PCR for the presence of the SARS-CoV-2 in their 136 

nasopharyngeal secretions, at least when considered vulnerable (e.g. with 137 

immunosuppression, obesity, chronic obstructive lung disease or age > 65 years) or when 138 

likely exposed to vulnerable cases (e.g. healthcare workers or subject living with vulnerable 139 
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persons). Contacts of most positive cases were also tested, even when asymptomatic, in order 140 

to define need of a 10 days quarantine period or isolation. Precise address of residence was 141 

prospectively collected at the time of sampling as well as person age.  142 

 143 

SARS-COV-2 RT-PCR  144 

Most RT-PCR were performed using the automated molecular plateform implemented at the 145 

Institute of Microbiology. It uses the Magnapure automated RNA extraction method followed 146 

by PCR amplification on QuantStudio automated systems (34) with primers described by 147 

Corman et al. (2020), later slightly modified according to Pillonel et al. (2020) to further improve 148 

PCR sensitivity. Then, from March 24, 2020, most RT-PCR were performed using the COBAS 149 

6800 RT-PCR test, which exhibited similar performance than the home-brew automated 150 

approach (Opota et al. 2020). A few numbers of cases were tested using the GeneXpert 151 

approach to reduce time to results (38). Viral load was calculated based on the so-called “cycle 152 

threshold” (Ct), which corresponds to the number of cycles, when the fluorescent signal is 153 

above a predefined threshold (37, 38).  154 

 155 

Study area 156 

All the data used were collected in the state of Vaud located in the south-west of Switzerland, 157 

north of Lake Geneva. It has an area of 3’212km2 (see Figure 6A), a population of 811’203 158 

individuals (end of 2019), for a density of 249 inhabitants/km2. Of note, there are important 159 

differences in population density between the urban area of Lausanne-Morges on the shores 160 

of Lake Geneva (~3’000 inhabitants/km2), and country-side toward north where population 161 

density is of ~200 inhabitants/km2. One exception is the area of Yverdon-les-Bains directly 162 

south of the Lake of Neuchâtel with 2’200 inhabitants/km2. 163 

 164 

 165 

 166 
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Spatio-temporal clusters 167 

We used the SaTScan software (version 9.6.1) to detect daily space-time clusters of 168 

individuals tested positive for SARS-COV-2 in the canton of Vaud from March 2 to June 30 169 

2020 (no positive cases between January 10 and March 2, 2020). The algorithm developed by 170 

Kulldorff (1997) tests whether a disease is randomly distributed over space and time. It uses 171 

a “moving cylinder”, with the base and height corresponding to the spatial and temporal 172 

components, respectively. Significance evaluates the excess relative risk, i.e. more than 173 

expected observed COVID-19 cases within the moving cylinder relative to randomly distributed 174 

cases over space and time. We implemented it in a daily prospective surveillance analysis. 175 

We used a discrete Poisson model, where the number of events in the geographic area (total 176 

number of positive tests) is Poisson-distributed, according to a known underlying population at 177 

risk. The spatial size of the clusters’ radius reported on maps covers a maximum of  0.5% of 178 

the total resident population (population at risk) in the canton of Vaud (N=811’203 inhabitants; 179 

SFSO, 2019). Tested individuals and the underlying population at risk were georeferenced at 180 

the centroids of a hectometric grid (40) covering the entire study area. The minimum number 181 

of positive cases considered to constitute a cluster is 3, and we restricted the temporal 182 

scanning window to a minimum of 2 days and a maximum of 14 days. The upper limit of 14 183 

days accounts for the incubation period (generally 2 to 7 days) and for being infectious (no 184 

more than 10 days from symptoms onset). The significance of the clusters was evaluated on 185 

the basis of 999 Monte-Carlo permutations that randomize both locations (41) and times of the 186 

cases.  187 

 188 

Cluster evolution and diffusion zones 189 

We used MST-DBSCAN (modified space–time density-based spatial clustering of application 190 

with noise; Kuo et al., 2018) to characterize the diffusion dynamics of clusters. MST-DBSCAN 191 

is an algorithm for detecting, characterizing, and visualizing disease cluster evolution in the 192 

geographic space and in time. It computes geographically a kernel density that considers the 193 

effect of the incubation period of an infection disease. It is based on DBSCAN (42), a non-194 
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parametric density-based clustering algorithm that groups together objects (here SARS-COV-195 

