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Abstract  

Biomarkers for COVID-19 are urgently needed. Here we 

bring the powerful technology of mass spectrometry 

(MS)-based proteomics to bear on this challenge. We 

measured serum proteomes of COVID-19 patients and 

symptomatic, but PCR-negative controls, in a time-

resolved manner. In 262 controls and 458 longitudinal 

samples (average of 31 days) of 31 patients, 

hospitalized for COVID-19, a remarkable 26% of 

proteins changed significantly. Bioinformatics 

analyses revealed co-regulated groups and shared 

biological functions. Proteins of the innate immune 

system such as CRP, SAA1, CD14, LBP and LGALS3BP 

decreased early in the time course. In contrast, 

regulators of coagulation (APOH, FN1, HRG, KNG1, 

PLG) and lipid homeostasis (APOA1, APOC1, APOC2, 

APOC3, PON1) increased over the course of the 

disease. A global correlation map provides a systems-

wide functional association between proteins, 

biological processes and clinical chemistry 

parameters. Importantly, five SARS-CoV-2 

immunoassays against antibodies revealed excellent 

correlations with an extensive range of 

immunoglobulin regions, which were quantified by MS-

based proteomics. The high-resolution profile of all 

immunoglobulin regions showed individual-specific 

differences and commonalities of potential 

pathophysiological relevance.  

 

Introduction  

The pandemic associated with the severe acute respiratory 

coronavirus type 2 (SARS-CoV-2) has spread around the 

globe with massive impact on mankind. By now, 

coronavirus disease 2019 (COVID-19) has infected and 

killed millions (https://covid19.who.int/). Thanks to the 

tremendous efforts of the global scientific community, the 

virus has been extensively investigated and new tests for 

pathogen detection and potential treatments have been 

rapidly developed (Wiersinga et al., 2020). 

The clinical presentation of COVID-19 is characterized by a 

variety of symptoms (Wiersinga et al., 2020). The most 

common manifestations are fever (89%), cough (58%) and 

dyspnea (45%) (Rodriguez-Morales et al., 2020). This is 

mirrored by rather non-specific laboratory findings, such as 

decreased albumin, elevated C-reactive protein (CRP) and 

lymphopenia, which are also commonly seen in other viral 

diseases. A rather characteristic feature of COVID-19, 

particularly in severe cases, is venous thromboembolism, 

which occurred in up to 59% of patients in an intensive care 

unit setting (Middeldorp et al., 2020). On a mechanistic 

level, dysregulated platelets and neutrophils cooperate to 

drive a systemic prothrombotic state, indicating 

inflammation as a trigger for thrombotic complications. As 

an important laboratory finding, the fibrin degradation 

product d-dimer was strongly elevated in COVID-19 and 

correlated significantly with disease severity (Nicolai et al., 

2020). Another hallmark of COVID-19 is the formation of 

virus-specific antibodies, which peaked within three weeks 

after symptom onset (Long et al., 2020; Buchholtz et al., 
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2021). While currently available routine laboratory tests give 

important diagnostic cues and have contributed to a better 

understanding of the pathophysiology, they only provide an 

incomplete picture of humoral changes in COVID-19.  

Proteins control and execute the vast majority of biological 

processes, and specific alterations in protein levels typically 

accompany disease onset and progression. Mass 

spectrometry (MS)-based proteomics is the method of 

choice to globally investigate proteins in a biological system 

– its proteome (Aebersold and Mann, 2016). In this sense, 

MS-based proteome analysis of plasma and serum is 

unbiased and in principle an ideal technology for systems-

wide characterization of disease response (Geyer et al., 

2017). In practice, body fluid proteomics is very challenging 

but continuous technological improvements have led to a 

resurgence of interest (Geyer et al., 2017; Ignjatovic et al., 

2019; Suhre, McCarthy and Schwenk, 2021). 

Several groups have analyzed the serum or plasma 

proteome of COVID-19 infected patients (D’Alessandro et 

al., 2020; Messner et al., 2020; Park et al., 2020; Shen et 

al., 2020; Shu et al., 2020). These were generally small-

scale studies with single or few time points. As a general 

trend, the levels of complement components and 

inflammation proteins tended to increase whereas proteins 

of the coagulation cascade tended to decrease when 

compared to control groups. One study investigated a 

relatively large number of plasma samples in a longitudinal 

study design to develop predictive models but also reported 

alterations linked to inflammatory response, metabolic 

reconstitution and immunomodulation (Demichev et al., 

2020).   

The aim of our study was to use MS-based proteomics to 

discover new potential biomarkers and provide a better 

understanding of the underlying pathophysiology of COVID-

19. To this end, we set out to measure protein trajectories 

in unprecedented detail in a longitudinal cohort of COVID-

19 patients. This involved plasma proteome profiling of 720 

serum proteomes of patients hospitalized with COVID-19 

symptoms and controls. To efficiently and rapidly analyze 

this large sample set, we developed a very robust workflow 

based on a recently described ‘clinical grade’ liquid 

chromatography (LC) system (Bache et al., 2018) with a 

novel trapped ion mobility – time-of-flight mass 

spectrometer (timsTOF) (Meier et al., 2018). This allowed 

the characterization of 60 serum proteomes per day. The 

study design followed our recently proposed ‘rectangular 

strategy’, where samples are measured in as great a depth 

as routinely possible, and biomarker patterns are extracted 

from the entire study population (Geyer et al., 2017). This 

further allowed the assessment of sample or analysis 

quality issues, such as contamination with blood cells or 

coagulation (Geyer et al., 2019). Furthermore, aggregated 

into global correlation maps, the data identify co-regulated 

factors, physiological processes and enable integration with 

other clinical results (Albrechtsen et al., 2018; Geyer et al., 

2019; Ignjatovic et al., 2019). We previously noted that the 

levels of most plasma proteins are specific to an individual, 

making longitudinal studies particularly informative. As each 

individual serves as its own control, this effectively corrects 

for inter-individual variations, increasing the likelihood to 

discover true regulations of protein levels (Geyer, 

Albrechtsen, et al., 2016; Dodig-Crnković et al., 2020). 

In this work, we first describe differences between the 

serum proteomes of COVID-19 patients and those with 

apparent COVID-19 symptoms who were PCR negative. 

We then derive highly detailed time-resolved disease 

trajectories of serum proteins with on average 15 time 

points, covering up to 54 days in blood sampling. This study 

design allowed us to investigate various aspects of the host 

response to COVID-19 infection as reflected in differences 

between disease trajectories, longitudinal protein changes 

and immunoglobulin production. We disentangle these with 

global correlation maps that also include detailed clinical 

chemistry parameters. In particular, the cohort had 

measurements with five different anti-SARS-CoV-2 

immunoassays against antibody classes, enabling us to 

inspect correlations between these immunoassays and the 

corresponding MS-detected serum proteins. Our results 

show that protein levels follow complex patterns and 

suggest that biomarker tests would benefit from 

incorporating individual timelines and individual-specific 

protein levels. We discuss implications of our 

measurements for our understanding of the antibody-based 

and individual responses of COVID-19.  

