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Abstract

We present human mobility data for the United Kingdom collected from the “BBC Pandemic”,
a public science project linked to the BBC Four television documentary of the same name. Mo-
bile phone GPS trajectories submitted by users and collected over a 24 hour period were aggre-
gated to construct anonymised origin-destination flux matrices at the local administrative district
(LAD). We use these data to explore how mobility patterns change with age and employment
status - unique stratifications that are not available from other publicly and privately held mobility
data sets. We validate the consistency of the aggregated BBC mobility data set against census
workflow data and illustrate how the systematic differences in mobility rates with age affect the
risk and pattern of transmission between regions with 18-30 year old’s contributing the greatest
risk of transmission to adjacent regions, but older 60-100 years playing the most important role
in more remote low-density locations.

1 Introduction

The spatial dynamics of human mobility are a key mechanism driving the local persistence of
endemic infections [9, 10, 24, 18] and limiting the rate of invasion of novel pathogens [31]. Over the
past twenty years there has been an rapid expansion in the type of data and methods available to
directly track or infer patterns of human mobility [8] from traditional sources such as census data,
tracking bank notes [14], the frequency of posting on social media [36], mobile phone records [23]
through to direct tracking using the global positioning system (GPS) [48]. Mobile phone GPS data
are perhaps the most accurate and powerful tool to measure human mobility - as demonstrated
most recently by the real time analysis of the effectiveness of lockdown procedures during the
Covid-19 pandemic [32, 46, 49]. However, mobile phone data sets are privately held by mobile
network operators and – with a few notable exceptions [48, 37, 26] – rarely shared publicly which
is a barrier to reproducibility and open science [35]. Hence, spatial epidemic models still often
rely on traditional sources of mobility data such as census workflows for commuters [7, 28, 15, 5].
Given the importance of protecting individuals identities, mobile phone data shared privately to
researchers by network operators also lacks key meta-data on users such as gender, age and
employment status which are likely to affect patterns of mobility [13].
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To address these limitations, the BBC Pandemic project recruited over 86,000 participants in
the United Kingdom between September 2017 and December 2018 as part of a public science
project linked to a BBC Four documentary [31]. Here we present and analyse mobility data from
43,291 participants aggregated to the level of the observed flux between local administrative dis-
tricts and stratified by age and employment status. The only other open source mobility data
currently available for the United Kingdom is the 2011 census workflow data [1]. Published by
the Office of National Statistics under version 3.0 of the open government licence this data can
be freely shared, adapted and republished for both commercial and non-commercial purposes
[4]. We compare the BBC mobility data set to this census workflow data which only captures
commuting patterns of adults to and from their usual place of work. We estimate - and sys-
tematically compare - human mobility models for the United Kingdom and impute national level
origin-destination matrices for the total BBC data set and four coarse grained stratifications by
age. We use these imputed commuting matrices to demonstrate how the risk of transmission
between regions changes for each age-group compared to using aggregated data.

1.1 Human Mobility Models

So-called gravity models, where the rate of migration between spatially segregated populations is
modelled as a function of the distance between locations and their relative population size, have
proven to be exceptionally popular for epidemiological modelling [24, 45, 19, 42, 22, 12, 17, 25,
30, 33, 6]. Taking its name and form from the Newtonian law of gravitation, the theory actually
has its origins in the social sciences and in particular transportation theory [20]. However, beyond
the dependence on population size and distance there has been very little consistency in the
definition of gravity models by different authors.

The most basic formulation of the gravity model has the convenient - but unrealistic - charac-
teristic that the population flux between two locations only depends on the local characteristics
of the two interacting populations. These foundational models take no account of the distribution
of population - or connectivity - of the population between two points. The Radiation model [40]
was developed to account for these effects explicitly by construction and in some human mobility
data sets achieves similar – or better – predictive performance than gravity models despite having
no free parameters to estimate. This parsimony comes at the expense of a lack of flexibility with
the Radiation model being outperformed by classical gravity formulations when factors other than
population density – such as the types and opportunities of travel – are more important. The
extended radiation model [47] addressed this limitation by introducing a single scaling parameter
α which can be interpreted as defining a characteristic length scale (l) for trips with a region.

There have been several attempts within the transport theory field to address these same
issues within the gravity modelling framework - in particular the intervening opportunities model
[41] and the competing destinations model [21]. We consider two variants of the intervening
opportunities model – the Schneider formulation examined by [34] and Stoufer’s Rank Model as
recently revisited in the context of modelling historical measles epidemics in England and Wales
[2]. Finally, we consider the Impedance model [39]. Taking inspiration from the Ohmic law, the
Impedance model was proposed as parameter free mobility model and compared to gravity and
radiation laws in a model of the 2010 Haiti cholera epidemic [39].

Human mobility data sets typically capture a snapshot of individuals movement for which the
total flux of individuals moving (or commuting) from a region is a fixed margin. For such data it
is convenient to model the probability of moving given a particular home location separately from
the choice of destination [40]. We therefore first compare the mobility rates (proportion of users
that have different origin-destination locations) for the BBC data to census workflow data from the
United Kingdom, then estimate constrained (singly or work constrained) variants of each mobility
model [34].

All of these models have previously only been estimated from and tested against either aggre-
gate mobility data or indirectly with respect to infectious disease case reports. The BBC mobility
data set offers the first opportunity to compare and assess the predictive ability of these models
for different groups of society.
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Data Set Users Movers P(move) per capita per day
Total 43,291 18,177 0.420

BBC England 37,852 16,613 0.438
BBC Wales 1,699 535 0.315

BBC Scotland 3,092 867 0.280
BBC NI 548 162 0.296

Census (E) 23,139,206 9,953,850 0.430
Census (W) 1,263,873 383,303 0.303
Census (NI) 724,873 199,052 0.275

Census (Scotland) 2,242,725 619,372 0.276

Table 1: Number of BBC users by member nation of the UK and number of records from
census workflow data Users are the total individuals with a paired origin-destination. Movers
are the number of individuals whose destination location is different from their home location. We
estimate the average per capita probability of moving for each data set by the ratio of these two
numbers (presented to 3 s.f.).

Data Set Users Movers P(move) per capita per day
BBC Under 18 2,955 724 0.245

BBC 18-30 9,611 4,015 0.418
BBC 30-60 26,009 11,948 0.460
BBC 60+ 4,716 1,490 0.316

BBC Under 18 2,955 724 0.245
BBC Education 3,522 1,101 0.314
BBC Employed 30,500 14,710 0.482

BBC NEET 6,325 1,42 0.260

Table 2: Number of BBC users by age and employment categories Users are the total individu-
als with a paired home and work location. Movers are the number of individuals whose destination
location is different from their home location. We estimate the average per capita probability of
moving for each data set by the ratio of these two numbers (presented to 3 s.f.). Note that Under
18 is a category in both the age-stratified and employment data sets but is presented twice to em-
phasise that these are two distinct (not nested) stratifications of the total BBC mobility data set.
Age ranges are open on the lower limit and closed on the upper: (0, 18], (18, 30], (30, 60], (60, 100].
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Figure 1: Comparison of raw population flux from the 2011 census and BBC Data Set. (A)
Heat map of the frequency of reported work flows between the 391 local administrative districts
(LADs) of the United Kingdom. Colour scale (shared between panels) is logarithmic (log10(count)
in each cell), with white indicating that no flux was recorded for a given pair of locations. The
2011 census collected self-reported home (from) and work (to) locations which are collated and
published separately for England & Wales, Northern Ireland and Scotland. The national work
flows therefore take a block diagonal in the flux matrix, with white gaps representing the missing
sub-national work flows. From bottom left to top right, the first block matrix is the workflows
within England (solid black outline), Northern Ireland (dashed black outline), Scotland (dotted
blue outline) and Wales (dash-dot red outline). The outer off-diagonal elements represent the
intra-national work flows between England and Wales. (B) Heat maps of the BBC mobility flux
data sets stratified by age category (top left - bottom right): Under the age of 18, greater than 18
and less than 30 (BBC 18-30), greater than 30 and less than 60 (BBC 30-60) and greater than 60
(BBC 60+).
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2 Methods and Results

2.1 Data

There were two components to the BBC Pandemic study, one focused on the town of Hasle-
mere [29], and another focused on the wider UK population [31]. Here we present mobility data
from the UK national study. Upon starting the BBC Pandemic app users first entered their basic
demographic information, including age, household size, gender and occupation. The app then
recorded their location at a 1km grid scale across the UK at hourly intervals for a 24 hour period.
At the end of this period, users provided key meta data including their gender, age, occupation,
health today (self-assessed), number of people in household, maximum distance travelled (self-
estimated) and mode of transport. Users were additionally asked to complete a detailed survey
on the social contacts they made over the study period which are reported elsewhere [3].

