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ABSTRACT 

11C-Raclopride (RAC) positron emission tomography (PET) is used to study dopamine 

response to pharmacological and behavioral challenges. Behavioral challenges produce smaller 

responses than pharmacological challenges and are more susceptible to sources of bias, including 

motion bias. The purpose of this study was to characterize the effect of motion bias within the 

context of a behavioral task challenge, examining the impact of different motion correction 

strategies, different task response magnitudes, and intra- versus interframe motion. 

Methods: Seventy healthy young adults were administered bolus plus constant infusion 11C-

Raclopride (RAC) and imaged for 90 min on a 3-Tesla simultaneous PET/magnetic resonance 

(MR) scanner during which a functional MRI (fMRI) reward task experiment was conducted. 

Kinetic analysis was performed using an extension of the multilinear reference tissue model 

(MRTM), which encoded the task response as a unit step function at the start of the task (t = 40 

min). The quantitative impacts of different approaches to motion correction (frame-based, 

reconstruction-based, none) were compared using voxel maps of change in binding potential 

(ΔBPND). Motion bias was compared to task effect by simulating different levels of ΔBPND (0%, 

5%, 10%, 20%) in conjunction with simulating high and no motion. Intraframe motion was 

simulated using motion estimates derived from the simultaneously acquired MR data. The relative 

impact of intraframe motion was evaluated by comparing maps of bias in ΔBPND before and after 

applying frame-based motion correction. 

Results: Among the high-motion subjects, failure to perform motion correction resulted in 

large artifacts. Frame- and reconstruction-based approaches both corrected for motion effectively, 

with the former showing moderately more intense ΔBPND values (both positive and negative) in 
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and around the striatum. At low task response magnitudes, simulations showed that motion bias 

can have a greater relative effect. At 5% ΔBPND, motion bias accounted for 60% of the total bias, 

while at 10% ΔBPND, it accounted for only 34%. Simulating high-temporal resolution motion, 

frame-based motion correction was shown to counteract the majority of the of the motion bias 

effect. The remaining bias attributable to intraframe motion accounted for only 8% of the total. 

Conclusion: Motion bias can have a corrupting effect on RAC studies of behavioral task 

challenges, particularly as the magnitude of the response decreases. Applying motion correction 

mitigates most of the bias, and specifically correcting for interframe motion provides the bulk of 

the benefit. 

 
Keywords: PET, 11C-Raclopride, behavioral task, kinetic modeling, motion correction. 
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INTRODUCTION 

11C-Raclopride (RAC) positron emission tomography (PET) is a well-established means of 

imaging dopamine D2/D3 receptors. It has been used to measure the spatial distribution of 

receptors1, as well as the kinetic properties of their binding2. It has also been used to study the 

dopaminergic system under blocking and displacement conditions and after pharmacological 

challenges such as amphetamine3-5, cocaine6, 7, and nicotine8, 9, and behavioral challenges such as 

reward10, 11, motor performance12, pain13, and cognitive tasks14.  

One of the difficulties in working with behavioral challenge experiments is their modest 

response magnitudes relative to those of pharmacological challenges. While pharmacological 

challenges may cause changes in binding potential (BPND) of 10-20% or greater5, 15, 16, behavioral 

challenges produce smaller changes of around 0-10%14, 17-19. With these smaller effects, 

measurements of behavioral challenge response are more difficult to discern from noise, while also 

being more susceptible to different sources of bias20, 21, including bias arising from head motion17. 

Motion bias is routinely addressed in the field using either frame-based motion correction22, 23 

or more advanced methods which require independently estimated motion (e.g. reconstruction-

based motion correction24 or event-based rebinning25, 26). In this work, we build upon an earlier 

finding of measurable differences in ΔBPND between participant strata27 to investigate motion bias 

for participants with different motion magnitudes, using different motion correction techniques, 

and relative to different challenge response sizes. While others have demonstrated the effect of 

motion on PET quantification28-30 and with RAC in particular31-33, we characterized the effect of 

motion bias specifically on measurements of intra-scan behavioral challenge.  