 

Results 

Study overview and serum proteome analysis 

To draw a detailed picture of the dynamic nature of 

circulating proteins in response to COVID-19, we 

investigated longitudinal blood serum samples of 31 

COVID-19 patients, as well as single time point samples of 

262     SARS-CoV-2     PCR-negative     controls     (Fig 1A).
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Fig 1 - Study overview and serum proteome analysis  

A. Overview of the study cohort, including 262 SARS-CoV-2 PCR-negative control patients with single time point samples and 31 COVID-

19 patients with longitudinal samples collected during the period of hospitalization.  

B. Total numbers of samples within each study group.  

C. Longitudinal trajectories of the covered time in days (x-axis) and the number of available samples (y-axis) for each patient.  

D. Automated MS-based proteomics pipeline starting with 1 µl of serum, LC-MS instrumentation to generate MS raw data and data 

analysis.  
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E. In total, 502 proteins were quantified in this study, covering more than five orders of magnitude of MS signal. Clinically applied 

biomarkers are highlighted in red. Examples of these biomarkers are labeled.  

F. Violin plots representing the numbers of quantified proteins in individual serum samples of PCR-negative controls and COVID-19 

positive patients.  

G. Quality assessment of each sample according to main contamination sources of serum (Geyer et al., 2019). Intensities of samples 

with contamination indicators above a designated cut-off are highlighted in red and the numbers of samples exceeding these levels are 

displayed.  

H. Cross-correlation of quantitative protein levels across all 720 proteomes. Longitudinal samples within individuals are arranged in 

consecutive order along the axes. A zoom-in of the framed area is depicted in Fig 4E.  

 

Patients presented at the University Hospital of the Ludwig-

Maximilian University (LMU) Munich with COVID-19-like 

symptoms. Among a total of 720 samples, 458 were from 

the 31 COVID-19 patients with an average of 14 samples (7 

to 30) per individual over an average period of 31 days (14 

to 54) (Fig 1B-C).  

Applying recent technological progresses of streamlined 

MS-based proteomics and an automated sample 

preparation procedure, allowed protein digestion and 

peptide purification of 720 study samples within a single 

working day (Fig 1D) (Geyer, Kulak, et al., 2016) (Material 

and Methods). For peptide separation, we used an Evosep 

One LC system in which peptides are first immobilized on a 

small volume of disposable C18 tip material without 

carryover, eluted into preformed gradients and finally 

separated on a relatively short and robust analytical column 

with minimal overhead between injections. Mass analysis 

used the PASEF acquisition principle on a timsTOF 

instrument, enabling very high sequencing speed and 

therefore data completeness (Meier et al., 2015, 2018; 

Bache et al., 2018). Across all 720 samples, we quantified 

a total of 502 proteins (Fig 1E). The median number of 

quantified proteins in samples from COVID-19 positive 

patients and PCR-negative controls in this rapid method 

were 312(±18) and 308(±16), respectively (Fig 1F). The 

dataset contained 71 clinically applied biomarkers for a 

wide range of indications (Table EV1).  

As a first analysis step, we assessed the quality of all 

samples according to our previously established quality 

marker panels in order to pinpoint samples with potential 

issues in pre-analytical processing. One sample was 

contaminated with platelets, 21 had evidence of erythrocyte 

lysis and 18 had signs of impaired coagulation (Fig 1G, Fig 

EV1) (Geyer et al., 2019). Furthermore, we detected 

increased erythrocyte protein contaminations in the control 

group compared to the COVID-19 patient samples (5 vs. 21 

samples). Upfront knowledge of these issues turned out to 

be important as it allowed us to highlight these proteins as 

potential sources of bias in our further analysis (Fig EV2A-

C). As intra-individual variation is expected to be smaller 

than inter-individual variation, we used a correlation of the 

720 proteomes to each other for a global consistency check. 

Indeed, the large majority of longitudinal samples showed 

higher correlation within than between individuals (Fig 1H, 

Fig EV3, see below).  

 

Serum proteome differences of COVID-19 

patients and SARS-CoV-2 PCR-negative 

controls with COVID-19-like symptoms 

Our hypothesis was that alterations of serum protein levels 

specific to COVID-19 might enable the differentiation of 

COVID-19 patients from patients with COVID-19-like 

symptoms. This was the basis for collecting samples of 

SARS-CoV-2 PCR-positive and -negative patients. The 

latter presented with COVID-19-like symptoms such as 

fever, cough, shortness of breath, throat pain, loss of smell 

and taste, fatigue, general malaise, gastrointestinal 

complaints, headache, cognitive impairment, need of 

oxygen or intensive care treatment because of respiratory 

symptoms.  

Comparing the serum proteomes between the two groups 

on the first day of sampling resulted in 37 proteins with 

significantly altered levels of which 14 showed increased 

and 23 decreased levels in COVID-19 patients (Fig 2A, Fig 

EV2A, Table EV2). Proteins increased in COVID-19 

patients included typical innate immune system mediators 

such as complement factors C2, C9, C4BPA, alpha-1-acid 

glycoprotein 1 (ORM1), monocyte differentiation antigen 

CD14 and galectin-3-binding protein (LGALS3BP). Plasma 

protease C1 inhibitor (SERPING1) was the most 

significantly regulated protein (p-value: 1.7*10-11; 1.5-fold) 
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and CD14 was the protein with the highest fold-change (p: 

2.4*10-10; 2.1-fold) in COVID-19 patients compared to PCR-

negative controls. Moreover, a group of protease inhibitors, 

including SERPING1, SERPINA3, SERPINA10, ITIH3 and 

ITIH4 were increased in COVID-19 patients. Likewise, 

coagulation factor V (F5) was significantly increased in 

COVID-19 patients, whereas modulators of coagulation 

such as the beta-2-glycoprotein 1 (APOH), histidine-rich 

glycoprotein (HRG) and fibronectin (FN1) were decreased. 

Proteins of the lipid homeostasis system, especially 

components of high-density lipoprotein (HDL) particles such 

as APOA1, APOA2, APOA4, APOC1, APOD, PLTP and 

LCAT were also significantly decreased in COVID-19 

patients. APOH was the most significantly regulated of 

these (p: 2.5*10-16; 1.9-fold) and the cysteine-rich secretory 

protein 3 (CRISP3) was the protein with the highest fold-

change in PCR-negative controls (p: 1.1*10-4; 2.9-fold). 

Proteins differentially expressed between both groups 

confirm several findings from former studies, especially the 

protease inhibitors, proteins of lipid homeostasis and 

factors of the immune system (D’Alessandro et al., 2020; 

Messner et al., 2020). We also replicated the regulation of 

gelsolin (GSN), which has been highlighted in previous MS-

based proteomics studies. However, GSN ranked at 

position 34 and was only borderline significant at the first 

day of sampling (p: 1.6*10-4; 1.3-fold). 

To investigate alterations of the serum proteome of COVID-

19 patients at a later time point to PCR-negative controls, 

we leveraged the extensive antibody testing that had been 

performed in our study. We selected the sample of each 

patient that had the highest level of SARS-CoV-2 antibodies 

based on the Roche S-Ab test. Comparison at this point, 

which occurred on average 21 (±12) days after first 

sampling, resulted in 34 significantly different proteins 

(Fig 2B, Fig EV2B, Table EV3). At this later time points, in 

contrast to the first one, GSN had the most significantly 

decreased levels (p: 1.2*10-11; 1.7-fold) whereas the group 

of coagulation system proteins described above was not 

significantly different at this time point. 