Over 86,000 participants started the survey and filled out their profile. Participants with no
encounter or location data were excluded, as were users whose location recordings were all
outside the UK leaving 47,741 user with GPS trajectories. A small subset of users repeated the
survey and provided multiple observation periods. To protect the anonymity of these users we only
consider the location data collected during the first 24 hour period of observation for this study. As
a further step to ensure anonymity of users we aggregated individual user trajectories to origin and
destination locations at the mid-layer super output area (MSOA). As the mid-layer super output
areas nest within the local area districts (LAD), we map the MSOA code to the corresponding
LAD to define origin and destination locations at this higher spatial scale and calculate the final
origin-destination flux matrices Ωij [8] that record the number of users with origin i and destination
j.

We use the modal location to define users origin (home location) and considered two alter-
native definitions of destination based on the furthest extent and second (next) most frequent
location from home. For the purposes of this study we focus on analysis on the ‘next’ (most fre-
quent) origin-destination matrices as these are the most consistent conceptually with the census
work flow data. (Full details of these definitions are given in supplemental information).

To provide some context on changing patterns of mobility over the working week we tabulate
the start time of each individuals observation period aggregated by day of week (Table 3). The
majority of users started the app on a weekday (37,322). The highest single day of sign-up was
on the Thursday that the associated BBC Pandemic documentary was originally broadcast (22nd
March 2018). 2,981 users signed up during the hour of broadcast alone, with a total of 7,796 users
starting the app on that day. The next highest day of sign-up (with 4,967 new users) was also a
Thursday (28th September 2017) corresponding to the second day of a social media campaign
run by the production company to promote the app.

Weekday Users
Monday 3,340
Tuesday 3,476

Wednesday 6,945
Thursday 16,094

Friday 7,467
Saturday 3,168
Sunday 2,801

Table 3: Number of users by weekday of start date.

Given the relative sparseness of the data set at the MSOA level, we focus on analysing the
patterns of mobility at the LAD level. Raw data, estimated models and imputed flux matrices for
both the next and furthest extent definitions are available in a public repository along with code
developed for this manuscript
(https://github.com/BBCPandemic/BBCMobility).

Of the 43,291 users in the BBC mobility data set (henceforth the Total BBC data), 25,114 had
inferred home and next most frequent locations within the same LAD. We define the complemen-
tary set of 18,177 users with origin and destination locations in different LADs as ‘movers’ (Tables
1,2, Figure 1) rather than commuters to acknowledge that the displacements in the BBC mobil-
ity set capture a wider range of human mobility than the strictly commuting flows measured by
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census work flow data.

2.1.1 Modeling the origin-destination flux matrix

Flux patterns can be decoupled into two model components: the probability that someone moves
between locations, and the location that someone goes to given that they do move. The origin-
destination flux matrix Ωij can be correspondingly decomposed. The diagonal elements represent
users who stayed in the same location and the off-diagonal elements correspond to the ‘movers’.
Thus, the flux matrix of movers alone is given by the origin-destination flux matrix with the diagonal
elements set to zero:

Ω̂ij =

{
Ωij if i 6= j

0 if i = j

The total eflux from location i is given by the sum over all potential destinations j ∆̂i =
∑
j Ω̂ij

while the total number of users with origin i (i.e. including the non-movers) is ∆i =
∑
j Ωij . The

proportion of movers for location i is given by pi = ∆̂i/∆i. We define the conditional movement
matrix:

σij = Ω̂ij/∆̂i

as the proportion of movers from i who choose destination j. It can then be seen that σ satisfies
the normalisation

∑
j σij = 1 and by definition σii = 0. The origin-destination flux matrix can thus

be decomposed in terms of the conditional movement matrix σij and probability of movement pi:

ΩGij = Ng
i ((1− pi)δij + piσij)

where δij is the alternating Kronecker delta symbol.

2.1.2 Probability of moving

The data are now summarised in two separate components: the proportion of the population that
move (pi) and where the movers go (σij). We first we consider the first part of this: the proba-
bility of movement, comparing the BBC and census datasets, and also explore how probability of
movement varies by age and employment status.

Census outputs are prepared and published separately for Scotland, Northern Ireland and
England & Wales at different levels of spatial aggregation. The Northern Ireland Statistics and
Research Agency excludes all responses with work locations outside of Northern Ireland. The
Office of National Statistics and Scotland’s Census publish aggregate numbers for the total work
flows to each member nation, but not the sub-national location. For consistency, and to make
comparisons between the member nations of the United Kingdom, we separate the combined
England and Wales data set and treat the four resulting public census outputs as separate data
sets for the purposes of model estimation and comparison (Table 1). Sub-national movement
rates are comparable between the census workflow and BBC mobility data sets (to 1 significant
figure).

The meta-data collected by the BBC pandemic app allows us to further stratify the Total BBC
data set by age and employment categories. For age we consider four coarse grained categories
– under the age of 18 (BBC Under 18), over 18 and under 30 (BBC 18-30), over 30 and under 60
(BBC 30-60) and over the age of 60 (BBC 60+). With respect to employment status we reuse the
under 18 category (BBC Under 18), and define three alternative subsets for analysis correspond-
ing to the group of users over the age of 18 and in education (BBC Education), over the age of 18
and in employment (BBC Employment) and over the age of 18 and not in employment, education
or training (BBC NEET). The per-capita mobility rate for these strata of the BBC mobility data set
vary from a minimum of 0.245 for BBC Under 18 to a maximum of 0.460 for BBC 30-60 (Table 2).

2.1.3 Geographic variation

The proportion of movement pi also varies considerably between regions (Figure 2). There is no
clear relationship with the size of the resident population and only a weak association between the
area of LADS and pi. However, there is a clear linear relationship between pi from the BBC data
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Figure 2: Geographic variation in probability of movement by LAD (A) Heat map of the prob-
ability of movement (p(BBC)), defined as fraction of users with differing origin and destination
LADS, for the 391 local administrative districts (LADs) of the United Kingdom. Colour scale is
centred on the the national average (p(BBC) =0.420, white). p(BBC) has no relationship with
the resident population size (B), but has a weak inverse relationship with the area of the LAD (C).
The geographic variation in p(BBC) does have a clear linear relationship (D) with the correspond-
ing fraction of movers from the UK census workflow data (p(Census)). A simple linear regression
(blue line) has an R-squared = 0.71, with p(BBC) = 0.1 + 0.79p(Census)
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and the corresponding probability of movement from the census data, with an R2 = 0.71, sug-
gesting that both instruments are measuring a common source of variability in mobility between
regions.

With a median of 81 users per LAD (range 2-948) the raw BBC data is too sparse to estimate
the geographic variation in population flux from each LAD for each stratification of interest (i.e. age
or employment status). To address this limitation and be able to impute movement rates for each
age and employment group we model the per location probability of moving using a generalised
linear model (with logit link) and random intercept term for each LAD (i):

pi ∼ group + (1|i)

where group is a categorical variable that adjusts the background rate of movement for each level
of the age or employment strata. We therefore assume that the difference in mobility between
groups is constant across the UK, proportionally adjusting the regional mobility captured by the
random intercept term. Random effects models were estimated using the lme4 package [11] in
the R statistical language [38].

Model fit was assessed graphically by plotting the predicted probability of movement against
the observed data (Supplemental Figures 9,10). This basic check illustrates the model is per-
forming as intended, fitting closely to the 18-30 and employed categories which have the largest
sample size and pulling the imputed movement rate for under-sampled LADS and categories
(Under 18, NEET) towards the group and local (LAD) averages.
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2.2 Mobility Models

Here we now focus on the model component of where people go, conditional that they do move,
in essence modelling the conditional movement matrix σij as defined above.

2.2.1 Gravity Model

The classical gravity formulation assumes that the flux between two locations depends on the
product of the size of the donor (Ni) and destination (Nj) populations (with scaling parameters
τ2, τ1) divided by a function of the relative distance (rij) between them:

ΩGij ∼
Nτ2
i N

τ1
j

f(rij)

However, this general form is arguably too flexible, and in particular is unbounded with no upper
limit on the predicted number of commuters from the donor patch. We can normalise the gravity
model by defining a vector of normalisation constants nGi for each donor patch i by summing over
the set of recipient patches j (for all (j 6= i):

n̂Gj = Nτ2
j

∑
i 6=j

Nτ1
i

f(rji)

forming a so called singly constrained gravity model. Recasting the model in terms of the condi-
tional movement matrix σij , the donor term Nτ2

i cancels out and is redundant in this formulation.
We therefore define our basic gravity law model for i 6= j as:

σGij =
1

nGi

Nτ
j

f(rij)

with σii = 0 by definition and:

nGi =
∑
j 6=i

Nτ1
j

f(rij)

We consider gravity-type models with three different distance scaling functions, power-law
f(r) = rρij , exponential f(r) = erij/ρ and offset f(r) =

(
1 +

rij
ρα

)α
.