2 positive cases) that are closely packed together (points with many nearby neighbors), 196 

marking as outliers points that lie in low-density regions. The MST-DBSCAN identifies six 197 

different cluster behaviors: a) emerge, b) grow (or increase), c) remain steady (keep), d) move, 198 

e) split or f) reduce (decrease).  199 

We applied the MST-DBSCAN analysis to the 3’317 COVID-19 positive cases identified 200 

(among 33’651 tested individuals) and georeferenced at their precise address of residence in 201 

the canton of Vaud. Disease clusters were computed daily from March 4, 2020, to June 30, 202 

2020. The maximum spatial radius considered was of 1’000 meters, and we have set a time 203 

window of 1 to 7 days to reflect the incubation period of the disease. A minimum number of 3 204 

positive cases was considered to constitute a cluster. For all clusters identified, we established 205 

a typology of similar diffusion patterns in the geographical space. We associated the clusters 206 

with the postcode areas (557 units; MicroGIS, 2019) of the canton of Vaud and used them as 207 

spatial references. Then, we focused on three main cluster behaviors, which are increase (b), 208 

reduce (f) and keep (c) to characterize the diffusion type through the postcode areas. The 209 

diffusion patterns were detected using the Louvain method, a group detection algorithm using 210 

network analysis (44). This approach synthetizes the spatio-temporal information and 211 

facilitates its visualization on a single map. 212 

 213 

Results 214 

Epidemic trajectories of positive cases  215 

A total of 33’651 subjects have been tested over a period of 6 months, of which 3’317 (9.86%) 216 

were positive by RT-PCR. Seventy-nine percent of positive cases (2609/3317) were observed 217 

between March 9 and April 5: this 4-weeks period corresponds to only 16% of the total duration 218 

of the studied period, but in this short period as many as 2’609 tests were positive (22.2% of 219 

11’756 tests) (Figure 1A). The peak of the 1st epidemic wave occurred on March 18, i.e. two 220 

days after the start of the soft lockdown implemented in Switzerland and lasting from March 221 

16 to April 27 (see vertical dashed lines in Figure 1A). At the peak of the outbreak, as many 222 
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as 180 Vaud subjects were documented positive in our laboratory in a single day (Figure 1A, 223 

dark blue). Number of positive cases decreased then considerably from May 1st. The highest 224 

proportion of positive tests was observed 4 days after the peak of the epidemic wave, with a 225 

rate of positive tests reaching 32% (Figure 1A, light blue). The rate of positive cases was 226 

relatively high at the start of the epidemic when few individuals were tested and found positive. 227 

Then the shape of percentage of positive tests followed the trajectory of the number of cases. 228 

This is likely to be related to the fact that at the beginning of the epidemics only symptomatic 229 

subjects and patient at risk were tested, and then a much wider category of individuals was 230 

tested to the point all symptomatic individuals and asymptomatic contacts could access a test.   231 

 232 

Cluster detection and temporal dynamics 233 

We identified 1’684 space-time clusters using the place of residence of patients positive to 234 

SARS-CoV-2. Among them, 457 were considered significant based on the within proportion of 235 

positive cases compared to the total documented positive cases. Highest values of both 236 

significant and non-significant clusters were observed between March 9 and April 5 (Figure 237 

1B). Number of clusters decreased from the 1st of May. Thus, the decrease in the number of 238 

positive patients following the beginning of the soft lockdown (Figure 1A) occurred about two 239 

weeks earlier than the decrease in the number of clusters (Figure 1B). Significant or not, the 240 

number of clusters displays a similar pattern through time in terms of increase and decrease 241 

but with a difference in amplitude. As shown on Figure 1C, the relative risk for new clusters 242 

was higher before the soft lockdown and about 80 days after the end of the lockdown. The size 243 

of clusters (i.e. number of cases within clusters) used to compute the relative risk does not 244 

strongly change the value of the relative risk during the core of the epidemic wave; however, 245 

it affects this value when the number of positive cases is small, i.e. at the beginning and at the 246 

end of the epidemic wave. 247 

 248 

 249 

 250 
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Cluster composition 251 

Significant space-time clusters generally involved a larger number of positive cases (maximum 252 

of 21 cases in average, with the largest cluster showing 43 cases on March 25) compared to 253 

non-significant ones (maximum of 11 positive cases in average; Figure 2A). Noteworthy, as 254 

shown in Figure 2A, significant clusters with more than 15 positive cases were mainly observed 255 

shortly after the soft lockdown implemented from March 16 to April 27, with one exception on 256 