HDL particle proteins were consistently lower also at this 

time point in COVID-19 patients, among which APOD 

(p: 4.2*10-10; 1.9-fold) and APOA2 (p: 1.6*10-5; 1.5-fold) 

were statistically significant. These examples indicate the 

advantages of investigating the proteome in a longitudinal 

fashion as distinct proteins were regulated at distinct time 

points during disease progression.  

 

 

Fig 2 - Serum proteome differences of COVID-19 patients and SARS-CoV-2 PCR-negative controls with COVID-19-like symptoms 

A. Volcano plot comparing the serum proteomes of 31 COVID-19 patients at the first day of sampling to those of the 262 PCR-negative 

controls. Significantly up-regulated proteins in COVID-19 positive patients are highlighted in red and down-regulated proteins in blue. 

The log10 fold-change in protein levels is represented on the x-axis and the -log10 t-test p-value on the y-axis.  

B. Volcano plot comparing the serum proteomes in samples from COVID-19 patients at the time point of highest Roche S-Ab levels to 

PCR-negative controls. Significantly up-regulated proteins in COVID-19 positive patients are highlighted in red and down-regulated 

proteins in blue. Significantly up-regulated immunoglobulin regions are highlighted in dark red. 

C. Scatter plot of protein fold-changes in (A) vs. those in (B). Significant proteins of (A) are highlighted dark red, those of (B) in blue and 

significant in both in bright red. 
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With a total of 19 out of the 34 differently expressed 

proteins, immunoglobulins were the group of proteins that 

showed the most elevated levels in COVID-19 patients. 

This reflects the antibody test results but at a much more 

granular level (see below). Only five proteins were 

significantly different between the comparisons of both the 

first day of sampling and the day of highest Roche S-Ab 

levels with the PCR-negative controls (F5, ATRN, GSN, 

APOD, APOA2) (Fig 2C), providing a clear indication of a 

massive rearrangement of the serum proteome during the 

course of the disease. 

 

Regulated serum proteins in the disease 

course of COVID-19  

To understand the degree and nature of serum proteome 

remodeling during the disease course in infected patients, 

we performed three statistical analyses on our dataset 

(Fig 3A). For all comparisons, we considered the first day of 

sampling as a baseline. We used a one-sample t-test, 

because proteins vary in an individual-specific manner 

(Geyer, Albrechtsen, et al., 2016; Dodig-Crnković et al., 

2020).  

First, we investigated differences between the first day of 

sampling (early disease stage) and the time point with the 

highest host antibody response as determined by the 

Roche S-Ab assay. Disease progression between the two 

time points was accompanied by systemic effects on the 

serum proteome with 38 decreased and 44 increased 

proteins (Fig 3B, Fig EV2C, Table EV4).  

The most significantly decreased proteins included the 

complement factors C2 (p: 6.1*10-7; 1.6-fold) and CFB 

(p: 1.0*10-6; 1.3-fold) whereas FN1 (p: 1.4*10-8; 2.0-fold) 

and APOH (p: 1.7*10-8; 1.9-fold) increased most 

significantly. The median fold-change of significantly 

regulated proteins was 1.6 from the first day to the day with 

the highest Roche S-Ab level. As a group, the down-

regulated proteins were dominated by factors of the 

inflammation system, including 18 proteins annotated with 

the Gene Ontology Biological Process (GOBP) term 

“immune system process”, which included serum amyloid 

A-1 protein (SAA1; p: 3.6*10-4; 5.2-fold), C-reactive protein 

(CRP; p: 6.3*10-4: 3.2; 4.9-fold), serum amyloid A-2 protein 

(p: 5.2*10-3; 4.7-fold), CD14 (p: 3.8*10-5; 2.1-fold) and 

lipopolysaccharide-binding protein (LBP; p: 3.5*10-6; 

2.1-fold). Notably, increased proteins were dominated by 

immunoglobulins with 20 different regions (see below). In 

addition to APOH and FN1, the coagulation regulators HRG 

(p: 2.1*10-5; 1.6-fold), CPB2 (p: 1.1*10-3; 1.2-fold), PROZ 

(p: 3.4*10-3; 1.9-fold) and TTR (p: 4.5*10-4; 2.0-fold) clearly 

increased, as did a group of apolipoprotein C proteins 

(APOC1 (p: 5.9*10-6; 1.7-fold), APOC2 (p: 1.3*10-5; 

1.9-fold), APOC3 (p: 3.2*10-5; 1.6-fold)).  

Second, we explored regulations of serum protein levels 

over time, which revealed 34 highly significant positively 

and 39 highly negatively correlated proteins (p-value < 10-4) 

(Fig 3C, Table EV5). Proteins showing the highest positive 

correlation were ITIH2 (p: 6.4*10-27; Pearson correlation 

R: 0.47), ITIH1 (p: 7.8*10-21; R: 0.42), APOH (p: 5.3*10-16; 

R: 0.37) and FN1 (p: 2.8*10-19; R: 0.40). Proteins showing 

the highest negative correlation were LGALS3BP 

(p: 3.6*10-18; R: -0.39), C2 (p: 2.0*10-17; R: -0.38), L-selectin 

(SELL; p: 4.7*10-16; R: -0.40) and ORM1 (p: 5.8*10-14; 

R: -0.34). These data demonstrate a strong, coordinated 

response of the serum proteome over the time course of 

infection. 

Third, to investigate more complex protein trajectories in 

COVID-19 infection, we conducted one-sample t-tests 

across five-day intervals (Fig 3D). This resulted in 28 

significantly regulated proteins (Fig 3D, Table EV6) in 

addition to those correlating with sampling time alone. 

Interestingly, after binning samples in five-day intervals, 

there were no significant changes from day 0 to days 1-5 

and the first significant changes were detected when 

comparing to days 6-10. Strong regulations were found 

between day 0 and the later intervals up to the days 26-30 

(Fig 3D/E). The coagulation associated proteins described 

above were again the most significantly increased ones, but 

the binned time course analysis added AZGP1 and KNG1 

to this group. The most significantly decreased proteins 

consisted of complement factors such as C8A, C8B, CFB, 

C2 and C9 in the 11-15 and 16-20 days intervals and other 

inflammation proteins such as ORM1, ORM2, LBP, CD14, 

LGALS3BP and CRP in the later intervals. 

Together, these three time-resolved analyses (Fig 3B/C/D) 

implicate that a large proportion of the quantified serum 

proteins (130 out of 502) in diverse biological processes are 
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Fig 3 - Identification of proteins altered in COVID-19  

A. Schematic of how proteins were compared across disease trajectories. Letters correspond to the panels in this figure. 

B. Volcano plot of the results of a one-sample t-test comparing the sample at the first day of sampling and the time point with the highest 

antibody levels. Blue colored proteins are significantly down- and red ones up-regulated over time. Immunoglobulins are highlighted in 

dark red. The fold-change in protein levels is depicted on the x-axis and the -log10 t-test p-value on the y-axis.  

C. Correlation of proteins with sampling time during hospitalization. Pearson correlation coefficients and -log10 p-values are displayed 

on the x- and y-axes, respectively. Proteins significantly correlating with sampling time (positively or negatively) and a p-value < 10-4 are 

highlighted in red.  

D. Numbers of significantly altered proteins between the first day of sampling (day 0) and subsequent time intervals (binned days on the 

x-axis), determined by one-sample t-tests.  