2.2.2 Competing Destinations Model

Following the same reasoning, the competing destinations model [21] can be defined for our
purposes for i 6= j as:

σCDij =
1

nCDi

Nτ
j

f(rij)

∑
k 6=i,j

Nτ
k

f(rjk)

δ

where:

nCDi =
∑
j 6=i

Nτ
j

f(rij)

∑
k 6=i,j

Nτ
k

f(rik)

δ

The parameter δ adjusts for the effect that other locations – the competing destinations –
have on the flux. For a negative value of δ the effect of competing destinations is to reduce
the flux to a particular location, whereas for a positive δ the flux between the two locations is
enhanced by the presence of alternative destinations. When δ = 1 the competing destinations
term vanishes and we recover the classical gravity model. As the gravity model is nested within
competing destinations we do not fit these simpler gravity model formulations separately. We
therefore compare three gravity type models: competing destinations with power law distance
function (CDP), competing destinations with exponential distance function (CDE) and competing
destinations with offset distance function (CDO).
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2.2.3 Extended Radiation Model

The radiation model has no free parameters to estimate and is normalised by construction:

σRij =
NiNj

(Nj + sij)(Ni +Nj + sij)

where sij is the total population in a circle of radius rij centred at i and excluding Ni and Nj
themselves [40]. The extended radiation model (ERad) introduces a single scaling parameter α
[47].

σERadij =
1

nERadi

(
(aij + nj)

α − aαij
)

(Nα
i + 1)(

aαij + 1
)

((aij +Ni)
α

+ 1)

where
aij = Ni + sij

Yang et al. [47] proposed that α should vary between between regions with different charac-
teristic length scales (l defined as mean length between regions being modelled) such that:

α =

(
l

36 [km]

)1.33

For the UK local authorities, McNeill et al. [36] calculated l = 19km and thus we would expect
α = 0.43. Here we estimate α as a free parameter to compare with this predicted scaling law.

2.2.4 Intervening Opportunities Model

Schneider’s intervening opportunities (IO) model [34] depends on the same matrix sij as the
radiation model and is defined for i 6= j as:

σIOij =
1

nIOi

(
e−γsij − e−γ(sij+Nj)

)
where

nIOi =
∑
j 6=i

(
e−γsij − e−γ(sij+Nj)

)

2.2.5 Stoufer’s Rank Model

Stoufer’s (Sto) Rank model [2] also depends on the same matrix sij as the radiation model and
can be defined as:

σSRij =
1

nSRi

(
Nj
sij

)τ
where

nSRi =
∑
j 6=i

(
Nj
sij

)τ

2.2.6 Impedance Model

The impedance (Imp) model [39] is defined as:

σIij =
1

nIi

(Ni +Nj)

rij

where
nIi =

∑
j 6=i

(Ni +Nj)

rij

In common with the radiation model this mobility model has no free parameters to estimate.
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2.3 Inferential framework and model comparison

Each row (Ω̂i) of the mover flux matrix Ω̂ij could be considered as a multinomial sample [42] with
∆̂i trials and probability vector σi equal to the corresponding row of the mobility matrix σij :

Ω̂i ∼ multinomial(∆̂i, σi)

However, for a multinomial likelihood the variance of observations scales linearly with the number
of trials. As the efflux ∆̂i scales with local population size, a multinomial likelihood for these data
will be dominated by contributions from large urban centres potentially introducing systematic
biases and not allowing for the possibility of over-dispersion in the sampled flux.
The expected rate of flux for a given mobility matrix σi is:

ω̂ij = ∆̂iσij

From which we can construct a negative binomial likelihood and explicitly allow the variance to
scale with (origin) population size:

Ω̂i ∼ negbin(ω̂ij , φ)

Note that we use the ecological parameterisation of the negative binomial specified by the mean

and shape parameter φ) and the variance of the flux leaving patch i is thus ω̂ij +
ω̂2
ij

φ ..
We estimate posterior distributions for each model using Hamiltonian MCMC (as implemented

by Stan [16] http://mc-stan.org/). To assess model fit and provide a basis for model selection we
use approximate leave-one-out cross-validation [43, 44]. For numerical stability we restrict the
range of parameters such that 0 < τ, φ < 5, 0 < α < 1, −5 < δ < 5 and 0 < γ < 10−4. We
restrict ρ > 0 for the offset and exponential competing destinations models (CDO, CDE), with the
further restriction that 0 < ρ < 5 for the power law scaling (CDP). We choose Cauchy (0,5) prior
distributions for all parameters. All further analyses were carried out in R [38].

2.4 Model checking and cross-validation

For each combination of model and data set, 4 Hamiltonian MCMC chains were run for the default
2,000 iterations, unless a greater number were required to pass diagnostic checks. Chains were
well mixed for all combinations of models and data sets and passed standard convergence diag-
nostics. As a further predictive check of the model – and to provide a basis for model comparison
and selection – we carried out approximate leave-one-out cross validation (LOO) [43].

This method uses Pareto smoothed importance sampling (PSIS-LOO) [44] to estimate the
expected log pointwise predictive density: ˆelpd which measures the predictive accuracy of the
model when a single observation is dropped out. The difference (∆ ˆelpd) between ˆelpd for alterna-
tive models fitted to the same data provides a measure of their relative predictive accuracy. The
standard error on the difference gives a measure of uncertainty with standard errors comparable
to the magnitude of the difference suggesting the relative predictive accuracy of the two models
is indistinguishable.

The estimated (Pareto) shape parameters (k̂) for the predicted distribution of ˆelpd can be
used to judge the reliability of the estimate of ˆelpd for each data point. The estimate of ˆelpd
is considered reliable for k̂ < 0.5, performance may still be reliable for values of k̂ up to 0.7.
Values of k̂ > 0.7 suggest that the data points are highly influential to the estimated posterior and
potentially introducing bias.

Models estimated from the full BBC mobility and Census data sets have five locations with k̂ >
0.7 and two with k̂ > 1.0 suggesting these locations are highly influential to the estimated posterior
distribution and potentially introducing bias. Most of these issues can be traced to the uniquely
large number of commuters to two specific districts within London: namely the City of London
and Westminster. The City of London and Westminster (and to a lesser extent other boroughs of
London) attract anomalously large numbers of commuters for their size. This can be visualised
by plotting the numbers of commuters in (influx) against leaving (efflux), (Supplementary figure
11). For the majority of LADs this relationship is symmetric with both the influx and efflux of
commuters approximately proportional to the resident population size. However the City of London
and Westminster have orders of magnitude higher commuters in than residents who commute out.
This extreme lack of fit of gravity type models results in a systematic bias to parameter estimates

11

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.19.21252079doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.19.21252079
http://creativecommons.org/licenses/by/4.0/


as illustrated by comparing the posterior estimates between the full set of 326 English LADs and
a data set dropping the City of London and Westminster (324 English Lads, Supplementary figure
12).

The Highland LAD in Scotland has a similar impact on parameter estimates from the BBC
mobility data set (due in this case to the small flux of users to this location). Removing these three
locations, then all of the models estimated from the BBC mobility data have k̂ < 0.7. However,
even after these steps between 1 to 9 LADS have k̂ > 0.7. for the gravity type CDO, CDE and
CDP models estimated from census data. Given the greater overall predictive performance of
these models on the BBC mobility data set we do not wish to simply set aside these models.

Although the specific problematic LADS vary between models, the value of k̂ increases directly
with the size of the resident population. Gravity models are notoriously sensitive to contributions
from high population density locations. This, and the disparity in sample sizes between the BBC
mobility and census data sets, was our motivation for using a negative binomial likelihood where
the shape parameter φ controls the variance to mean scaling relationship. For a mean flux y, the
variance of the negative binomial likelihood is inversely related to the shape parameter y + y2

φ .
Reducing the value of φ reduces the influence of larger populations to the likelihood, hence we
can carry out a sensitivity analysis to the influence of the outlier values by fixing the value of φ and
reducing it until the pareto shape parameter for all of the observations < 0.7. This was achieved
for a fixed shape parameter of φ = 0.1. The models estimated from census data with a fixed value
of φ reduced the absolute values of the likelihood but did not change the rank ordering of models
(described below). Although the point estimates of the gravity parameters do change systemati-
cally with φ, they still have overlapping credible intervals in the range between the estimated value
and fixed value (0.1) where the census models pass all diagnostic checks (13). For the purposes
of comparison to the BBC mobility data set we present the models with estimated value of φ,
which have a greater overall predictive performance (as measured independently via the common
part of commuters index described in the next section).