First, we evaluated the impact of motion bias on behavioral challenge response as measured 

by voxel maps of change in binding potential (ΔBPND). To maximize our power to observe its 
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effect, we contrasted the impact of motion bias in the subgroups of participants with the highest 

motion and the lowest motion. Within these participant groups, we compared three different 

approaches to motion correction: no motion correction (maximizing motion bias), frame-based 

motion correction (the standard in the field), and a reconstruction-based method that uses a data-

driven approach to estimating motion (greater complexity and temporal resolution). Then, in order 

to conceptually disentangle the behavioral task response from motion bias, we used simulations to 

impose different magnitudes of task response and compared the impact of motion bias to the 

simulated ground truth at each level of response. Finally, we used high temporal resolution MR-

based motion estimates to simulate intraframe motion. By applying standard frame-based motion 

correction to this simulated data with simulated motion, we were able to distinguish between the 

biasing effects of inter- and intraframe motion together (before motion correction) and intraframe 

motion alone (after motion correction). 

MATERIALS AND METHODS 

Participants and Data Acquisition Protocols 

70 adult participants (female = 34, ages 18-30 years) were retrospectively selected from an 

adolescent development study performed on an integrated PET/MRI scanner (Biograph mMR, 

Siemens Healthineers, Erlangen, Germany) at the University of Pittsburgh Medical Center34. 

Healthy volunteers were scanned using RAC while simultaneously performing a functional 

magnetic resonance imaging (fMRI) task designed to study reward response. All participants gave 

written informed consent and were studied in accordance with experimental procedures approved 

by the University of Pittsburgh Institutional Review Board. All participants were imaged in the 

headfirst supine position and PET data were collected from the start of radiotracer administration.  
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Participants received a bolus injection of RAC (661-802 MBq) followed by a constant infusion 

(KBol = 105 min) for the duration of the 90-minute scan. PET 3D coincidence event data were 

collected and stored in list-mode format. PET volumes were iteratively reconstructed with a 

uniform 3-minute framing using the e7 tools (OP-OSEM, 3 iterations, 21 subsets, no filter)35, 36. 

Attenuation correction was performed using a pseudoCT attenuation map37 generated from a T1-

weighted structural sequence (MPRAGE) registered to the PET volume at the start of the task. The 

simultaneously acquired MRI protocol centered on eight fMRI-BOLD sequences (echo time [TE] 

= 30 ms, repetition time [TR] = 1500 ms). Six were acquired during the task window and two were 

resting state sequences, one at the beginning of the scan and one after completion of the task. The 

protocol also included an MPRAGE for attenuation and region-of-interest label generation, and 

several sequences used routinely for brain studies (e.g. localizer, gradient-echo field mapping, 

ultrashort TE, TurboFLASH, diffusion spectrum imaging, and magnetization transfer ratio). Six 

participants were censored from the analysis, one because the imaging study was interrupted, and 

five because the PET scan ended before the last resting state fMRI sequence was completed. 

Further information about the study design can be found in the primary reports27, 34. 

Motion Correction 

Two different approaches for addressing participant motion were compared: frame-based 

motion correction and reconstruction-based motion correction.  

Frame-based Motion Correction 

The methodology for frame-based motion correction is well established in the field22, 23, 38, 39. 

Briefly, the head was treated as non-deformable, and a linear least squares rigid body registration 

algorithm (implemented in SPM840) was applied to track its displacements. This was accomplished 
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by retrospectively coregistering the dynamic volumes41 to a reference volume at the onset of the 

task (t = 40 min). 

Reconstruction-based Motion Correction 

To correct for motion during reconstruction, it was first estimated from the PET data using a 

procedure similar to frame-based motion correction.  First, the PET list-mode data were split into 

1-minute subframes (with the exception of the first subframe, which was 2 minutes to 

accommodate the rapidly changing spatial contrast associated with delivery). Next, preliminary 

image reconstructions were performed, accounting for detector normalization and radiofrequency 

MRI coil array attenuation, but without correcting for head attenuation. The resulting volumes 

were registered to produce motion estimates, rather than to perform motion correction directly. 

These motion estimates were measured as a set of three translations and three rotations (e.g. Figure 

2A), which were then encoded into a 4×4 transformation matrix and supplied to the reconstruction 

algorithm for motion correction. 