E. Numbers of samples per interval subjected to the one-sample t-test in (D). 

 

significantly altered in the course of COVID-19. This 

highlights both the extensive rearrangement of central 

physiological proteins and that these can be assessed by 

proteome profiling. 

 

High-resolution trajectories and clusters of 

differentially regulated proteins in COVID-19 

Following the analysis of COVID-19 cases against controls 

as well as binned and grouped time intervals described 

above, we inspected protein trajectories of all COVID-19 

patients in high-resolution. Reducing the time span to a 

maximum of 37 days (for which we had at least five patients 

per sampling day), resulted in 116 proteins with significant 

changes along the trajectories. This revealed three major 

clusters: (1) broadly decreasing, encompassing 51 proteins, 

(2) broadly increasing (35 proteins) and (3) broadly 

increasing, followed by a decrease (30 proteins) (Fig 4A). 

As the Z-scored trajectories substantially overlapped, Fig 

4B shows all of them in the form of a heatmap, preserving 

full resolution of all proteins and time points.  

For biological interpretation of regulated proteins, we tested 

the 116 regulated proteins with keywords and Gene 

Ontology Biological Process (GOBP), Molecular Function 

(GOMF) and Cellular Component (GOCC) using Fisher’s 

exact test. This resulted in 409 significant associations 

between the keyword and GO term categories, 

corresponding to 51 keywords, which were further reduced 

to 20 non-overlapping terms (Material and Methods, Table 

EV7). Enzymatic activity was one of the main reported 

regulations indicated by proteins with keywords 

“Proteases”, “Protease inhibitors”, “Zymogen” and 

“Hydrolases”. The keyword “Protease” had the highest 

number of annotations (25 proteins), reflecting the 

regulation of plasma protease inhibitors, coagulation factors 

and the complement system. Other frequent annotations 

included “Transport” (21 proteins), followed by “Immunity” 

(19 proteins), “Complement-pathway” (15 proteins), “Metal-

binding” (15 proteins) and “Blood-coagulation” (12 proteins) 

(Fig 4C). 

Applied to the three clusters of temporally regulated 

proteins, the results of Fisher’s exact test revealed that 

cluster 1 contained proteins of the innate immune system 

such  as   CRP,   SAA1,   CD14,   ORM1,  ORM2,  LBP,  13 
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Fig 4 - Longitudinal trajectories and extent of proteome alterations in COVID-19  

A. Longitudinal trajectories of the 116 proteins that significantly changed over the disease course of up to 37 days and were quantified 

in at least five of 31 COVID-19 patients. Trajectories were clustered into three main groups by Euclidian distance after Z-scoring and 

were color-coded by distance from the cluster center to highlight outliers (blue). 

B. Longitudinal protein trajectories in COVID-19 over the sampling time of up to 37 days represented as a heatmap and clustered as in 

(A).  

C. Main keywords associated with regulated proteins. Keywords were identified in a Fisher´s exact test on all 116 proteins and then 

subjected to hierarchical clustering (Material and Methods). 

D. Scatter plot of the serum proteomes of one patient at the first day of sampling (day 0, x-axis) compared to day 2 (left panel) and day 

18 (right panel). Proteins of the clusters 1, 2, 3 described above are highlighted in blue, dark red and bright red, respectively.  

E. Color-coded Pearson correlation coefficients for all samples of the same patient as in (D). The panel is a zoom-in of the framed area 

in Fig 1H.  

F. Longitudinal variation of the serum proteome for all 31 COVID-19 patients. Pearson correlation coefficients were calculated between 

the first (day 0) and each consecutive sampling day as shown by example in (D). The trajectory of the median Pearson correlation 

coefficient is highlighted in red. 

 

different complement factors and LGALS3BP (Fig 4B, Table 

EV8). These reflect down-regulation of the immune system 

in the course of hospitalization at the level of individual 

proteins. Cluster 2 contained proteins associated with lipid 

homeostasis, including APOA1, APOA4, APOC1, APOC2, 

APOC3, PON1 and PLTP. Moreover, proteins involved in 

coagulation such as FN1, F13B and K-dependent protein C 

(PROC) were also increased and members of this cluster. 

Cluster 3 revealed partly similar trajectories as cluster 2 but 

decreasing levels towards the later time points. It also 

contained coagulation associated proteins such as APOH, 

VWF, HRG and several proteases with functions in the 

regulation of blood coagulation such as kininogen-1 

(KNG1), plasminogen (PLG) and carboxypeptidase B2 

(CPB2). This is in line with previous reports of 

coagulopathies (in particular over-activity of this system) as 

one of the main complications in COVID-19 but adds a 

temporal and molecular dimension. With 20 proteins, 

immunoglobulins constitute the largest group in cluster 3. 

In order to explore the extent of proteome changes over 

time on an individual patient basis, we calculated Pearson 

correlation coefficients of serum proteomes between the 

first (day 0) and all consecutive sampling days. This is 

shown by example for one person from day 0 to day 2 and 

day 0 to day 18 (Fig 4D). As expected, correlation between 

day 0 and 2 is higher than between day 0 and 18 (0.96 vs. 

0.83). The scatter plots also confirm that this divergence is 

different for the three clusters according to their overall 

trajectories. In particular, CRP and SAA1 are members of 

cluster 1 and their levels decreased up to 1000-fold over 

time. Integrating these binary proteome comparisons for a 

typical individual patient reveals a remarkable stability of the 

individual serum proteomes on consecutive days, while 

changes over more than a week are much more substantial 

(Fig 4E). Finally, the Pearson correlation coefficients for all 

patients over time decrease from a median correlation of 

0.96 on day 1 to 0.88 from day 10 on (Fig 4F).  

Focusing on the 25 patients that survived COVID-19 

infection compared to the six that did not, levels of 14 

proteins were different at the last day of sampling. These 14 

proteins included factors of the coagulation system such as 

heparin cofactor 2 (SERPIND1), plasma kallikrein (KLKB1) 

and PLG. The latter two proteins showed longitudinal 

alterations in cluster 3, emphasizing the importance of the 

coagulation system in COVID-19. Interestingly, the isoform 

Q14626 of ITIH4, a pro-inflammatory acute phase protein 

that has already been implicated in bacterial infection (Ma 

et al., 2021), was significantly increased in patients that did 

not survive (p: 2.8*10-6; 2.8-fold) already at the first day of 

sampling, raising the possibility of prospective classification 

of disease mortality.  

 

Global correlation map of 720 proteomes 

To better understand the overall associations of all 502 

quantified proteins with each other and the 19 clinical 

parameters of our cohort, we generated a global correlation 

map (Albrechtsen et al., 2018). This consists of the pairwise 

correlation of 521 items in all 720 samples (135,460 

correlation coefficients) that were subjected to 

unsupervised     hierarchical     clustering     (Fig 5A).     This  
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Fig 5 - Clusters of co-regulated proteins from the global correlation map  

A. Global correlation map of proteins and clinical chemistry parameters based on hierarchical clustering using Euclidean distance. The 

cluster designated as (a) contains inflammation proteins and (b) proteins correlating with SARS-CoV-2 antibody immunoassay values. 

Colored sections of the dendrogram highlight clusters of co-regulated proteins. 

B. Magnification of sub-cluster (a). The zoom-in on the right depicts the correlation between MS-determined CRP and clinical chemistry 

determined CRP.  