2.5 Model Selection and Predictive Performance

The rank order of mobility models based on (∆ ˆelpd) is identical for the UK level stratifications
of the BBC mobility data set (Tables 5, 6, 7) – with the competing destinations (CDO) model
favoured above the other models for all data sets. The ranking of the second and third ranked
models varies between member countries of the UK, but the differences are small compared
to the standard deviation implying there is little to choose between the predictive ability of the
three gravity formulations for these data. The English census data is the only data set where an
alternative model – the Extended Radiation model is preferred.

As a final posterior predictive check of the estimated models we consider the Common Part of
Commuters (CPC) index introduced by [47] which can be defined as:

CPC(Ω̂ij , ω̂ij) =

∑
i

∑
j min(Ω̂ij , ω̂ij)∑

i

∑
j Ω̂ij + ω̂ij

where ω̂ij is a posterior predictive flux matrix from a mobility model fitted to the empirical flux
matrix Ω̂ij and the sum is over all donor (j) and recipient (i) patches within the meta-population.
A value of 1 is calculated when there is perfect agreement between the two matrices, with 0 when
there is no agreement. Figure 3 presents the posterior predictive distributions for the CPC for
each combination of mobility model and data set. This measure is in broad agreement with the
ranking achieved through LOO cross-validation - with the competing destinations model favoured
in the majority of cases, but once again with relatively little difference in predictive performance
between the top three models.
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E Census W Census S Census NI Census
Model ∆ ˆelpd (s.d.) Model ∆ ˆelpd (s.d.) Model ∆ ˆelpd (s.d.) Model ∆ ˆelpd (s.d.)
ERad 0 (0) CDO 0 (0) CDO 0 (0) CDO 0 (0)
CDO -11500 (1100) CDP -23.2 (7.8) CDP -16.4 (10) CDE -4.18 (3.2)
CDP -12300 (1100) CDE -82.5 (17) IO -239 (51) CDP -32.6 (9.4)
IO -35400 (640) IO -278 (32) ERad -256 (45) IO -50.9 (8.2)

CDE -41400 (850) ERad -302 (26) CDE -351 (37) ERad -65 (7.2)
Imp -60900 (880) Imp -392 (31) Imp -465 (44) Imp -78.9 (5.1)
Sto -79300 (960) Sto -486 (33) Sto -644 (44) Sto -98.8 (6.3)

Table 4: Mobility model comparison for the sub-national Census workflow data sets Mobil-
ity models are ranked by their predictive accuracy as measured by the difference (∆ ˆelpd) in the
expected log pointwise predictive density ( ˆelpd). The competing destinations model, with offset
distance kernel, is favoured for the census workflow data from Wales (W), Scotland (S) and North-
ern Ireland (NI). For the English census data, the Extended radiation model is ranked first. The
difference in predictive accuracy between the top ranked models is greater than the standard er-
ror for the English census data, but of a comparable magnitude for the relatively smaller Scottish,
Welsh and Northern Irish data sets. The differences between the next ranked models are much
smaller than with respect to the top ranked model.

BBC Total (E) BBC Total (W) BBC Total (S) BBC Total (NI)
Model ∆ ˆelpd (s.d.) Model ∆ ˆelpd (s.d.) Model ∆ ˆelpd (s.d.) Model ∆ ˆelpd (s.d.)
CDO 0 (0) CDO 0 (0) CDO 0 (0) CDO 0 (0)
CDE -287 (41) CDE -3.64 (2.7) CDE -12.5 (8.6) CDP -0.562 (2.7)
ERad -319 (76) CDP -9.56 (4.4) CDP -14.3 (10) CDO -1.9 (2.9)
CDP -2270 (110) IO -46.6 (9.2) IO -34.1 (16) ERad -4.9 (2.1)
IO -3230 (110) ERad -51.2 (8.2) ERad -45.6 (19) CDE -4.96 (3.8)

Imp -6330 (160) Imp -80.1 (11) Imp -123 (23) Imp -27 (5)
Stoufer -10400 (220) Stoufer -151 (14) Stoufer -220 (27) Stoufer -42.2 (6.3)

Table 5: Mobility model comparison for the sub-national BBC Total mobility data sets Mo-
bility models are ranked by their predictive accuracy as measured by the difference (∆ ˆelpd) in the
expected log pointwise predictive density ( ˆelpd). The competing destinations model, with offset
distance kernel, is favoured for all four subsets of the BBC Total mobility data from England (E),
Wales (W), Scotland (S) and Northern Ireland (NI). The difference in predictive accuracy between
the top ranked models is greater than the standard error for the English census data, but of a
comparable magnitude for the relatively smaller Scottish, Welsh and Northern Irish data sets. As
with the census data sets the differences between the next ranked models are much smaller than
with respect to the top ranked model.

BBC Under 18 BBC 18-30 BBC 30-60 BBC 60+
Model ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.)
CDO 0 (0) 0 (0) 0 (0) 0 (0)
CDE -21.1 (7.1) -95.8 (18) -247 (35) -30.3 (9.4)
ERad -67 (18) -182 (38) -336 (67) -115 (21)
CDP -154 (28) -843 (89) -2100 (130) -397 (41)
IO -395 (48) -1350 (82) -3130 (110) -749 (48)

Imp -795 (42) -2450 (94) -5710 (150) -1080 (52)
Stoufer -1340 (66) -4850 (170) -10100 (220) -2330 (88)

Table 6: Mobility model comparison for the BBC Mobility data for the UK stratified by age
category Mobility models are ranked by their predictive accuracy as measured by the difference
(∆ ˆelpd) in the expected log pointwise predictive density ( ˆelpd). The competing destinations model,
with offset distance kernel, is favoured for all data sets. In contrast to the sub-national data sets
the ranking of models estimated from the BBC data sets are consistent across age groups and the
difference between the predictive accuracy of the top ranked model is greater than the standard
deviation of the difference. The differences between the second ranked models, in this case the
exponential distance kernel and Extended Radiation models, are once again much smaller than
the difference with respect to the favoured model (CDO).
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Figure 3: Posterior predictive distributions for the Common Part of Commuters (CPC) index
The Common Part of Commuters (CPC) index measures the agreement between the posterior
predicted flux between each location and the empirical flux used to estimate the model with 1
indicating perfect agreement and 0 no agreement. Performance of all seven candidate mobility
models (Competing Destinations - CDO, CDP, CDE, Extended Radiation - ERad, Stoufer’s Rank
Model - Sto, Impedance - Imp) is compared for (top left panel through to bottom right) the (sub-
sampled) census data sets (England, Wales, Northern Ireland - NI and Scotland, sub-national
subsets of the BBC Total data set. Note that the predicted flux for the Impedance models depends
on no free parameters, so for these models the average CPC is a function only of the topological
distribution of local administrative districts for the United Kingdom and the member countries
(census data). The variance of the predictive distribution for CPC for the Impedance models does
vary between data sets through the estimated shape parameter. The rank ordering is consistent
with the results of the LOO analysis, as are the relatively small predictive differences between the
three gravity type models and the Extended radiation model.
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BBC Total BBC Under 18 BBC Education BBC Employed BBC NEET
Model ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.) ∆ ˆelpd (s.d.)
CDO 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
CDE -299 (43) -21.1 (7.1) -19.9 (6.4) -297 (40) -27.9 (9.6)
ERad -438 (81) -67 (18) -33.7 (20) -449 (73) -98.7 (26)
CDP -2950 (150) -154 (28) -298 (38) -2410 (140) -525 (52)
IO -4130 (120) -395 (48) -530 (44) -3520 (120) -872 (52)

Imp -7580 (170) -795 (42) -803 (44) -6600 (160) -1230 (57)
Stoufer -12500 (250) -1340 (66) -1660 (80) -11300 (240) -2560 (91)

Table 7: Mobility model comparison for the BBC Mobility data for the UK stratified by em-
ployment category Mobility models are ranked by their predictive accuracy as measured by the
difference (∆ ˆelpd) in the expected log pointwise predictive density ( ˆelpd). The competing destina-
tions model, with offset distance kernel, is favoured for all data sets. In contrast to the sub-national
data sets the ranking of models estimated from the BBC data sets are consistent across employ-
ment groups and the difference between the predictive accuracy of the top ranked model is greater
than the standard deviation of the difference. The differences between the second ranked mod-
els, in this case the exponential distance kernel and Extended Radiation models, are once again
much smaller than the difference with respect to the favoured model (CDO).
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Figure 4: Sub-national posterior estimates for the competing destinations (CDO) model
Posterior distributions for the population density (τ ), distance (ρ, α) and competing destinations
(δ) scaling parameters from the (sub-sampled) Census data from England, Wales, Scotland and
Northern Ireland and the corresponding subsets of the BBC mobility data. At the aggregate level
parameter estimates are consistent between the BBC Total and Census data sets reflecting sys-
tematic differences in mobility patterns between England, Scotland and Wales. Northern Ireland
estimates presented for completeness – note the considerably larger uncertainty resulting from
the small size of this data set.