Motion was corrected as part of the iterative PET reconstruction for each dynamic frame using 

a development version of the e7 tools24. For each PET volume reconstructed, the associated 

timeframe was divided into subframes corresponding to the temporal resolution of the motion 

estimates. During each reconstruction iteration, the current estimate of the PET volume was 

replicated for each subframe, and the subframe volumes were moved according to the estimated 

motion before being forward projected into sinogram space. After backprojection, the subframe 

volumes were motion corrected and averaged to form the subsequent estimate of the reconstructed 

PET volume. Correction for scatter and randoms was performed using the full sinogram for the 

given timeframe, with proportional scaling for each subframe. 
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Measuring Total Motion 

To quantify the total extent of motion estimated from the PET data, an ‘aggregate distance’ 

metric was calculated by comparing how a 3D mesh of points evenly distributed throughout the 

participant’s head would be displaced by the estimated motion. For each of the points in the mesh, 

the distance from its original position to its motion-displaced position (as estimated by the PET 

registration) was calculated. These distances were then averaged across all points to create the 

aggregate distance metric at every timepoint throughout the scan. Cumulative motion was 

calculated by summing the aggregate distance for all timepoints. 

Quantitative Impact of Motion Correction 

To demonstrate the negative impact of motion and the compensatory effects of frame-based 

and reconstruction-based motion correction, a comparison was performed between participants 

who moved the most and those who moved the least. The high and low motion groups were 

selected to be the top and bottom 20% of participants (N = 10 per) as measured by the total 

cumulative motion (Figure 1). 

For each participant, voxel maps of binding potential and the change in binding potential 

(ΔBPND, i.e., BPND-POST – BPND) were generated using kinetic modeling of the data obtained from 

the images motion corrected using the methods described. The Multilinear Reference Tissue 

Model (MRTM)42 was used to measure the BPND in the striatum (where dopamine receptors are 

most abundant) with the cerebellum (negligible dopamine D2/D3 receptor concentration) as the 

reference tissue (Eq. 1). When considering a model with a single tissue compartment, BPND is 

expressed in terms of a combination of the true efflux rate (k2) and the apparent efflux rate (k2a)43 

(Eq. 2). 
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[𝐶𝐶𝑇𝑇(𝑡𝑡)] = �𝐶𝐶𝑅𝑅(𝑡𝑡) �𝐶𝐶𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡 −�𝐶𝐶𝑇𝑇(𝑡𝑡)𝑑𝑑𝑡𝑡� �
𝑅𝑅1
𝑘𝑘2
𝑘𝑘2𝑎𝑎

� (1) 

𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =
𝑘𝑘2
𝑘𝑘2𝑎𝑎

− 1 (2) 

The model was then extended (Eq. 3) to accommodate a behavioral challenge using the 

formulation of Alpert et al.44 with a unit step at the onset of the task (t = 40 min) as the activation 

function. This is similar to the approach taken by Normandin et al.45, though with a simpler 

challenge encoding. 

[𝐶𝐶𝑇𝑇(𝑡𝑡)] = �𝐶𝐶𝑅𝑅(𝑡𝑡) �𝐶𝐶𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡 −�𝐶𝐶𝑇𝑇(𝑡𝑡)𝑑𝑑𝑡𝑡 −�𝐶𝐶𝑇𝑇(𝑡𝑡)𝑢𝑢(𝑡𝑡 − 40)𝑑𝑑𝑡𝑡� �

𝑅𝑅1
𝑘𝑘2
𝑘𝑘2𝑎𝑎
𝛥𝛥𝑘𝑘2𝑎𝑎

� 
 (3) 

In order to decrease the effect of noise, the model was reduced to an extension of MRTM2 

(Eq. 4) by fixing 𝑘𝑘2′  to the value obtained from a first pass fit of a high binding region (putamen)42, 

46. 