C. Magnification of the cluster containing the five SARS-CoV-2 antibody immunoassay values and their correlating proteins from the 

global correlation map of all COVID-19 patients. The cluster predominantly contains immunoglobulin regions.  

D. Proteins correlating with the Roche S-Ab test. Significantly correlated proteins are highlighted in blue and significantly correlated 

immunoglobulin regions are highlighted in red (q < 0.05; p < 10-4). 

 

highlighted 21 positively or negatively correlated groups of 

proteins and clinical chemistry parameters (Table EV9).  

The inflammation system formed the largest cluster with 71 

items. CRP values as quantified by a standard clinical 

chemistry test showed the highest coefficient of correlation 

(R: 0.95) with MS-quantified CRP, providing a positive 

control for our workflow (Fig 5B).  

Notably, FN1 and APOH, which were among the most 

significantly different proteins between the first time point of 

COVID-19 patients and PCR-negative controls and were 

also longitudinally regulated, fall all into the same main 

cluster. Furthermore, they clustered with eight proteins 

connected to blood coagulation: CPB2, F2, F12, F13B, 

PLG, KNG1, SERPIND1 and KLKB1, further tying 

coagulation processes to the time course of COVID-19 at 

the systems-wide level. The second largest cluster of 52 

items was dominated by immunoglobulins and consisted of 

several strongly co-regulated sub-cluster of antibodies, 

containing specific immunoglobulin regions. Note that our 

MS-based proteomics workflow does not de-novo 

sequence each antibody, but readily distinguishes antibody 

classes from each other based on peptide sequences of 

constant domains. 
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The cohort was extensively tested by five different SARS-

CoV-2 antibody immunoassays, which grouped very closely 

together. However, they did not fall into the immunoglobulin 

cluster on the global correlation map, possibly due to the 

PCR-negative control patients. In agreement with this 

hypothesis, a second global correlation map limited to 

COVID-19 positive patients indeed clustered SARS-CoV-2 

antibody immunoassays together with the immunoglobulin 

area (Fig 5C). Of the 49 proteins with a positive correlation 

to the Roche S-Ab test, 34 belonged to different antibody 

classes (‘immunoglobulin domains’, Fig 5D). A similar 

number of correlations with immunoglobulin regions was 

identified for the other SARS-CoV-2 antibody 

immunoassays (Fig EV4A-E, Table EV10). 

 

Antibody expression during seroconversion 

in COVID-19 

The five SARS-CoV-2 antibody immunoassays resulted in 

positive responses - indicating seroconversion - in most but 

not all COVID-19 patients (Fig 6A). The time courses of all 

patients show orders of magnitude differences in immune 

response as indicated by the Roche S-Ab immunoassay 

(Fig 6B, Fig EV5A-F for all tests). To investigate the 

association of MS-quantified immunoglobulin regions with 

the five SARS-CoV-2 antibody immunoassays, we selected 

the five most significantly correlating serum proteins of each 

assay. This resulted in nine immunoglobulins and four non-

immunoglobulin proteins (FCGBP, PROZ, FN1, ITIH4), 

whose correlation to each of the test is shown in Fig 6C. 

The antibody chain Ig kappa chain V-III region CLL 

(P04207) was the protein with the highest significant 

correlation to the Roche S-Ab test (p: 2.3*10-53; R: 0.67), but 

showed little correlation to the EUR S-IgG, EUR N-IgG and 

EUR S-IgA tests (R<0.30) (Fig 6C). The immunoglobulin J-

chain (IGJ) (p: 2.9*10-28; R: 0.48) and the Ig alpha-1 chain 

C region (IGHA1) (p: 1.2*10-23; R: 0.45) highly correlated to 

the EUR S-IgA assay, which detects immunoglobulin IgA, 

providing positive control for the serum proteomics 

measurements. Our unbiased approach clearly associates 

a large number of specific antibody regions to SARS-CoV-

2 infection. Furthermore, it also implicates other proteins, 

such as FCGBP, which binds constant regions of IgGs and 

has mainly been described in tissue contexts (Johansson, 

Thomsson and Hansson, 2009).  

To investigate how our data resolves individual-specific and 

protein-specific courses of antibody development, we 

correlated immunoglobulin regions with SARS-CoV-2 

antibody immunoassay levels within each patient. This is 

exemplified for patient 11, where we separately plot the 

Roche S-Ab values against the levels of the four most 

correlating serum proteins. For each of these, 

seroconversion happened between day 6 and 8 (Fig 6D). 

While seroconversion always tends to happen within a few 

days, the time points varied for different patients.  

To obtain a global view of the composition of the antibody 

response detected by the five SARS-CoV-2 antibody 

immunoassays, we determined the number of significantly 

correlating immunoglobulin regions for each test and patient 

(Fig 6E). With the exception of patients 13, 17 and 22, we 

found at least one immunoglobulin domain significantly 

correlating with at least one of the five tests. There were no 

correlations for patient 17 because none of the antibody 

tests were significant. Only in seven patients, all five 

antibody tests were associated with significantly changing 

immunoglobulins. Interestingly, we found correlating 

immunoglobulin regions even in cases where the test 

results had not exceeded the clinical cutoff values (marked 

by X in the panel). This is illustrated for patient 15, where 

we found 28 significantly correlating proteins with the EUR 

S-IgG assay, although this test itself was not above the 

cutoff (Fig EV6A-D). In total, 24 patients had significant 

correlations of immunoglobulin regions with the Roche S-

Ab test, while only 14 individuals had significant correlations 

with the EUR S-IgA test (Fig 6F, Fig EV7A-D). The 

maximum number of correlating immunoglobulins with the 

Roche S-Ab assay within an individual was 49 (mean: 11). 

This was not a function of the number of samples per patient 

(Fig 6F). Significantly correlating immunoglobulins 

increased on average 4.3-fold, but certain immunoglobulin 

regions were more than 100-fold elevated. 

Next, we investigated the distribution of significantly 

correlating immunoglobulin regions in the study population. 

For this purpose, we counted different immunoglobulins that 

were significant in each individual. Taking the Roche S-Ab 

test as an example, the majority of antibody regions were 

significantly correlated in at least two individuals (Fig 6G). 

In total, a remarkable 92 out of the 127 quantified 

immunoglobulin regions were significant, indicating that the 

large majority of immunoglobulin regions are involved in the 

response to SARS-CoV-2 infection. Moreover, we identified 

‘favored’ antibody regions that were increased in many 

patients such as IGHV3-15 (12 of 31 patients), IGHV1-69 

(11) and IGLV3-10 (11).  
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Fig 6 - Dynamics of SARS-CoV-2 antibody expression during seroconversion in COVID-19  

A. Number of individuals with seroconversion as indicated by five different SARS-CoV-2 antibody immunoassays. Dashed horizontal line 

indicates the total number of patients.   

B. Longitudinal trajectories of the Roche S-Ab immunoassay for all COVID-19 patients.  

C. For each of the commercial SARS-CoV-2 antibody immunoassays, the top five correlating proteins in the serum proteome were 

determined, resulting in nine immunoglobulin gene products and four non-antibody proteins (x-axis).  