2.6 Impact of age and employment status on mobility patterns

We first compare the gravity parameters for the BBC Total data set estimated from each of the
member nations of the UK and compare with estimates from the census workflow data (Figure
4). The pooled UK estimates are most consistent with Census estimates from England (which
has the largest population and number of LADs) but there are systematic differences in estimates
from England and the smaller member nations. Containing only 10 LADs the Northern Ireland
data set is clearly to small to support inference of this model, with huge uncertainty in the results
should not be interpreted and are presented only for completeness. The Scottish and Welsh data
sets demonstrate an increased importance of population size (larger τ value) and a longer spatial
scale (ρ, α parameters) compared to estimates from England and the pooled UK data.

Given this sub-national variation it would be ideal to compare the mobility patterns of by age
and employment categories of the BBC mobility data set at this level. However, given the sample
size we must restrict comparison to models estimated at the national (UK) level. There is close
correspondence between the age and employment groups suggesting that the 18-30, 30-60 and
60+ age groups behave largely like the education, employed and NEET categories.

Once again given that the vast majority of users were are in the 30-60 or employed categories,
the parameters estimated from the BBC Total data set are statistically indistinguishable from those
from the subset that were employed with overlapping posterior distributions (Figure 5). There
are systematic differences in the estimated gravity scaling parameters for Under 18s, those in
Education and NEETS. Under 18s have a faster decay in mobility with distance than other groups
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Figure 5: Posterior estimates for the competing destinations (CDO) model by age and em-
ployment groups Posterior distributions for the population density (τ ), distance (ρ, α) and com-
peting destinations (δ) scaling parameters estimated from the full UK BBC mobility data set, with
comparison between models estimated to the stratified data sets with respect to age and employ-
ment groups.
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(larger α) and experience the strongest impact of competing destinations. Population size is a
more important predictor for those over the age of 18 and in full time education (higher estimated
value of τ ) - which may reflect the location of universities, colleges and other higher education
institutions within urban centres. By comparison NEET’s range further (smaller α, but population
density is less important in modulating their decisions (smaller τ ).

To facilitate the use of the BBC mobility data in simulation studies, we use our estimated
models for the probability of movement pgi and choice of destination σgij to impute UK population
flux matrices for each level of the BBC mobility data set (Figure 6):

ΩGij = Ng
i

(
(1− pgi )δij + pgi σ

g
ij

)
where Ng

i is the total population in group g resident in patch i. These imputed matrices are cal-
culated using the point (median) posterior estimates and provided as supplementary information.

2.7 Force of infection for a multi-group commuter model

To explore the extent to which variation in commuting rates and patterns within a population trans-
lates to epidemiological risk we derive a commuter approximation for the force of infection for a
generic SIR (susceptible S, infected I, recovered R) model within a meta-population with multiple
movement groups. We assume that the force of infection is well mixed within each patch. The
effective local force of infection within a patch can be conceptually thought of as being constituted
by two parts: the local force of infection due to resident infectives and the extrinsic force of infec-
tion generated by infected movers resident within the local population and susceptible movers to
other spatial locations.

Elaborating an earlier result from [27], [7] demonstrated that the magnitude of these two com-
ponents can be explicitly derived from the mechanistic movement rates. The per capita movement
rate κgij from patch i to patch j for members of group g can be calculated in terms of the inferred
probability of movement pgi and conditional movement matrix σgij :

κgij = (1/D) pgi σ
g
ij

where D is the average trip duration.
The total movement rate from patch i to patch j will then be:

κij =
∑
g

κgij

As long as the return rate 1
D is small with respect to the generation time of the pathogen

then the force of infection acting on susceptibles (Sig) in patch i and movement group g can be
approximated as:

λgi =
λgii

1 + κgi
+
∑
j

λgijκ
g
ij

1 + κgi
(1)

where κgi =
∑
k κ

g
ik.

We further assume that individuals differ only with respect to their mobility and have equal
susceptibility and infectiousness and mix homogeneously with other individuals within the same
patch. Under this assumption the force of infection only depends on the total number of infected
individuals in each patch: Ii =

∑
g Iig. The first term corresponds to the contribution to the force

of infection acting on susceptibles within group g resident in patch i:

λgii =
1

N∗i

∑
k

 β(t)Iik
(1 + κki )

+
∑
j

β(t)Ijkκ
k
ji

(1 + κkj )

 (2)

This has also two terms, the first corresponds to the contribution from local infectives (who are
not commuting) from all four mobility groups. The second term corresponds to the contribution of
susceptible individuals from patch j meeting infectious individuals (from all mobility groups g) while
commuting. Similarly, the contribution of local susceptibles encountering infectious individuals (of
all groups) while commuting to another patch is:
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Figure 6: Imputed flux matrices for the Competing Destinations model Imputed flux matrices
from the Competing Destinations model (median parameter estimates) calculated for each age
group of the BBC mobility data set (Total, Under 18, 18-30, 30-60 and 60-100) and compared to
the imputed flux from the England census data (predicted to the UK demography).

λgij =
1

N∗j

∑
j

β(t)Ijκ
g
ij

(1 + κgj )

 (3)

The effective population size within each patch is:

N∗i =
∑
g

 Nig
1 + κgi

+
∑
j

Njgκ
g
ij

1 + κgi


where the population size Ni =

∑
g Sig + Iig + Rig and we neglect higher order terms of the

movement matrix O(σ2) and higher.

2.8 Geographic risk of transmission

We use our multi-group commuter model to explore how the predicted geographic risk of trans-
mission differs between an aggregate and age-stratified commuter model. Previous theoretical
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work has suggested that difference in mobility rates (or equivalently average trip duration D) are
most important in the early stages of invasion when incidence is low [7]. As an illustration we
consider an invasion seeded, as was the BBC pandemic, in Haslemere situated within the Wa-
verley district in southern England. We consider the scenario where a novel pathogen has been
introduced into a single location and identify the age-group that contributes the largest value to the
net force of infection assuming a single infectious individual within each age group (Figure 7 A).
We note first that although modulated by population density (7 C), distance from the seed location
is the primary determinant of the net contribution to the force of infection in distant LADs ((7 B).
While young people – in this case the 18-30 group – provide the largest net risk of transmission to
another LAD – the relative contribution of older age-groups becomes more important for distant,
low density areas (7 B) which also tend to have older populations (7 D). In supplemental infor-
mation we explore a range of different seeder locations in comparable commuter districts across
the UK (Falkirk, Belfast, Newport) and see the same basic pattern with one small variation. For
low density districts proximal to the seed location the youngest Under 18 year old group, whose
movements are closely constrained to their home location, are occasionally the dominant group -
perhaps reflecting the size of school catchment areas.

3 Discussion

In this paper we have introduced mobility data from the BBC Pandemic project to perform an anal-
ysis of how commuting patterns differ between groups of individuals with respect to employment
status. We estimate and compare seven alternative human mobility models and find that the Com-
peting Destinations model (with offset distance kernel, CDO) provides the best fit and predictive
ability as assessed by leave-one-out (LOO) cross validation and posterior predictive checks of the
common part of commuters (CPC) index. The competing destinations model extends the classical
gravity formulation by adding a term that adjusts the flux between two locations according to the
network of alternative locations within the meta-population. Although it lacks the elegant theoreti-
cal origins and mechanistic interpretation of the Radiation model – the additional flexibility makes
it more appropriate for exploring the differences in mobility patterns between different groups.

However we note that, despite requiring two less parameters than the favoured CDO model,
the Extended radiation model has similar absolute predictive performance in terms of the common
part of commuters (CPC) index. The estimated value of α = 0.49 (0.48− 0.5) for the full UK BBC
Total data set is in line, but slightly higher than, the expected value of α = 0.43 independently
estimated by McNeill et al. [36] based on a length scale for average trips of l = 19km.

Users in the BBC mobility data set demonstrate a higher rate of mobility across employment
categories. There are important differences in the rates of mobility between urban and rural
areas for users in different employment and age groups which could potentially be important for
modelling the invasion of novel pandemic pathogens as the increased mobility and range of older
individuals and those outside employment could enhance the rate of spread in the early stages of
an outbreak.

For this paper we constructed origin-destination flows from users GPS trajectories taking the
most frequent location as the inferred home (origin) and considered two alternative measures
for the destination. The results we present in this paper use the second most frequent location
("next") as the users destination. Repeating the analysis using the furthest extent and all recorded
user locations (other than the origin) give the same qualitative results in terms of the relative
performance of mobility models and differences between employment categories. We chose to
focus on the "next" definition given it’s logical consistency with the question asked in the UK
census. To validate this assumption by comparing the common part of commuters (CPC) between
the predicted flux from the England & Wales census data to the flux predicted by the best fit
models to the BBC Total data (Figure 8). Both definitions lead to estimated models with predicted
flux that has a high (and indistinguishable) degree of similarity to the flux predicted from models
estimated from Census data. For our purposes in this paper, to explore how human mobility
between different employment groups in society varies from patterns inferred from census data, it
is clearly the most appropriate choice. However, it is not necessarily the most appropriate choice
for predicting disease transmission, hence we include both alternative definitions and estimated
models within the the on-line data respository.