[𝐶𝐶𝑇𝑇(𝑡𝑡)] = ��𝐶𝐶𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡 +
1
𝑘𝑘2′
𝐶𝐶𝑅𝑅 (𝑡𝑡) −�𝐶𝐶𝑇𝑇(𝑡𝑡)𝑑𝑑𝑡𝑡 −�𝐶𝐶𝑇𝑇(𝑡𝑡)𝑢𝑢(𝑡𝑡 − 40)𝑑𝑑𝑡𝑡� �

𝑘𝑘2
𝑘𝑘2𝑎𝑎
𝛥𝛥𝑘𝑘2𝑎𝑎

� 
 (4) 

 

 

  

∆𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =
−𝑘𝑘2∆𝑘𝑘2𝑎𝑎

𝑘𝑘2𝑎𝑎(𝑘𝑘2𝑎𝑎 + ∆𝑘𝑘2𝑎𝑎)
  (5) 

Fitting the model on a voxelwise basis produced parametric maps of BPND (Eq. 2)  and ΔBPND 

(Eq. 5), which were spatially normalized to the Montreal Neurological Institute template using 

FreeSurfer’s combined volumetric and surface registration47 and averaged across participants 

within the high and low motion groups. 
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Simulating Motion Bias 

Simulations were performed to evaluate the effect of motion bias on task responses with 

different assigned magnitudes. To simulate full voxelwise PET timeseries data, individual 

microparameter (𝐾𝐾1,𝑘𝑘2, 𝑘𝑘3,𝑘𝑘4) values for every voxel were required. Voxel maps of R1 and BPND 

were obtained by averaging MRTM fit values across study participants. Global values of 𝐾𝐾 1 
′ (0.22 

min-1), 𝑘𝑘 2′  (0.55 min-1), and 𝑘𝑘4 (0.13 min-1) were set according to nonlinear fits from a different 

RAC study which included arterial blood plasma draws5. These were used together according to 

the following equations (Eqs. 6-8)43 to obtain microparameters for all voxels. 

𝐾𝐾1 = 𝑅𝑅1𝐾𝐾1′ (6) 

𝑘𝑘2 = 𝑅𝑅1𝑘𝑘2′  (7) 

𝑘𝑘3 = 𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑘𝑘4 (8) 

Although RAC data is best represented by a two-tissue compartmental model (2TCM)2, 48, a 

one tissue compartmental model (1TCM) was used for the simulation, conforming to the 1TCM 

topology of the model used for fitting (an extension of MRTM2), and thereby avoiding 

confounding from model bias. Therefore, each voxel time activity curve (TAC) was simulated 

using only two microparameters (𝐾𝐾1,𝑘𝑘2𝑎𝑎), instead of four (𝐾𝐾1,𝑘𝑘2,𝑘𝑘3,𝑘𝑘4)43. 

The magnitude of a simulated challenge response (∆𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁) within the striatum was varied (0%, 

-5%, -10%, -20%) to assess the impact of motion bias at different levels of challenge response. 

The arterial input function was simulated as a bolus plus constant infusion, with the bolus modeled 

as a gamma variate function49, and the constant infusion rate set according to that of the study (KBol 

= 105 min). The specific input function was selected from this family by determining the curve 

that, when paired with the chosen rate parameters, created reference (cerebellum) and target 

(putamen) TACs that most closely matched the acquired data. Motion was added to these 
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simulations by transforming each reconstructed PET volume by a set of motion parameters. 

Different motion realizations were simulated by using motion parameters estimated from each 

participant in the high motion group. 

These simulated PET volumes were analyzed in the same manner as the acquired data: 

kinetically modeled using an extension of MRTM2 that adds a unit step at the start of the task. The 

parametric maps from the high motion simulations were averaged across motion realizations. The 

analyses of the motionless and high motion simulations were compared using the parametric maps 

of ∆𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁. Bias was assessed by evaluating the absolute value of error in ΔBPND relative to the simulated 

ground truth at the voxel level. Bias attributable specifically to motion was isolated by comparing the 

absolute error maps between the high motion and no motion simulations. 

Simulating Intraframe Motion 

To simulate realistic motion at a high temporal resolution, motion was estimated from the 

simultaneously acquired MR data. The algorithm for estimating motion from EPI-based MRI 

sequences has been described previously25, 50. It follows the same approach as the PET-based 

approach (Figure 2A), using rigid body registration with a least squares cost function to estimate 

motion. The first volume in the first task fMRI sequence was selected as the reference volume, 

and all other volumes were registered to it in two steps: intra-sequence and inter-sequence. First, 

volumes within the same sequence were registered, producing a set of motion estimates for each 

volume. Afterward, the reference volume used for each sequence was registered to the overall 

reference volume at the start of the task. Final motion estimates were obtained by multiplying the 

4×4 transformation matrices corresponding to the intra- and inter-sequence estimates (Figure 2B). 