D. Examples of correlations of four different immunoglobulin regions with the Roche S-Ab test for patient 11. Labels on the data points 

indicate the day of sampling. The data points of early sampling days are clustered near the origin, in contrast to later sample dates where 

both protein expression values and Roche S-Ab values are many-fold increased, which is consistent with seroconversion. The Pearson 

correlation coefficient (R) is displayed.  

E. Panels for each COVID-19 patient indicate the number of proteins significantly correlating with each of the five SARS-CoV-2 antibody 

immunoassays. The X indicate immunoassay measurements not exceeding the cutoff that classifies an individual as having produced 

antibodies against SARS-CoV-2. 

F. Ranked numbers of significantly correlated immunoglobulin regions per individual are shown in red (left y-axis). Numbers of samples 

are shown in grey (right y-axis).  

G. Immunoglobulin regions correlating with the Roche S-Ab test in the indicated number of individuals (y-axis).  

H. Time-resolved trajectories of consistently quantified immunoglobulins exemplified with patients 11, 15, 17 and 22. Hierarchical 

clustering grouped trajectories of immunoglobulin regions by Euclidean distance. The columns are arranged by sampling date. The time 

points are indicated in days above the heatmaps. 

 

Finally, we analyzed the time course of all patients without 

recourse to the antibody tests. This resulted in a very 

detailed picture of seroconversion, in which highly 

correlated immunoglobulin regions clustered closely 

together (Fig 6H). Even within an individual the number of 

immunoglobulin regions, their fold-changes and time points 

of increasing levels varied. Note that our MS-based 

proteomics workflow identifies several peptides per 

immunoglobulin,      sufficient      to      assign      them      to 

immunoglobulin regions while not revealing their complete 

sequence. Clusters of trajectories of immunoglobulin 

regions presumably indicate a common antigen, in this case 

virus proteins. Interestingly, we observed a general 

decrease in the levels of specific immunoglobulin regions in 

several individuals. One of these, the IgM constant domain, 

reports on the class switch of IgM to IgG directly from the 

proteomics data.  

As expected from the readouts of the SARS-CoV-2 

antibody immunoassays (Fig 6B), the immunoglobulin 

trajectories were highly individual-specific. In patient 11, for 

example, 33 immunoglobulin regions increased over time, 

which grouped in two clusters with an average of 4.2- and 

2.1-fold increase (Fig 6H). We found that MS-based 

proteomics provided additional insights in patients with very 

low SARS-CoV-2 antibody immunoassays values. Although 

these values were very low in patient 15, we identified two 

clusters of immunoglobulin regions which increased on 

average 5.6- and 2.0-fold, allowing this patient’s antibody 

response to be tracked by longitudinal MS-based proteome 

profiling. Remarkably, in patient 17, who had no positive 

SARS-CoV-2 antibody immunoassays (but was PCR 

positive), two immunoglobulin regions increased two-fold 

(A0A087WUS7: p: 2.6*10-4; P01708: p: 1.9*10-4) after which 

their levels stayed elevated. SARS-CoV-2 antibody 

immunoassays were negative twice and three times just 

above threshold for patient 22. MS-based proteomics 

explained these borderline results as the 53 

immunoglobulin regions of this patient dropped on average 

5.6-fold compared to the first time points of sampling and 

indicated a strong effect on the adaptive immune system.   

 

Discussion 

Here, we describe alterations of the serum proteome during 

COVID-19 in an untargeted manner using a scalable 

plasma proteome profiling workflow. With a total of 720 

serum samples, this is one of the largest MS-based body 

fluid proteomics efforts, comprising the most detailed 

longitudinal protein trajectories during hospitalization 

(average 31 days; maximum 54 days). Furthermore, the 

comparison of serum proteomes to a control cohort of 

patients with COVID-19-like symptoms that turned out to be 

PCR-negative, allowed further interpretation of virus 

induced alterations.  
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As a main finding, a quarter of quantified serum proteins 

(130 of 502; 26%) changed significantly over the disease 

course, revealing an extensive remodeling of the serum 

proteome in COVID-19. Confirming this, a study 

investigating the time course of the plasma proteome during 

COVID-19 found a comparable portion of protein changes 

(89 of 309; 29%) (Demichev et al., 2020). 

In our study, three clusters of co-regulated proteins with 

different longitudinal protein trajectories stood out: The first 

cluster comprised proteins decreasing during 

hospitalization, the second comprised proteins increasing, 

and the third cluster comprised proteins increasing within 

the first three weeks and decreasing afterwards. Serum 

proteome changes were striking not only on the cohort level, 

but just as much at the individual level. The latter could also 

been as seen from the individual trajectories of serum 

proteome remodeling. 

The first cluster of longitudinally altered proteins included 

predominantly proteins of the innate immune system, which 

decreased during the first days and remained low, 

indicating a general decline of the immune system response 

during hospitalization. This observation has been confirmed 

by longitudinal studies of inflammatory markers determined 

by routine clinical chemistry, and immunoassays 

(Haljasmägi et al., 2020). The global correlation map with 

an unbiased hierarchical clustering to group proteins with 

the same regulation across COVID-19 positive and 

negative patients further confirmed the strong systemic 

effect on the inflammation system. The reaction of the 

adaptive immune response was indicated by increasing 

levels of specific antibody regions and SARS-CoV-2 

antigen antibodies. 

The second cluster, comprising proteins which increased 

over the course of COVID-19, consisted of proteins 

associated with lipid homeostasis and coagulation. 

Changes of proteins related to coagulation and plasma 

apoprotein levels were corroborated by previous work 

(Demichev et al., 2020). Coagulopathies are a main 

complication in COVID-19, calling for a detailed 

understanding of mechanisms of hypercoagulability via 

identification of proteins regulated in these processes 

(Demichev et al., 2020; Gupta et al., 2020; Kollias et al., 

2020).  

The third cluster followed a particularly interesting pattern of 

protein levels, which increased initially and then decreased 

during hospitalization. This cluster consisted mostly of 

immunoglobulins, which have not been reported in previous 

work. Several of the immunoglobulin chains that we found 

as regulated during seroconversion have more recently 

been removed from Ensembl and subsequently from the 

UniProt Knowledgebase, but are still available in UniParc 

(https://www.uniprot.org/uniparc) (UniProt Consortium, 

2018; The UniProt Consortium, 2021). Their inclusion was 

crucial to our study, which would otherwise have resulted in 

a much lower number of regulated immunoglobulin regions. 