An unavoidable consequence of the crowd-sourced nature of our data is that users knew
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Figure 7: Dominant age group contributing to local force of infection Set of choropleth maps
exploring the predicted force-of-infection across the UK from a single infectious individual within
each age-group located in Waverely (LAD containing Haslemere, filled black on maps A,B) com-
pared with demographic correlates (population density and fraction of population aged 60-100).
Panel A The age-group with the largest contribution to the local force of infection with each LAD.
Panel B The net force of infection within each LAD (sum over contribution from all age groups).
Panel C Local population density within each LAD (Total population size per km2). Panel D Frac-
tion of local population in 60-100 year old age group. While the fall-off in the net force of infection
is driven primarily by distance - the relative contribution of different age groups is shaped by popu-
lation density and demography with individuals in the 60-100 age range playing the dominant role
in transmission to low density areas with older populations, while the 18-30 year group is more
important for cities which also have younger populations.
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Figure 8: Comparison of posterior predicted flux from Census model to BBC mobility for
different measures of destination. We use the common part of commuters (CPC) measure to
assess which destination measure is most consistent with Census flux data. Flux was predicted
for the whole of the UK using samples from the competing destinations model (CDO) estimated
from the English census data and compared to the predicted flux for the same model estimated
from the BBC Total data set constructed using the next most frequent and furthest extent defini-
tions for destination location. The two measures are indistinguishable in terms of the difference in
predictive accuracy compared to the equivalent model estimated from census data from the four
member countries of the UK.
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when their movements were being recorded and chose when to start tracking on the app which
could potentially have changed their behaviour. We expect that this effect will be mitigated to an
extent by the vast majority of users that signed up on (or immediately after) the day of broadcast.
Although recruitment through the app was open over the course of a year, the largest group of
users signed up following the broadcast of the documentary. There was also a smaller wave
of recruitment following a social media campaign before filming was carried out in the town of
Haslemere. This temporal pattern highlights both the effectiveness of the documentary and public
engagement activities on recruitment, but also the potential for bias to be introduced into our
sample of user trajectories. The close correspondence between the predicted flux and gravity
parameters from the Total BBC data and subnational census workflows provides another layer of
reassurance about the representativeness of the BBC data.

Census workflow data (and privately held mobile data sets) have the advantage of being dense
enough that the raw data can be used directly in commuter models [5] without the need to estimate
the human mobility models necessary to interpret the BBC mobility data. The consistency of the
total BBC data at the aggregate level to census data, belies the differences in both the probability
of movement (from home) and the choice of destination for movers not in full time employment.
The unique meta-data collected along with GPS traces from the BBC Pandemic app has allowed
us to quantify these differences for the first time. Under 18s and the over 60s are both less likely
to move and have destinations closer to home than those in employment. We used a multi-group
commuter model to illustrate how the predicted spatial risk of transmission varies according to
seeder cases in different age groups. These differences may be small in aggregate but could
be critically important in assessing the risk of spillover between regions in the early stages of a
pandemic or in the period immediately following the easing of lockdown restrictions.
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A Definition of Origin-Destination Matrices

User locations were first snapped to the nearest MSOA based on the generalised (20m resolution)
shape file provided by the Open Geography portal from the Office of National Statistics (ONS).
Locations outside of the boundary of any MSOA were either excluded or snapped to the MSOA
with the greatest area of overlap within a 1km buffer centered around the user location. A home
(origin) location was defined for each user as their modal MSOA. In defining the duration of time
spent in a location we needed to account for missing location logs for some users who moved into
an area with poor service, or switched off their phone, during the observation period. For such
gaps we make the assumption the user remained in the last seen location until a new location was
logged and use the duration of time within each location to calculate the modal location. In the
event of a tie we chose the location with the least amount of time spent in the 12 hours between
7am and 6pm (inclusive). Users to which we could not assign a home location were removed from
the data set for analysis.

For destination locations, two alternative definitions were considered - the furthest extent and
the second most frequent recorded location after home (which we will refer to as the ‘next’ location
for convenience). For the ‘next’ location we again ranked locations based on the total duration of
time spent including the inferred location between gaps as described above. In the event of ties
the location with the greater proportion of time between 7am and 6pm was chosen. Once again,
users to whom we could not assign a unique destination location were removed from the data
set. In total there were 4,450 users we could not assign a unique origin and destination location
according these definitions leaving a total of 43,291 users within the final BBC mobility data set.

For users with all location records in the same MSOA, their home and destination locations are
both set to this unique value. As the LAD origin and destinations are mapped from these MSOA
locations, at the LAD level, users can therefore have the same inferred origin and destination
locations (even though they have moved between different MSOAs over the course of the reporting
period).

B Supplemental Figures
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Figure 9: Predicted probability of movement from (age) random effects model Predicted per
capita probability of moving (i.e. having a different origin and destination location) from estimated
random effects model plotted against observed proportion from BBC mobility data set (move/N).
Error bars indicate 95% bootstrapped prediction intervals, size the number of observations (N)
and the 1:1 line is added for reference.
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Figure 10: Predicted probability of movement from (employment) random effects model
Predicted per capita probability of moving (i.e. having a different origin and destination location)
from estimated random effects model plotted against observed proportion from BBC mobility data
set (move/N). Error bars indicate 95% bootstrapped prediction intervals, size the number of ob-
servations (N) and the 1:1 line is added for reference.
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Figure 11: Influx and efflux of commuters in English Census Workflow Data The City of
London and Westminster (and to a lesser extent other boroughs of London) attract anomalously
large numbers of commuters for their size. We visualise this by plotting the numbers of commuters
in (influx) against leaving (efflux). For the majority of LADs this relationship is symmetric (top left
panel), however the City of London and Westminster have orders of magnitude higher commuters
in than residents who commute out. This flux is not captured by gravity type models as illustrated
by the predicted flux from the CDO model (point prediction from median parameters, top right
panel) and comparison of the empirical influx of commuters to the CDO prediction (bottom panel).
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Figure 12: Systematic bias to parameter estimates of CDO model Comparison of gravity
model (CDO) parameter estimates (median and 95% credible intervals) from English census
workflow data from the full 326 LADs and a reduced data set (324 LADS) removing the City
of London and Westminster.
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Figure 13: Change in posterior estimates of CDO model with fixed shape parameter (φ)
Comparison of estimated posterior distributions for the CDO gravity scaling parameters estimated
from the English census workflow data (324 LADs) for different (fixed) values of the shape param-
eter φ compared to the estimated value.
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C Figure supplements to Figure 7
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Figure 14: Dominant age group contributing to local force of infection Set of choropleth
maps exploring the predicted force-of-infection across the UK from a single infectious individual
within each age-group located in the Scottish commuter belt town of Falkirk (filled black on maps
A,B) compared with demographic correlates (population density and fraction of population aged
60-100). Panel A The age-group with the largest contribution to the local force of infection with
each LAD. Panel B The net force of infection within each LAD (sum over contribution from all
age groups). Panel C Local population density within each LAD (Total population size per km2).
Panel D Fraction of local population in 60-100 year old age group. While the fall-off in the net
force of infection is driven primarily by distance - the relative contribution of different age groups
is shaped by population density and demography. The 18-30 year group dominates for cities and
high density LADs, which also tend to have younger populations, while individuals in the 60-100
age group play the dominant role in transmission to low density areas. Under 18s play a more
important role for low-density areas when they are proximal to the seed location – in this case
Clackmannanshire and West Lothian.
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Figure 15: Dominant age group contributing to local force of infection Set of choropleth
maps exploring the predicted force-of-infection across the UK from a single infectious individual
within each age-group located in Belfast, Northern Ireland (filled black on maps A,B) compared
with demographic correlates (population density and fraction of population aged 60-100). Panel
A The age-group with the largest contribution to the local force of infection with each LAD. Panel
B The net force of infection within each LAD (sum over contribution from all age groups). Panel
C Local population density within each LAD (Total population size per km2). Panel D Fraction
of local population in 60-100 year old age group. While the fall-off in the net force of infection
is driven primarily by distance - the relative contribution of different age groups is shaped by
population density and demography. The 18-30 year group dominates for cities and high density
LADs, which also tend to have younger populations, while individuals in the 60-100 age group
play the dominant role in transmission to low density areas. Under 18s play a more important
role for low-density areas when they are proximal to the seed location – in this case Lisburn and
Castlereagh.
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Figure 16: Dominant age group contributing to local force of infection Set of choropleth maps
exploring the predicted force-of-infection across the UK from a single infectious individual within
each age-group located in Newport, Wales (filled black on maps A,B) compared with demographic
correlates (population density and fraction of population aged 60-100). Panel A The age-group
with the largest contribution to the local force of infection with each LAD. Panel B The net force of
infection within each LAD (sum over contribution from all age groups). Panel C Local population
density within each LAD (Total population size per km2). Panel D Fraction of local population in
60-100 year old age group. While the fall-off in the net force of infection is driven primarily by
distance - the relative contribution of different age groups is shaped by population density and
demography. The 18-30 year group dominates for cities and high density LADs, which also tend
to have younger populations, while individuals in the 60-100 age group play the dominant role in
transmission to low density areas. Under 18s play a more important role for low-density areas
when they are proximal to the seed location – in this case Rhondda Cynon Taf.
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Figure 17: Dominant age group contributing to local force of infection Set of choropleth maps
exploring the predicted force-of-infection across the UK from a single infectious individual within
each age-group located in Cambridge (filled black on maps A,B) compared with demographic
correlates (population density and fraction of population aged 60-100). Panel A The age-group
with the largest contribution to the local force of infection with each LAD. Panel B The net force of
infection within each LAD (sum over contribution from all age groups). Panel C Local population
density within each LAD (Total population size per km2). Panel D Fraction of local population in
60-100 year old age group. While the fall-off in the net force of infection is driven primarily by
distance - the relative contribution of different age groups is shaped by population density and
demography. The 18-30 year group dominates for cities and high density LADs, which also tend
to have younger populations, while individuals in the 60-100 age group play the dominant role in
transmission to low density areas. Under 18s play a more important role for low-density areas
when they are proximal to the seed location – in this case the surrounding rural district of South
Cambridgeshire.
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Figure 18: Dominant age group contributing to local force of infection Set of choropleth
maps exploring the predicted force-of-infection across the UK from a single infectious individual
within each age-group located in Norwich (filled black on maps A,B) compared with demographic
correlates (population density and fraction of population aged 60-100). Panel A The age-group
with the largest contribution to the local force of infection with each LAD. Panel B The net force of
infection within each LAD (sum over contribution from all age groups). Panel C Local population
density within each LAD (Total population size per km2). Panel D Fraction of local population in
60-100 year old age group. While the fall-off in the net force of infection is driven primarily by
distance - the relative contribution of different age groups is shaped by population density and
demography. The 18-30 year group dominates for cities and high density LADs, which also tend
to have younger populations, while individuals in the 60-100 age group play the dominant role in
transmission to low density areas. Under 18s play a more important role for low-density areas
when they are proximal to the seed location – in this case the adjacent district of Broadland.
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D Posterior estimates