April 3. Cluster durations – although limited to 14 days - increased over time from the start of 257 

the epidemic wave, showing little differences between significant and non-significant clusters. 258 

We can also observe the absence of any significant cluster from May 3 to June 16 (Figure 2B). 259 

 260 

Viral load in clusters 261 

Clusters were defined by the presence of at least 3 positive cases within a limited geographic 262 

area, as documented in the SaTScan analysis. All clusters were then characterized according 263 

to the nasopharyngeal viral load of the cases documented in each cluster (Table 1). Significant 264 

clusters can have patients with viral load as low as those found in non-significant clusters, i.e. 265 

even below 10’000 copies/ml (Supp. Mat. 3). Thus, 5 significant clusters were composed of 3 266 

cases exhibiting a viral load below 10’000 copies/ml at time of testing. However, significant 267 

clusters were more likely to be detected when viral loads were above 100 million copies/ml 268 

(Figure 3). Finally, as many as 18 significant clusters with at least 1 subject showing between 269 

1 billion and 10 billion copies/ml were documented on March 24 (Figure 3, pink curve). The 270 

frequency distribution of viral load in significant clusters significantly differs from the distribution 271 

of viral load in non-significant clusters and outside clusters (Kolmogorov–Smirnov test, two-272 

sample case, p<0.001, see Supp. figures 1 and 2). 273 

The mean viral load of the first 3 cases was also studied, in order to gain insight of the possible 274 

relationship between nasopharyngeal viral load and contagiousness, indirectly measured by 275 

the documentation of subsequent clusters. For 20 significant clusters, all first 3 cases exhibited 276 

a viral load below 100’000 copies/ml, suggesting that subjects with less than 100’000 copies/ml 277 
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may still be contagious (Supp. Mat. 4). Moreover, the nasopharyngeal viral load of the first 3 278 

cases was below 1 million copies for 40 significant clusters.    279 

 280 

Cluster size, duration and viral load 281 

Cluster size (number of within cases) is positively associated with the presence of individuals 282 

with high viral load (Figure 4A). The highest viral loads measured showed a value of at least 283 

10 billion copies/ml and occurred in the largest clusters (median number of 21 positive cases). 284 

Such a result nicely identifies super-spreading events. Even when comparing clusters 285 

harboring individuals with all viral loads below 1 million copies/ml and the ones with at least 286 

one case showing a viral load above 1 million copies/ml, the difference in cluster size was 287 

significant with a median increasing from 3 cases per cluster to 4 cases per cluster (p<0.001; 288 

figure 4A). Similar relationships were observed when considering the mean and maximal 289 

values of viral loads of the first three positive cases (Figure 5A & B).  290 

Highest values of viral load were found in clusters with individuals showing the lowest average 291 

age. Clusters composed of individuals with the highest average age had low to middle viral 292 

load values (Figure 4B). Indeed, the median age of the individuals within a cluster is 293 

significantly higher when the viral load value in the cluster is between 1 and 10 million 294 

copies/ml. Then, the average age progressively decreases from 74 years to 48 years, while 295 

viral load values increase. Cluster duration is significantly different only between the orange 296 

category (100 million to 1 billion/ml) and the pink category (1 to 10 billion/ml) as clusters of the 297 

latter category last longer (mean of +0.456 days, p<0.001; see Figure 4C). 298 

Interestingly, clusters with individuals showing the lowest average age and the highest viral 299 

load (Figure 4B) also constitute the largest clusters (Figure 4A) and those that last the longest 300 

(Figure 4C).  301 

 302 

Geographic distribution of the first epidemic wave  303 

We chose six key dates to illustrate the evolution of the two types of clusters during the first 304 

wave of the epidemic in the canton of Vaud. An animation showing the spatio-temporal 305 
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evolution of the clusters for the whole first wave can be visualized in Supp. Mat. 5, and in Supp. 306 

Mat. 6 for the dynamics of clusters’ behavior. Here, Figure 6 shows the spatial distribution of 307 

space-time clusters (A-F) and compares it to information translating the diffusion dynamics of 308 

the clusters (A’-F’). A detailed description of the first SARS-CoV-2 epidemic wave in the state 309 

of Vaud can be found in Box 1, illustrating the powerful and critical information that the 310 

approach offers.  311 

Cluster behaviors described in Box 1 were summarized with four diffusion zones shown in 312 

Figure 7A and identified at the level of postal code areas using MST-DBSCAN (Figure 7BCD). 313 