More generally, studies of infectious diseases with 

seroconversion could be applied to confirm and curate 

public databases. We further extensively characterized the 

immune response of our cohort by five different 

immunoassays meant to detect antibodies against the N- 

and S-antigens of SARS-CoV-2. These were correlated 

with different types of immunoglobulin regions as quantified 

by our untargeted proteomics measurements. From the 

MS-based proteomics data, we further constructed 

individual-specific time-resolved trajectories of the levels 

and composition of antibody regions. We found highly 

individualized responses, but also discovered regions 

prominently regulated across individuals. Additionally, we 

found in some patients a disagreement between the 

quantitative signal of longitudinally regulated 

immunoglobulin regions identified by MS compared to the 

SARS-CoV-2 antibody immunoassay measurements. In 

one case, the SARS-CoV-2 antibody immunoassays 

resulted in very limited signals, however, MS-based 

proteomics reported on an increase of a broad spectrum of 

immunoglobulin regions with fold-changes similar to 

patients with highly positive responses in the 

immunoassays. Of note the different SARS-CoV-2 antibody 

immunoassays had also a distinct degree of variation in 

terms of fold-changes and correlations to each other 

(Buchholtz et al., 2021). Hence, the MS readout of the 

highly detailed immunoglobulin profile could be applied to 

track seroconversion in patients. In addition to antibody 

regions, IgGFc-binding protein (FCGBP) prominently 

correlated with SARS-CoV-2 antibodies. The function of 

FCGBP is poorly understood and has previously been 

reported as elevated in serum of patients with autoimmune 

disease (Kobayashi et al., 2001). We found levels of 

circulating FCGBP to be regulated during seroconversion in 

our COVID-19 data and we speculate that it is an indicator 

of antibody response. This would allow studying the 

immune response to COVID-19 in a quantitative fashion for 

each individual and  to identify those  that produced strong 

antibody responses and that could serve as donors for 

production of convalescent serum/plasma therapeutics 

(Amanat et al., 2020). 
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Adding to longitudinal trajectories, we also performed a  

comparison of proteomes of PCR-negative controls with 

COVID-19-like symptoms. This analysis revealed that HRG, 

FN1 and APOH were among the most significantly 

regulated proteins showing decreased expression in 

COVID-19 patients at the first day of sampling. Our results 

point towards a complex rearrangement of multiple factors 

of the coagulation system, in which many of these proteins 

decrease at earlier time points and increase during disease 

course towards the levels of PCR-negative controls. 

Our work emphasizes the value of longitudinal study design 

for biomarker discovery, which allowed to correct for inter-

individual variation and determination of proteome 

alterations in disease progression. Compared to studies 

with single time points between COVID-19 patients and 

controls that provided first insights into potentially regulated 

proteins, our comparison of serum proteomes over the 

course of disease progression, provided a clear set of 

potential biomarkers which we are now following up in larger 

cohorts.  

 

Materials and Methods 

Study cohort – COVID-19 patients: Serum samples from 31 

COVID-19 patients, admitted to the University Hospital of 

LMU Munich with acute COVID-19 confirmed by positive 

PCR, were collected over time from leftover material of 

samples submitted to the Institute of Laboratory Medicine 

for routine laboratory diagnostics. Serial samples were 

collected from each patient, covering a period of up to 54 

days from the first day of sampling, adding up to a total of 

458 samples. The cohort partially overlapped with a cohort 

described in our previous work (Buchholtz et al., 2021). 

Clinical and clinical chemistry data were retrieved from 

electronic patient records. The patients were sampled at 

both regular wards and intensive care units.  

PCR-negative control patients: Serum samples from 262 

patients, admitted to the University Hospital of LMU Munich 

with possible symptoms of SARS-CoV-2 but with a negative 

PCR result were collected from leftover material of samples 

submitted to the Institute of Laboratory Medicine for routine 

laboratory diagnostics. SARS-CoV-2 symptoms included 

fever, cough, shortness of breath, throat pain, loss of smell 

and taste, fatigue, general malaise, gastrointestinal 

complaints, headache, cognitive impairment, need of 

oxygen or intensive care treatment because of respiratory 

symptoms. 

Samples were stored as 250 μl aliquots in 2D barcoded 

biobanking vials (Thermo Scientific, Waltham, 

Massachusetts, USA) at -80°C in the LMU LabMed 

Biobank. Anonymized analysis has been approved by the 

Ethics Committee of LMU Munich (reference number 21-

0047). 

Sample preparation – Plasma samples were prepared for 

LC-MS/MS analysis as previously published (Geyer, Kulak, 

et al., 2016). In brief, plasma proteins were denatured, 

alkylated, digested and peptides purified using an 

automated liquid handling platform (Agilent Bravo) in a 96 

well format. To generate a spectral library, 20 plasma 

samples were pooled and fractioned into 24 fractions using 

high pH-reversed phase liquid chromatography.  

LC-MS/MS analysis – Digested peptides were separated 

online via a nanoflow reversed-phase chromatography with 

an Evosep One liquid chromatography (LC) system 

(Evosep). Peptides were separated on an 8 cm x 150 µm 

column packed with 1.9 μm ReproSil-Pur C18-AQ particles 

(Dr. Maisch) using the 60 SPD method with a gradient 

length of 21 minutes. The Evosep One was coupled online 

to a timsTOF Pro mass spectrometer (Bruker Daltonics). 

The instrument was operated in the DDA PASEF mode with 

10 PASEF scans per acquisition cycle and accumulation 

and ramp times of 100 ms each. Singly charged precursors 

were excluded, the ‘target value’ was set to 20,000 and 

dynamic exclusion was activated and set to 0.4 min. The 

quadrupole isolation width was set to 2 Th for m/z < 700 and 

3 Th for m/z > 800. 

Data analysis – MS raw files were analyzed by MaxQuant 

software, version 1.6.17.0 (22) and MS spectra were 

searched against the reference proteome FASTA file, 

downloaded from 

https://www.ebi.ac.uk/reference_proteomes/ in January 

2020.  

A contaminant database generated by the Andromeda 

search engine (23) was configured with cysteine 

carbamidomethylation as a fixed modification and N-

terminal acetylation and methionine oxidation as variable 

modifications. We set the false discovery rate (FDR) to 0.01 

for protein and peptide levels with a minimum length of 7 

amino acids for peptides and the FDR was determined by 

searching a reversed sequence database. Enzyme 

specificity was set as C-terminal to arginine and lysine as 

expected using trypsin and LysC as proteases. A maximum 

of two missed cleavages were allowed. All proteins and 

peptides matching the reversed database were filtered out.  
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Bioinformatics analysis – Bioinformatics analyses were 

performed in Jupyter notebooks using Python and with the 

Perseus software of the MaxQuant computational platform 

(22, 24). Two-sample t-tests were performed for the 

comparison of different groups. For two-sample tests, we 

used a two-sided Student´s t-test and used a permutation-

based FDR (0.05) for multiple hypothesis testing. Two-

sample tests were performed to identify protein level 

differences of PCR-negative patients with COVID-19-like 

symptoms and COVID-19 patients at the first day of 

sampling and at the time point with the highest Roche S-Ab 

test response.  

Longitudinal alterations of protein levels – To identify 

proteins correlating with disease severity, we first Z-scored 

proteins within each individual to take individual-specific 

protein levels into account. To consider each disease state 

only once per patient, we averaged the Z-scores within each 

disease state in each individual and applied them to the 

correlation analysis. Pearson correlation coefficients were 

calculated for correlation analysis and permutation-based 

FDR (0.05) was applied for multiple hypothesis testing. Z-

scored protein levels were applied for the correlation of 

protein levels to the  time course of sampling for which each 

time point was used.  

One-sample t-tests were applied to identify longitudinally 

altered protein levels between two time points. First, the 

difference of protein levels between both time points were 

calculated on log10 transformed data to take individual-

specific protein levels into account. This was performed to 

calculate the difference of the first day of sampling and the 

sample with the highest Roche S-Ab test response. 

One-sample t-tests were also applied to identify 

longitudinally altered protein levels between the first day of 

sampling and binned time intervals. For this purpose, we 

normalized the protein levels by referencing to the first day 

of sampling to take individual-specific protein levels into 

account. Next, we averaged the normalized values for five-

day intervals (day 1-5, 6-10, …) and applied a one-sample 

t-test to identify proteins significantly different between the 

first time point and the median of the intervals. A Benjamini-

Hochberg FDR (0.05) has been applied for multiple 

hypothesis testing. 