Data Set τ (95% CI) ρ (95% CI) α (95% CI) δ (95% CI) φ (95% CI)
BBC Total (UK) 0.955 (0.91,1) 2.693 (2.45,2.95) 3.336 (3.25,3.42) -0.318 (-0.35,-0.29) 2.204 (2,2.42)

BBC Under 18 (UK) 0.825 (0.65,0.99) 2.077 (1.38,2.86) 4.105 (3.66,4.65) -0.419 (-0.52,-0.31) 12.359 (4.21,75.74)
BBC Education (UK) 1.235 (1.1,1.37) 2.048 (1.39,2.82) 3.133 (2.9,3.41) -0.262 (-0.36,-0.17) 5.013 (2.6,16.31)

BBC 18-30 (UK) 1.054 (0.98,1.13) 2.761 (2.33,3.22) 3.429 (3.26,3.61) -0.307 (-0.36,-0.25) 3.675 (2.85,4.96)
BBC Employed (UK) 0.982 (0.93,1.03) 3.05 (2.77,3.34) 3.43 (3.33,3.54) -0.31 (-0.34,-0.28) 2.462 (2.21,2.76)

BBC 30-60 (UK) 0.97 (0.92,1.02) 2.965 (2.67,3.28) 3.401 (3.29,3.51) -0.303 (-0.34,-0.27) 2.626 (2.31,3)
BBC NEET (UK) 0.667 (0.55,0.78) 1.738 (1.25,2.29) 3.076 (2.9,3.27) -0.433 (-0.51,-0.36) 4.687 (2.83,9.85)
BBC 60-100 (UK) 0.698 (0.58,0.81) 2.268 (1.58,2.96) 3.113 (2.9,3.34) -0.421 (-0.51,-0.33) 4.796 (2.76,10.99)

Census (E) 1.022 (1,1.04) 1.104 (1.03,1.17) 2.598 (2.59,2.61) -0.152 (-0.16,-0.15) 0.707 (0.7,0.71)
BBC Total (E) 0.898 (0.85,0.94) 2.762 (2.49,3.03) 3.394 (3.3,3.49) -0.306 (-0.34,-0.28) 1.922 (1.76,2.11)
Census (S) 1.366 (1.28,1.46) 3.491 (2.2,4.82) 3.445 (3.2,3.7) -0.678 (-0.72,-0.64) 0.844 (0.77,0.92)

BBC Total (S) 1.264 (1.1,1.42) 9.248 (5.36,13.27) 5.177 (3.6,8.3) -0.443 (-0.59,-0.29) 2.029 (1.36,3.24)
Census (W) 1.405 (1.26,1.54) 4.321 (2.88,6) 4.106 (3.7,4.63) -0.428 (-0.47,-0.38) 1.708 (1.49,1.96)

BBC Total (W) 1.278 (1.01,1.54) 6.046 (2.03,11.41) 3.911 (2.72,6.73) -0.561 (-0.73,-0.38) 4.928 (2.56,12.16)
Census (NI) 0.453 (0.15,0.73) 10.286 (6.83,12.17) 7.761 (5.08,9.85) -0.556 (-0.66,-0.45) 4.035 (3.07,5.2)

BBC Total (NI) 1.786 (1.23,2.34) 8.37 (1.82,13.58) 5.882 (2.44,9.72) 0.054 (-0.25,0.38) 25.643 (6.11,87.95)

Table 8: Posterior estimates for Competing Destinations (CDO) model

Data Set τ (95% CI) ρ (95% CI) δ (95% CI) φ (95% CI)
BBC Total (UK) 0.919 (0.87,0.96) 2.547 (2.52,2.57) -0.261 (-0.28,-0.24) 1.757 (1.61,1.92)

BBC Under 18 (UK) 0.808 (0.64,0.98) 3.037 (2.9,3.18) -0.369 (-0.47,-0.27) 7.157 (3,39.9)
BBC Education (UK) 1.232 (1.1,1.37) 2.512 (2.43,2.6) -0.252 (-0.34,-0.17) 3.829 (2.2,9.03)

BBC 18-30 (UK) 1.032 (0.96,1.11) 2.512 (2.46,2.56) -0.259 (-0.31,-0.21) 2.724 (2.18,3.48)
BBC Employed (UK) 0.943 (0.9,0.99) 2.525 (2.5,2.55) -0.247 (-0.27,-0.22) 1.889 (1.72,2.09)

BBC 30-60 (UK) 0.936 (0.88,0.98) 2.53 (2.5,2.56) -0.243 (-0.27,-0.22) 2.003 (1.79,2.26)
BBC NEET (UK) 0.662 (0.55,0.78) 2.566 (2.49,2.64) -0.397 (-0.47,-0.33) 3.595 (2.35,6.28)
BBC 60-100 (UK) 0.695 (0.58,0.81) 2.5 (2.43,2.57) -0.381 (-0.46,-0.31) 3.54 (2.24,6.73)

Census (E) 1.042 (1.02,1.06) 2.409 (2.4,2.41) -0.162 (-0.17,-0.16) 0.695 (0.69,0.7)
BBC Total (E) 0.856 (0.81,0.9) 2.534 (2.51,2.56) -0.253 (-0.28,-0.23) 1.571 (1.45,1.71)
Census (S) 1.283 (1.19,1.37) 2.829 (2.75,2.91) -0.627 (-0.67,-0.59) 0.813 (0.74,0.89)

BBC Total (S) 1.22 (1.06,1.38) 2.412 (2.22,2.62) -0.371 (-0.51,-0.23) 1.599 (1.11,2.41)
Census (W) 1.289 (1.15,1.43) 3.02 (2.95,3.09) -0.435 (-0.47,-0.39) 1.545 (1.35,1.77)

BBC Total (W) 1.274 (0.99,1.55) 2.395 (2.13,2.66) -0.559 (-0.71,-0.4) 4.287 (2.33,9.37)
Census (NI) 0.356 (0.07,0.66) 2.617 (2.42,2.79) -0.536 (-0.65,-0.41) 2.52 (1.94,3.2)

BBC Total (NI) 1.72 (1.1,2.27) 2.143 (1.67,2.64) 0.089 (-0.2,0.45) 21.31 (5.34,87.96)