The grey diffusion zone corresponds to areas where no clusters emerged, while the green, 314 

orange and blue diffusion zones differ in the way clusters evolved over time. The green 315 

diffusion zones correspond to areas where the clusters immediately increased in size at the 316 

beginning of the epidemic wave (red line, Figure 7B) but decreased drastically once the soft 317 

lockdown (vertical dash line) took place. Then we observed a second peak associated with an 318 

important increase of clusters that reduced in size (red line, Figure 7B). Both red and purple 319 

curves are bimodal and tend to decrease afterwards, with a few numbers of new small peaks 320 

that plateau forming a distribution with a long right tail. Conversely, orange and blue diffusion 321 

zones show a first peak of increasing clusters later, i.e. about at the time of the start of the soft 322 

lockdown (orange & blue areas, Figure 7C and D). Both also show clusters that remain stable 323 

in size during the soft lockdown (blue line). Blue diffusion zone is the only one to show no more 324 

clusters after April 27, i.e. the end of the lockdown and that does not display a bimodal 325 

distribution of clusters. Please note that no difference in viral load was documented among 326 

these different diffusion zones (Figure 7E).   327 

 328 

Discussion 329 

The discussion is divided into three majors part. The first highlights results that uncover new 330 

information on COVID-19 clusters, the second explicits limitations in the interpretation of the 331 

results, the third presents added value of the methods used to tackle epidemics and to evaluate 332 

the effect of lockdown strategies. 333 
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New information on COVID-19 clusters 334 

A temporal lag between positive cases documentation and clusters burden 335 

Significant clusters were mainly observed from March 15 to April 5 (red curve in Figure 1B), 336 

whereas non-significant clusters that occurred specifically in high population density areas 337 

such as Lausanne were already documented 4 to 5 days earlier and continuously occurred 338 

until mid-May (grey curve on Figure 1B, and Figure 6A). We observed a time shift between the 339 

decrease of the number of positive cases and the decrease of the number of clusters. This 340 

delay could be explained by the fact that most positive cases might have been at the origin of 341 

lasting clusters, i.e. lasting more than 10 days starting at the time when positive cases are 342 

identified. Interestingly, the number of patients hospitalized at Lausanne University Hospital 343 

(CHUV) and the number of deaths due to COVID-19 in the Canton of Vaud also followed the 344 

same epidemic curve, but with a 2 weeks delay (personal communication, G. Greub). 345 

 346 

Viral load is strongly informative on the presence and size of SARS-CoV-2 clusters 347 

Our results show that clusters at the peak of the SARS-CoV-2 epidemic wave are composed 348 

of individuals showing a high viral load. Cluster size is positively associated with the presence 349 

of individuals with a high viral load among the significant clusters, although 40 clusters had 350 

their 3 first cases exhibiting a viral load below 1 million copies/ml, including 33 clusters that all 351 

had their cases with a nasopharyngeal viral load below 1 million copies. Moreover, as many 352 

as 20 clusters were composed of cases that initially all had a viral load below 100’000 353 

copies/ml, suggesting that subjects with less than 100’000 copies/ml may still have been 354 

contagious.   355 

The fact that significant clusters are composed of patients with viral load as low as those found 356 

in non-significant clusters further supports the hypothesis of community transmission with low 357 

level of viral load.  Nevertheless, this may also reflect a statistic bias since large clusters with 358 

more than 10 individuals are more likely to get at least one individual with a very high viral 359 

load.  360 

 361 
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Advantage of RT-PCRs over antigen-based testing 362 

Given the relatively low sensitivity of antigen tests, if we had used these assays, about 24 363 

clusters would have been missed or identified late, when the first 3 cases would have led to 364 

additional cases. Indeed, the 20 significant clusters with a viral load of the three first cases 365 

below 100’000 copies/ml would not have been detected with antigen tests, given their limit of 366 

detection (for the best ones) of about 100 to 200’0000 copies/Ml (45). Moreover, the clusters 367 

with a case between 100’000 copies/ml and 1 million copies/ml will also not have been 368 

detected in 5% of cases given an overall antigen sensitivity for such viral load of about 80% 369 