Higher temporal resolution estimates were created by substituting the PET- for MR-based 

estimates wherever they were available, creating unified motion estimates. However, to avoid 
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discontinuities within the unified motion estimates, instead of using intersequence MR-based 

estimates for the second transformation, the time-matched PET-based transforms were used 

(Figure 2C). 

PET volumes were simulated with a dynamic framing matching the high temporal resolution 

of these motion estimates and transformed according to them to create intraframe motion. To create 

a series of volumes with a uniform framing of 3 minutes, the subframe volumes at this higher 

temporal resolution were averaged. Where motion is simulated between the subframes, the 

averaging creates a blurring effect in the final volume, simulating intraframe motion. 

The relative effects of intra- and interframe motion were compared by simulating intraframe 

motion with no task challenge and either performing no motion correction or frame-based motion 

correction before kinetic analysis. Not performing motion correction allowed us to estimate the 

total motion bias in ΔBPND, while correcting for it allowed us to estimate the contribution of the 

intraframe component alone. 

RESULTS 

Quantitative Impact of Motion Correction 

Total motion over the course of the scan was plotted for all study participants (Figure 1), 

showing an average cumulative distance travelled of 4.6 mm (range 0.9 mm – 16.6 mm). The total 

motion was used to group participants, selecting the top and bottom quintiles to create high and 

low motion groups which differed substantially in their degree of motion corruption and bias 

(Figure 3). One participant was excluded from the grouping due to extreme motion that could not 

be sufficiently corrected. While cases with low motion benefit minimally from motion correction, 

participants in the high motion group saw improvements in the reconstructed PET data and kinetic 

model fits. Example regional TACs demonstrate the impact of motion correction (Figure 4). The 
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cerebellum is a large enough region (~140K voxels) that its TACs are robust to motion corruption, 

while the TACs in the smaller nucleus accumbens (~1.4K voxels) are much more susceptible, as 

seen in the high motion group (top row). To assess the quality of the kinetic model fits, we 

measured the Akaike Information Criterion (AIC)51 and used it to compare across motion 

correction approaches with a paired t-test. In the high motion group, significant decreases in the 

AIC were observed in the nucleus accumbens after motion correction (Figure 5). 

Figure 6 shows voxel maps of task response (ΔBPND) in high and low motion groups using 

different motion correction schemes. In the case where motion was high, lack of correction resulted 

in large positive and negative biases around the striatum, while frame-based motion correction 

removed most of the bias and reconstruction-based motion correction eliminated even more. When 

averaging these values within the putamen—the highest binding region—no motion correction 

resulted in the greatest change in binding potential (-10.7%), while frame-based (-2.9%) and 

reconstruction-based (-0.5%) correction showed smaller ΔBPND values (Table 1). The low motion 

group, in contrast, was far less affected by the motion correction approach used, yielding ΔBPND 

values of -2.7%, -2.0%, and -0.3% for no motion correction, frame-based motion correction, and 

reconstruction-based motion correction respectively (Table 1). 

Simulating Motion Bias 

Figure 7 explores the impact of motion bias at different levels of task response. When there is 

no task response (0%), motion bias can make it appear as though there is a modest (ΔBPND = -

3.1% ± 2.2%) response. However, at high magnitudes of task response (20%), the error in the 

overall observed effect (ΔBPND = -24.5% ± 7.3%) is attributable primarily to model bias with 

motion bias playing a much smaller role (Table 2). 
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Simulating Intraframe Motion 

Figure 8 depicts the differential impact on ΔBPND of simulated intraframe versus total motion 

averaged across realizations of estimates from the high motion group. With no simulated 

challenge, all of the measured change in BPND can be attributed to bias: the combined effect of 

inter- and intraframe motion. After frame-based motion correction, the remaining bias attributable 

to intraframe motion was greatly reduced.  