Table 9: Posterior estimates for Competing Destinations (CDP) model
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Data Set τ (95% CI) ρ (95% CI) δ (95% CI) φ (95% CI)
BBC Total (UK) 1.008 (0.95,1.06) 23.156 (22.72,23.61) -0.373 (-0.42,-0.33) 0.784 (0.73,0.84)

BBC Under 18 (UK) 0.828 (0.66,1) 11.796 (11.06,12.62) -0.509 (-0.64,-0.38) 7.453 (2.84,58)
BBC Education (UK) 1.16 (1.02,1.29) 20.013 (18.89,21.26) -0.275 (-0.4,-0.14) 1.438 (0.99,2.2)

BBC 18-30 (UK) 1.049 (0.97,1.13) 18.962 (18.32,19.61) -0.341 (-0.41,-0.27) 1.416 (1.2,1.7)
BBC Employed (UK) 1.013 (0.96,1.07) 22.146 (21.71,22.57) -0.368 (-0.42,-0.32) 0.952 (0.88,1.03)

BBC 30-60 (UK) 0.969 (0.91,1.02) 22.085 (21.61,22.58) -0.357 (-0.41,-0.31) 0.995 (0.91,1.09)
BBC NEET (UK) 0.635 (0.53,0.74) 20.69 (19.79,21.68) -0.493 (-0.6,-0.39) 1.448 (1.07,2.06)
BBC 60-100 (UK) 0.661 (0.55,0.78) 20.978 (20.04,22.04) -0.492 (-0.6,-0.38) 1.91 (1.34,3.07)

Census (E) 1.55 (1.53,1.57) 54.482 (54.25,54.72) -0.163 (-0.18,-0.14) 0.386 (0.38,0.39)
BBC Total (E) 0.954 (0.9,1.01) 20.91 (20.5,21.31) -0.35 (-0.4,-0.3) 0.817 (0.76,0.88)
Census (S) 1.611 (1.51,1.7) 54.945 (52.19,58.01) -0.867 (-0.92,-0.81) 0.468 (0.43,0.51)

BBC Total (S) 1.282 (1.12,1.44) 21.131 (19.04,23.6) -0.503 (-0.68,-0.32) 1.809 (1.23,2.78)
Census (W) 1.533 (1.35,1.69) 24.186 (23.56,24.88) -0.411 (-0.49,-0.33) 1.178 (1.04,1.34)

BBC Total (W) 1.285 (1.01,1.57) 20.193 (17.5,23.74) -0.559 (-0.77,-0.33) 3.236 (1.79,6.89)
Census (NI) 0.463 (0.13,0.78) 18.159 (17.21,19.22) -0.57 (-0.7,-0.44) 3.752 (2.86,4.78)

BBC Total (NI) 1.879 (1.32,2.44) 14.7 (11.83,19.05) 0.055 (-0.26,0.39) 23.936 (4.81,90.56)

Table 10: Posterior estimates for Competing Destinations (CDE) model

Data Set α (95% CI) φ (95% CI)
BBC Total (UK) 0.484 (0.47,0.5) 1.408 (1.3,1.53)

BBC Under 18 (UK) 0.634 (0.57,0.7) 4.264 (2.12,18.15)
BBC Education (UK) 0.481 (0.43,0.53) 2.754 (1.72,5.33)

BBC 18-30 (UK) 0.483 (0.46,0.51) 2.041 (1.69,2.49)
BBC Employed (UK) 0.471 (0.46,0.49) 1.501 (1.37,1.64)

BBC 30-60 (UK) 0.467 (0.45,0.48) 1.606 (1.45,1.78)
BBC NEET (UK) 0.45 (0.41,0.49) 2.574 (1.77,4.2)
BBC 60-100 (UK) 0.404 (0.37,0.44) 2.265 (1.54,3.57)

Census (E) 0.561 (0.56,0.56) 0.918 (0.91,0.93)
BBC Total (E) 0.467 (0.45,0.48) 1.366 (1.26,1.48)
Census (S) 0.476 (0.43,0.53) 0.534 (0.49,0.58)

BBC Total (S) 0.45 (0.34,0.57) 1.016 (0.75,1.39)
Census (W) 0.79 (0.71,0.87) 0.533 (0.48,0.59)

BBC Total (W) 0.553 (0.39,0.72) 1.256 (0.85,1.92)
Census (NI) 0.429 (0.26,0.59) 1.399 (1.08,1.76)

BBC Total (NI) 0.722 (0.45,0.95) 12.453 (3.49,75.38)

Table 11: Posterior estimates for Extended Radiation (ERad) model

Data Set log10(γ) (95% CI) φ (95% CI)
BBC Total (UK) -6.638 (-6.65,-6.63) 0.377 (0.36,0.4)

BBC Under 18 (UK) -6.243 (-6.28,-6.21) 1.215 (0.79,2.06)
BBC Education (UK) -6.538 (-6.57,-6.51) 0.55 (0.42,0.72)

BBC 18-30 (UK) -6.522 (-6.54,-6.5) 0.66 (0.58,0.76)
BBC Employed (UK) -6.617 (-6.63,-6.61) 0.437 (0.41,0.47)

BBC 30-60 (UK) -6.611 (-6.62,-6.6) 0.439 (0.41,0.47)
BBC NEET (UK) -6.549 (-6.57,-6.52) 0.552 (0.44,0.7)
BBC 60-100 (UK) -6.573 (-6.6,-6.55) 0.621 (0.49,0.79)

Census (E) -6.885 (-6.89,-6.88) 0.424 (0.42,0.43)
BBC Total (E) -6.611 (-6.62,-6.6) 0.411 (0.39,0.43)
Census (S) -6.019 (-6.04,-6) 0.562 (0.52,0.61)

BBC Total (S) -5.951 (-6,-5.91) 1.065 (0.78,1.49)
Census (W) -5.699 (-5.72,-5.68) 0.588 (0.52,0.66)

BBC Total (W) -5.725 (-5.78,-5.67) 1.478 (0.97,2.32)
Census (NI) -5.662 (-5.71,-5.62) 1.77 (1.37,2.25)

BBC Total (NI) -5.517 (-5.61,-5.44) 19.444 (4.81,80.31)

Table 12: Posterior estimates for Intervening Opportunities (IO) model
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Data Set τ (95% CI) φ (95% CI)
BBC Total (UK) 0.007 (0.01,0.01) 0.036 (0.03,0.04)

BBC Under 18 (UK) 0.007 (0.01,0.01) 0.356 (0.24,0.57)
BBC Education (UK) 0.007 (0.01,0.01) 0.107 (0.08,0.14)

BBC 18-30 (UK) 0.007 (0.01,0.01) 0.045 (0.04,0.05)
BBC Employed (UK) 0.007 (0.01,0.01) 0.037 (0.04,0.04)

BBC 30-60 (UK) 0.007 (0.01,0.01) 0.037 (0.04,0.04)
BBC NEET (UK) 0.006 (0.01,0.01) 0.076 (0.06,0.09)
BBC 60-100 (UK) 0.006 (0.01,0.01) 0.086 (0.07,0.11)

Census (E) 0.007 (0.01,0.01) 0.2 (0.2,0.2)
BBC Total (E) 0.006 (0.01,0.01) 0.046 (0.04,0.05)
Census (S) 0.004 (0,0) 0.281 (0.26,0.3)

BBC Total (S) 0.003 (0,0) 0.193 (0.16,0.24)
Census (W) 0.003 (0,0) 0.298 (0.27,0.33)

BBC Total (W) 0.003 (0,0) 0.279 (0.21,0.37)
Census (NI) 0.002 (0,0) 0.851 (0.67,1.06)

BBC Total (NI) 0.003 (0,0) 0.845 (0.48,1.69)

Table 13: Posterior estimates for Stoufer’s Rank (Sto) model

Data Set φ (95% CI)
BBC Total (UK) 0.22 (0.21,0.23)

BBC Under 18 (UK) 0.268 (0.21,0.36)
BBC Education (UK) 0.306 (0.25,0.38)

BBC 18-30 (UK) 0.332 (0.3,0.37)
BBC Employed (UK) 0.251 (0.24,0.27)

BBC 30-60 (UK) 0.262 (0.25,0.28)
BBC NEET (UK) 0.319 (0.27,0.39)
BBC 60-100 (UK) 0.361 (0.3,0.44)

Census (E) 0.268 (0.27,0.27)
BBC Total (E) 0.228 (0.22,0.24)
Census (S) 0.369 (0.34,0.4)

BBC Total (S) 0.514 (0.39,0.68)
Census (W) 0.394 (0.35,0.44)

BBC Total (W) 0.952 (0.64,1.44)
Census (NI) 1.133 (0.89,1.42)

BBC Total (NI) 2.388 (1.08,6.06)

Table 14: Posterior estimates for Impedance (Imp) model
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