(45). Thus, altogether, an antigen-based strategy would miss about 5% (24/457) of the 370 

significant clusters. 371 

 372 

High viral load in large clusters with the youngest group age  373 

Within clusters we found a clear negative relationship between age and level of viral load 374 

measured (Figure 4B), and between cluster size and viral load (Figure 4A). Indeed, while a 375 

high viral load was found in large clusters with the youngest group age, low to intermediate 376 

viral load was measured in small clusters constituted of older group age. This suggests that 377 

large clusters were generated by active individuals belonging to the working population and 378 

that super-spreader events might be at the origin of such large clusters. Surprisingly, when the 379 

level of viral load is analyzed across age classes, no relationship was documented (Supp. Mat. 380 

7), meaning that useful information emerges within clusters. Indeed, the characterization of the 381 

clusters provides a deeper analysis of the mechanisms behind the progression of an epidemic 382 

and the geographic analysis of clusters of cases might constitute a type of investigations to 383 

favor in the future. 384 

 385 

Non-significant clusters also convey information on the progression of the epidemic  386 

Significant and non-significant clusters both show the same epidemiological trajectories. 387 

Indeed, they display similar patterns in terms of increase and decrease in size with a difference 388 

in amplitude only. This suggests that the occurrence of clusters, even non-significant, is a good 389 
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estimator of the epidemic situation. However, significant and non-significant clusters differ in 390 

terms of number of cases and measured viral load, but not duration. This suggests (i) that non-391 

significant clusters might correspond to transmission events unrelated to subjects with very 392 

high viral load, (ii) that they translate a lower impact on the population in terms of viral spread, 393 

and (iii) that they express a transition towards or from a significant spatio-temporal 394 

configuration.  395 

 396 

Limitations 397 

Tested population is not homogeneous through time 398 

During the course of the studied epidemic wave, recommendations for testing requested by 399 

the authorities have regularly changed. Initially only symptomatic patients at risk and health 400 

workers were tested. Then, since mid-March, a wider portion of the population was 401 

progressively tested, although younger subjects still were reluctant to get tested. This might 402 

have generated heterogeneity in our longitudinal investigation. Moreover, tests could have 403 

been done at different stages of the infection (early, late, etc.) and not be representative of the 404 

right window of infection. Days of the week might also generate differences in number of 405 

positive tests as the number of tests was often reduced over the weekend, for example some 406 

persons preferred to be tested only on the next Monday, to avoid quarantine over the week-407 

end.  408 

 409 

Positive cases might be missing 410 

Our estimate of the number of positive cases might not be fully representative of the epidemics, 411 

particularly at the beginning of the event when only symptomatic patients at risk and health 412 

workers were tested. We might assume that their close relatives might also have been infected 413 

but were not tested at that time due to reagents shortage. This bias might however have a 414 

limited impact on the assessment of cluster size, since any person in contact with the positive 415 

cases (documented by the contact tracing team) was tested. Besides, a source of 416 

underestimation may be the false negative RT-PCRs, due to imperfect nasopharyngeal 417 
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sampling. They might however not be of importance as the clinical sensitivity of RT-PCR 418 

performed on nasopharyngeal samples in our laboratory is very good, i.e. about 96 to 98%  419 

(46, 47). Similarly, the rate of false positives in the same laboratory is estimated to be lower 420 

than 1/10’000 tests, thank to full automation and bar-coding that have been settled to prevent 421 

human errors and samples/tubes inversion (34). Finally, missing cases might be due to the 422 

fact that that some people living or working at the border of the state might have been tested 423 

in another state, but again this seems to have a limited impact since more than 80% of all 424 

samples tested for SARS-CoV-2 in 2020 have been taken from subjects living in the canton of 425 

Vaud.  426 

 427 

Added value of the methods used  428 

Geographic clusters to characterize the epidemics: a key tool for intervention  429 

Beyond the fact that a formal definition of what a cluster is in a geographical context is lacking, 430 

the statistical approaches used make implicit assumptions that – through different parameters 431 

– have a direct influence on cluster detection and on how to interpret them. We used two 432 

complementary approaches that highlight different key aspects of disease clustering. Space-433 

time scan statistics detect the geographical location of case clusters, assess their significance, 434 

and characterize their relative risk and duration. This prospective approach is particularly 435 

appropriate for the establishment of a daily surveillance system, since it identifies 'alive' 436 

clusters only, i.e. having an excess of relative risk on the day of analysis (48). Unlike other 437 

detection methods, this approach search for clusters without imposing the specification of their 438 

size and allow for analysis of area with heterogeneous population densities. Indeed it identifies 439 

a cluster if risk of disease within a space-time cylinder (radius = space, and height = time) is 440 

higher than outside. This type of information is key for public health authorities to target 441 

neighborhoods and calibrate protective or preventive measures to be deployed.  442 