With both positive and negative motion bias apparent at the voxel level, absolute bias values 

were taken at the regional level to avoid underestimating the total effect magnitude. Without 

performing motion correction, the absolute value of the total motion bias in putamen ΔBPND was 

0.63 ± 0.12 standard error (SE). After frame-based motion correction, the remaining absolute bias 

attributable to intraframe motion was 0.048 ± 0.003 SE (a drop in motion bias of 92.4% ± 5.6% 

SE). For comparison, putamen RAC BPND has been shown to have a standard deviation of 10% in 

test-retest evaluations52. 

DISCUSSION 

An examination of motion bias has been presented in the context of an intrascan behavioral 

challenge response paradigm. While motion bias was observed to be of comparable magnitude to 

the task response, it was also mostly controllable using frame-based motion correction. Starting 

from this expected result, we were able to pose more detailed questions such as precisely how 

much finer-grained motion estimation and correction reduces bias, how responses of different 

magnitudes are affected by a high but plausible degree of motion bias, and how much intraframe 

motion contributes to bias relative to the total motion. 

RAC studies are especially vulnerable to motion corruption because tracer uptake is highly 

localized to the striatum, with steep gradients in binding potential in the surrounding areas. 
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Therefore, any unresolved motion will result in spillover of activity signal (and therefore binding 

potential) into the voxels immediately surrounding the striatum. This is especially problematic for 

studies with intra-scan challenges because such changes in binding potential are precisely what the 

additional challenge term in the kinetic model is intended to fit. Uncorrected motion between PET 

frames will therefore create artifacts showing decreases in binding potential on one side of the 

striatum and matching increases on the opposite side (Figure 6). 

Simulating PET data with different levels of task response, we were able to separate the true 

task response effect from motion bias. In Figure 7, we can see how the relative contribution of 

motion bias to the total effect decreases for higher task responses. At 0% simulated response, large 

positive and negative biases in ΔBPND predominate, meeting in the center of the striatum. As the 

response level increases however, the measured ΔBPND in the striatum becomes more reliably 

negative, as the greater dopamine D2/D3 challenge response begins to outweigh the motion bias.  

Another effect worth noting is the increase in model bias associated with increasing task response. 

Though we prevented one form of model bias by both simulating and fitting a 1TCM topology, 

we introduced another by fixing k2’ and reducing the model from 4 parameters to 3. This is the 

primary tradeoff of the SRTM2 framework: decreasing noise at the expense of bias46. As MRTM 

tends to underestimate k2’53, fixing an underestimated value of k2’ for use with MRTM2 can also 

lead to biased estimates of ΔBPND
42, which is the source of bias that comes to predominate at higher 

task response magnitudes.  

As the biggest difference between the standard frame-based motion correction and other more 

advanced forms of motion correction is their capacity to correct for intraframe motion, we used 

simulations to determine the relative contribution of intra- and interframe motion to bias in ΔBPND. 
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Figure 8 shows that interframe motion contributes the majority of the bias effect. This is likely 

because of how each affects the TACs that make up the PET images. Fundamentally, interframe 

motion is a displacement, with the striatum moving from one position to another from one frame 

to the next. This creates TACs with discontinuous or stepped appearances, which are liable to be 

fit as changes in binding potential. Once motion between the frames has been accounted for, 

intraframe motion appears as a spatial blurring without displacement of the overall frame. Spatial 

blurring alone is unlikely to significantly bias voxelwise estimates of ΔBPND. In fact, Gaussian 

smoothing is often applied to PET images prior to kinetic modeling to reduce noise. The residual 

motion bias in ΔBPND after frame-based motion correction can just as easily be explained by the 

limits of motion estimation/registration accuracy. These results indicate that even PET studies with 

modest response magnitudes can be effectively motion corrected using a standard frame-based 

approach. 

Our study had several limitations. The observed bias pattern is specific to RAC and may not 

be as significant to other tracers which have neighboring regions more similar in their activity 

levels. Furthermore, the simulations did not consider the potential effects of attenuation-emission 

mismatches, though others have shown that such effects are not especially pronounced for RAC33.  