As for the MST-DBSCAN algorithm, it characterizes the diffusion dynamic of the transmission 443 

clusters. Here the input parameters require a precise definition of the incubation period, the 444 

cluster transmission areas, and a minimum number of spatio-temporal neighbors required to 445 
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form a cluster (33). The output is a cluster typology according to their behaviors, which is of 446 

interest to design sets of appropriate measures to control them. The space-time (SaTScan) 447 

and the diffusion-type (MST-DBSCAN) analyses thus provide complementary results in terms 448 

of clusters emergence, duration, and demographic characteristics. The two approaches used 449 

in conjunction, allow thus for detailed monitoring of the disease's epidemic trajectory and 450 

populations at risk and offer adequate tools for governments to both prioritize interventions on 451 

excess-risk locations and develop adapted strategies to control cluster diffusion types.  452 

 453 

Maps reflect the chronology of the epidemic  454 

The results displayed on static and animated maps well reflect the chronology of the sanitary 455 

situation during the first wave of the epidemics. For instance, the major clusters in the Joux 456 

valley area can be clearly observed on different maps (Figures 6B, 6B’, 6C, 6C’). Noteworthy, 457 

these large clusters originate from a super-spreader event that took place end of February in 458 

a religious ceremony in Mulhouse, France. Many swiss residents participated in this ceremony 459 

and additional related clusters were also observed during the same period north of the 460 

Lausanne urban area, and along the Jura mountains (e.g. Morges and Nyon). Conversely, 461 

Lausanne was early hit by clusters likely due to a first transmission event that occurred in 462 

Northern Italy.  463 

Interestingly, the initial phase observed in the state of Vaud differ from what happened in 464 

Geneva, where the first clusters emerged in deprived neighborhoods eight days (March 5) after 465 

the first positive case (February 26) was detected (22, 8). In Vaud instead, the initial cluster 466 

was directly detected the day of the first cases (March 4), with 9 positives and in a wealthy 467 

neighborhood.  468 

 469 

Positive impact of soft lockdown 470 

The soft lockdown was directly associated with a rapid reduction in the number of positive 471 

cases and this despite the increased rate of testing. The reduction takes place massively and 472 

in two clear phases in the main urban areas (see Figure 7B), while it happens as a succession 473 
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of clusters increase and decrease in smaller urban centers and less dense areas (Figure 7D). 474 

However, due to the time lag between the identification of positive individuals and the 475 

constitution of clusters, the cluster burden occurred directly after the implementation of the soft 476 

lockdown. Similarly, the largest clusters, the longest duration and the clusters with individuals 477 

showing large viral loads were observed just after the same time-lag. This time lag seems 478 

shorter in urban areas as compared to rural areas, likely reflecting the faster spread of the 479 

virus in large town such as Lausanne, Morges, Nyon, Yverdon and on the Vaud Riviera. This 480 

faster spread is likely due to differences in social and cultural organization between rural and 481 

urban areas, to less available room per person in housings, with higher risk of subsequent 482 

infection in family with lower socio-economic situations.  483 

Our results highlight the efficacy of the lockdown strategy, even soft, to control the epidemic 484 

and to decrease the number of positive cases. It also demonstrates the importance of acting 485 

when the number of positive cases increases and not waiting for the settlement of clusters. 486 

Besides, our results show that the relative risk stayed very low within all the lockdown period. 487 

Of note, the compliance of Swiss residents during the first soft lockdown is signaled by the 488 

absence of any significant cluster from May 3 to June 16. And finally, it has not escaped our 489 

notice that it is already possible to observe the beginnings of the second wave from June 22, 490 

2020 (Figure 2A), that is to say exactly two weeks after a series of relaxations of the protective 491 

measures such as in particular the authorization of public demonstrations up to 300 people, 492 

and the opening of nightclubs (June 6, 2020). 493 

 494 

Conclusion 495 

Our results highlight that cluster size goes along with the presence of individuals with high viral 496 

load, the latter being more commonly found in clusters harboring the youngest group age. This 497 

work also stresses the fact that cluster size and cluster duration are largely dependent on the 498 

viral load of a few number of individuals within a given cluster, underlying the impact of viral 499 

load on contagiousness.  500 
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Altogether, we provide robust data suggesting that transmission may occur even when all 501 

possible source cases in a cluster present a viral load lower than 100’000 copies/ml. Such low 502 

viral load cases remain undetected by antigen testing, hence underlying the importance of RT-503 