Another limitation of our study is that its high dose and bolus plus constant infusion paradigm may 

not be representative of most RAC studies. With its highly localized uptake making RAC more 

difficult to register than a radiotracer that is more generally distributed throughout the brain, such 

as 18F-fluorodeoxyglucose, similar studies with lower dose may not be able to rely on either frame-

based correction or PET data driven motion estimation. Such cases would instead require 

sacrificing temporal resolution in PET-based estimates (i.e., by using longer frames when counts 
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are lower) or else increasing complexity by estimating motion using another simultaneously 

acquired source (i.e.,  MR, optical). Finally, the regional results reported in Table 1 are limited by 

the spatial variation in BPND and ΔBPND within a given region. For example, in Figure 6, the 

greatest areas of negative ΔBPND clearly correspond to the subcortical regions of the striatum. 

However, the edges that divide the positive from the negative ΔBPND values lie within the area 

defined by the anatomically derived region of interest labels, creating average regional 

measurements that are more liable to miss localized task responses. 

In conclusion, the effects of motion bias on behavioral task response have been investigated 

and characterized in the context of an intrascan RAC fMRI challenge study, demonstrating that 

the impact of uncorrected motion bias can be commensurate with that of the challenge response 

and can even account for the majority of the apparent effect at the regional level. This work 

highlights the importance of carefully accounting and correcting for motion, which is essential for 

fully realizing the multimodality benefits of simultaneous RAC PET and fMRI in behavioral 

challenge experiments.  
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FIGURES 

 

 
Figure 1: Participant Total Motion. Each subplot represents a single participant, with total motion 
(mm) plotted against time post injection (min). High (red boxes) and low (blue boxes) motion 
groups were created by selecting the top and bottom 20% of participants by total motion.  
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Figure 2: Example PET, MR and Unified Motion Estimates. (A) PET based estimates with 
temporal resolution 1 min and reference t = 40 min. (B) MR-based estimates with gaps between 
sequences, temporal resolution 1.5 sec, reference t = 40 min. (C) Unified motion estimates with 
PET estimates replaced with higher resolution MR estimates where available. 
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Figure 3: Differences in total motion between high motion and low motion groups. Each box 
represents the distribution of an individual participant’s motion timecourse (as shown in Figure 
1). 
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Figure 4: Example Time Activity Curves and kinetic model fits. Top Row: Representative 
participants from the high motion group. Bottom Row: Representative participants from the low 
motion group. 
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Figure 5: Akaike Information Criterion after kinetic modeling in the nucleus accumbens. (A) 
Participants in the high motion group. (B) Participants in the low motion group. (*** p < 0.001) 
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Figure 6: Motion Correction vs. Task Response. Parametric maps of task response (ΔBPND) fit 
with an extension of MRTM2 using different approaches for motion correction (no motion 
correction, frame-based motion correction, reconstruction based motion correction) averaged 
across participants within the high (n = 10) and low (n = 10) motion groups. 
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Figure 7: Motion bias simulation experiment. Each column depicts the simulation of a different 
level of challenge response in terms of change in BPND. The top two rows depict the ΔBPND levels 
in high motion and motionless simulations respectively. The bottom three rows show the absolute 
value of the error in ΔBPND relative to the simulated response magnitude for each column. Total 
bias is derived from the high motion simulations, model bias from the motionless simulations, and 
motion bias from the difference between them. 
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Figure 8: Simulated effect of total motion vs. intraframe motion averaged across realizations. (A) 
Total motion bias in ΔBPND. (B) Motion bias in ΔBPND after frame-based motion correction. (C) 
Absolute value of total motion bias in ΔBPND. (D) Absolute value of motion bias in ΔBPND after 
frame-based motion correction. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.18.21252006doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.18.21252006


31 

 

 

 
TABLES 

 

Table 1: Regional averages of binding potential and task response. Average and SD values are 
averaged across participants within the high and low motion groups. 
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Table 2: Simulated absolute value of parametric ΔBPND bias levels in putamen (Figure 7). Total 
bias was derived from the high motion simulations, model bias from the motionless simulations, 
and motion bias from the difference between them. Values are µ ± SEM. Noiseless estimates of 
model bias do not have associated error estimates. 
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