PCRs assay in case finding and tracing strategies. This in-depth analysis suggests that even 504 

older at-risk individuals that try to avoid infection may get infected by SARS-CoV-2 and hence 505 

by one of the other cluster members, even when all cluster members exhibit a low viral load, 506 

i.e. below 100’000 copies/ml.  507 

Finally, such a spatio-temporal characterization of clusters demonstrates the huge effect of the 508 

soft lockdown that took place in Switzerland from March 16 to April 27, 2020. Those important 509 

results have been documented thanks to the contribution of the geospatial analysis of clusters. 510 
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 674 

Figures 675 

 676 

Figure 1. Evolution of cases and clusters through time.  677 

On the figures, the vertical dashed lines delimit the Swiss lockdown period (March 16 – April 678 

27). (A) Epidemic trajectory of positive tests. The daily new confirmed cases are represented 679 

in dark blue whereas the percent of positive tests are shown in light blue. The peak of daily 680 

new cases occurred on March 18, while the highest proportion of positive tests was recorded 681 

on March 22. (B) Number of case clusters over time. The total number of clusters detected 682 

daily by space-time scan statistics is shown in dark blue, while the red and gray lines represent 683 

the proportion of significant clusters (p≤0.05) and non significant clusters (p>0.05) respectively. 684 

(C) Average relative risk of significant space-time clusters (p≤0.05) over time according to the 685 

within-cluster cases. As the expected number of cases was very low in some sparsely 686 

populated rural areas, resulting in extremely high relative risk values, we calculated the relative 687 

risk by considering only clusters with more than 8 (blue line), 10 (green line) and 12 cases (red 688 

line).  689 
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Figure 2. Case cluster characteristics over time.  692 

The average and confidence intervals of the number of cases within clusters (A) and the 693 

duration of clusters (B) are calculated for significant (red line) and non significant clusters (grey 694 

line). Between May 6 and June 15, the prospective space-time scan statistic detected no 695 

significant clusters. In the figures, the vertical dashed lines delimit the Swiss lockdown period 696 

(March 16 – April 27). 697 
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Table 1. Classification of the space-time clusters according to the viral load of the cases 699 

involved.  700 

Within-cluster cases were identified by matching both geographically and temporally positive 701 

test subjects, geocoded at the residential address, with space-time clusters. For example, a 702 

cluster was classified as "all below 1 million" if all individuals tested positive within the cluster 703 

during its active period had a viral load below 1 million copies/ml. Noteworthy, in 20 significant 704 

clusters the viral load of three first cases were all below 100’000 copies/ml.   705 

For each cluster category, the total number of case clusters detected by prospective space-706 

time scan statistics over the entire study period (March 2-June 20) and the proportion of 707 

significant clusters (p≤0.05) are reported.  708 

 709 
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Figure 3. Number of significant (p≤0.05) case clusters over time characterized according to 711 

the viral load of the cases documented in each cluster.  712 

The vertical dashed lines delimit the Swiss lockdown period (March 16 – April 27). For each 713 

cluster, we extracted the positive test individuals intersecting the cluster both geographically 714 

and temporally, and we characterized the clusters according to the viral load of the individuals 715 

composing it. The clusters represented in green are therefore composed solely of individuals 716 

with a viral load of less than 1 million copies/ml. The clusters shown in blue are made up of at 717 

least one individual with a viral load between 1 million and 10 million copies/ml, and so on. 718 

 719 

 720 
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Figure 4. Characteristics (size, age and duration) of significant space-time clusters (p≤0.05) 722 

over the study period, categorized according to the viral load of the cases involved.  723 

The classification procedure is explained into more details in the legend of Table 1. 724 

Characteristics include the number of cases observed in clusters (A), the mean age of the 725 

positive tests individuals forming clusters (B), and the duration of clusters (C). Of note, the 726 

median number of cases was significantly higher (17 individuals) among clusters with subjects 727 

showing extremely high viral load > 1 billion copies/ml) as compared to clusters with individuals 728 

exhibiting a viral load < 1 million copies/ml (xx individuals). 729 

 730 
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Figure 5. Number of cases observed within significant space-time clusters (p≤0.05) in function 732 

of the mean (A) and maximal (B) viral load of the first three cases involved. Points are colored 733 

according to the significance level of the cluster, which was assessed through 999 Monte Carlo 734 

random permutations. 735 
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Figure 6. Spatial distribution of case clusters (A-F) and diffusion dynamics of transmission 737 

clusters (A’-F’) for 6 key dates (March 11, March 15, March 19, March 24, March 27, April 4) 738 

during the first epidemic wave.  739 

Case clusters resulting from the prospective Poisson space-time scan statistics (A-F) are 740 

shaded according to their significance level: dark red for statistically significant clusters with 741 

alpha = 0.01,  light red for statistically significant clusters with alpha = 0.05, and grey for non 742 

significant clusters (p>0.05). Transmission clusters resulting from the MST-DBSCAN algorithm 743 

(A’-F’) are shaded according to their evolution type: emerge (pink), growth (red), steady 744 

(green), merge (yellow), move (orange), split (purple), and reduction (blue). 745 

Black points in (A) and (A’) represent the 33’651 individuals tested during the study period 746 

(January 10 - June 30). 747 
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Figure 7. (A) Diffusion zones identified by the MST-DBSCAN algorithm. Postcode areas with 751 

the same color share similar diffusion patterns, and areas without any transmission clusters 752 

are represented in grey. The red and black dots on the map indicate the individuals tested 753 

positive (n=3’316) and negative (n=30’335) for COVID-19 in the canton of Vaud between 754 

January 10 and June 30.  755 

Below the map are shown the frequencies of major evolution types over time for zone 1 (B), 756 

zone 2 (C) and zone 3 (D). The red line corresponds to the "increase" diffusion type 757 

assigned to the transmission clusters whose area becomes larger, the blue line corresponds 758 

to the "keep" diffusion type assigned to the transmission clusters whose area remains, and the 759 

purple line corresponds to the “decrease” diffusion type assigned to the transmission clusters 760 

whose area becomes smaller. 761 

The vertical dashed lines delimit the Swiss lockdown period (March 16 – April 27). 762 

(E) Distribution of the viral load of test-confirmed cases living in each diffusion zone. 763 
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Box 1: The first SARS-CoV-2 epidemic wave in the state of Vaud, Switzerland 765 

On March 11, 7 days after the first detection of a positive case (Figure 6A), we observe a phase 766 

of rapid growth and merging (see Figure 6A’) and a series of significant clusters explodes 767 

directly north of Lausanne, the main city of the state. Interestingly three out of the four clusters 768 

shown are located in wealthy areas. March 15 (Figures 6B and 6B’) is the day before the soft-769 

lockdown. There is a multitude of clusters in the Lausanne area, among which a large fraction 770 

is significant (Figure 6B). Figure 6B’ shows that these clusters rapidly merged into a single 771 

“super cluster” deployed over the urban agglomeration. In the country-side, active clusters 772 

emerge and grow north of the lake in the Joux valley located in the Jura mountains where 773 

population density is low. Four days later, March 19 (Figures 6C and 6C’), the peak of the first 774 

wave is approaching (see Figure 1B). The number of case clusters is high in the Lausanne 775 

area (Figure 6C) but clearly stabilizes. Similar behavior is observed towards east, along 776 

Geneva lake; in the Riviera area only one moving cluster is observed (Figure 6C’), while new 777 

clusters grow in the Morges area. In the Joux valley the activity remains important, and a 778 

cluster grows in Yverdon-les-Bains, south of the Lake of Neuchâtel. On March 24 (Figures 6D 779 

and 6D’), the peak of the first wave is reached (see Figure 1B). New cases reactivate moving 780 

clusters in the center of Lausanne, while towards west the situation stabilizes and even 781 

reduces toward Geneva with no more significant cluster in the Nyon area. At the peak, a large 782 

significant cluster remains steady in the Jura, and several clusters grow in the remote, rural 783 

periphery north of the main urban area (Figures 6D and 6D’). In the north, close to the Lake of 784 

Neuchâtel, the clusters are not significant despite growing. March 27 (Figures 6E and 6E’) is 785 

the start of the important and rapid reduction phase of all clusters (see Figure 1B). The merged 786 

clusters of the Lausanne area split and most of those located on the country-side are steady. 787 

However, a significant cluster emerges in the west, in the Nyon area. On April 4 (Figures 6F 788 

and 6F’), it is the end of the peak. The Joux valley cluster is over after 25 days and clusters in 789 

the canton are either not significant anymore, or are steady, split of reduce. There is one 790 

exception north of Lausanne with a single growing cluster located in a leisure area and likely 791 

related to the presence of a school (with boarding).  792 
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