Quality assessment – The evaluation of sample quality has 

been performed according to recently described quality 

marker panels (Geyer et al., 2019). In short, summed 

intensities of each of three quality marker panels for 

erythrocyte lysis, platelet contamination and coagulation 

have been calculated in addition to the intensities of all non-

quality associated proteins. The percentage of the 

intensities of the quality marker panels compared to non-

quality associated proteins were calculated to determine the 

contamination of each sample. If the percentage of 

erythrocyte protein intensities compared to the total 

proteome was >6%, a sample was flagged as having 

increased erythrocyte proteins. If the percentage of platelet 

protein intensities compared to the total proteome was 

>0.5%, a sample was flagged as having increased platelet 

contamination. If the percentage of fibrinogen chains was 

>0.3%, a sample was flagged as having impaired 

coagulation. Coagulation of serum samples was impaired 

according to the quality marker panel in 17 samples of 

COVID-19 patients compared to just one control sample. A 

total of 15 out of the 17 samples of COVID-19 patients 

originated from the same individual.  

Potential bias between groups was assessed by 

highlighting the three quality marker panels in a volcano plot 

of the comparison of the two groups (Fig EV2). Potential 

bias was indicated in the text, if present. Outliers in 

statistical tests that serve as candidates within this 

manuscript were assessed for potential co-correlations with 

platelet and erythrocyte markers. As MS-based proteomics 

is unbiased in the selection of proteins for evaluation, we 

report on a broad scope of information that we can use to 

evaluate potential outlier proteins in more detail. Herein, we 

used the quality marker panels for further evaluation of 

statistically significant outlier. The quality marker panel 

indicated a bias towards increased erythrocyte proteins in 

controls, which was reflected in the results comparing 

COVID-19 positive and negative patients with significant 

proteins of typical erythrocyte proteins such as the 

hemoglobin chains HBA1, HBB and HBD and the bias of 

quality marker proteins in one side of the t-test (Fig EV2A-

C). In the same vein, we reported previously (Geyer et al., 

2019) that GSN can be an indicator for platelet 

contamination. However, other platelet markers were not 

enriched in controls and a global correlation analysis 

revealed that GSN was not co-regulated with other platelet 

markers in this study, confirming that GSN changed due to 

COVID-19 infection. Of all significantly regulated proteins, 

only hemoglobin chains clustered within quality marker 

panels, indicating that they originated from erythrocytes. 

Protein trajectories – Significantly longitudinally regulated 

proteins were defined as proteins that have a statistically 

significant difference between the first time sampling time 

points and other time points. Samples were available for 
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each COVID-19 patient at the first time point (TP 0), but not 

at every other time point. To increase the statistical power 

for the identification of longitudinally changing proteins, we 

binned proteomes over a distinct time window of always five 

days: 1-5, 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 

41-45, 46-50, 51-54. For this purpose, we calculated the 

difference within each individual from the first sample to all 

other time points and calculated the median according to 

the above listed time windows. Next, we applied a one-

sample t-test, which resulted in 86 statistically significant 

proteins for all comparisons (Table EV6). Next, we selected 

all proteins that were statistically significant in one of the 

above-mentioned tests to identify longitudinally changing 

proteins, resulting in 130 proteins. The protein intensities 

were Z-scored within each individual over time. We 

calculated the median of the Z-scores for each time point 

for which we had at least five samples, resulting in 37 time 

points and 116 proteins fulfilling this criterion. The median 

Z-scores of the proteins were than subjected to a 

hierarchical clustering with Euclidean distance. 

Intra-individual proteome remodeling – The proteome 

remodeling was assessed by calculating Pearson 

correlation coefficients between the proteome at the first 

time point and the other time points. The median Pearson 

correlation coefficient plot was calculated only for time 

points with samples of at least five individuals, hence, 

covering up to 37 days. 

Keyword annotation of regulated proteins – Keywords and 

Gene Ontology Biological Process (GOBP), Cellular 

Component (GOCC) and Molecular Function (GOMF) 

terms were added to the 116 proteins. A Fisher´s exact test 

was applied between the Keywords and the GO terms. This 

resulted in 409 significant associations from 51 keywords. 

Keywords “3D structure”, “Completeproteome”, 

“Referenceproteome”, “Polymorphism”, 

“Directproteinsequencing”, “Repeat”, “Secreted”, “Signal” 

and “Disulfidebound” were excluded due to the general 

nature of the terms. The keywords “Secreted” and “Signal” 

were combined to “Secreted”, ”Innateimmunity” and 

“Immunity” to “Immunity”, ”Serineprotease” and “Protease” 

to “Protease”, “Serinproteaseinhibitor” and 

“Proteaseinhibitor” to “Proteaseinhibitor”, 

”ImmunoglobulinVregion” and “Immunoglobulindomains” to 

“Immunoglobulindomains”, “Complementalternatepathway” 

and “Complementpathway” to “Complementpathway”, 

”Cytolysis” and “Membraneattackcomplex” to 

“Membraneattackcomplex” due to their high similarity. The 

20 Keywords which had the most significant associations 

with a GO term were selected for Fig 4A. The complete list 

can be found in Table EV7. 

Correlation analysis – We calculated Pearson correlation 

coefficients of binary comparisons of proteins and/or clinical 

parameters. We applied a hierarchical clustering on top of 

the correlation matrix using Euclidean distance. Based on 

the clustering 21 groups of co-regulated proteins and/or 

clinical parameters were identified. To draft correlation plots 

(U-plots), the correlation of clinical to proteomics data was 

done with Python version 3.8.5. using Pandas (1.1.3), 

Numpy (1.19.2), Scipy (1.5.2) and Statsmodels (0.12.0) 

packages. In brief, Pearson correlation coefficients and 

Pearson p-values of protein intensity values to other 

numerical parameters were calculated. To address multiple 

testing, Benjamini-Hochberg FDR was employed for p-

value correction. 

Individual-specific immunoglobulin trajectories – 

Immunoglobulin regions were filtered for 100% valid values 

within each individual. Next the time points were sorted from 

the first to the last day of sampling. A hierarchical clustering 

based on Euclidean distance was applied to group similar 

trajectories together. In patient 17, a two-sample t-test was 

performed to compare protein intensities of P01708 and 

A0A087WUS7 between the earlier (0-24 days) and later 

time points (25-44 days).  
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Supplemental Material 

 

 

Fig EV1 - Distribution of samples with poor quality according to platelet contamination, erythrocyte contamination and 

coagulation in COVID-19 positive and negative patients 

 

 

 

Fig EV2 - Quality marker distribution in Volcano plots  

A. Comparison of the serum proteomes of 31 COVID-19 patients at the day of sampling and 262 PCR-negative controls according to Fig 

2A. Erythrocyte markers are highlighted in dark red. Platelet markers are highlighted in green. Coagulation panel markers are highlighted 

in yellow.  

B. Volcano plot comparing the serum proteomes of COVID-19 patients at the time point of the highest Roche S-Ab test response and 

PCR-negative controls according to Fig 2B.  

C. Volcano plot of a one-sample t-test comparing the sample at day 0 and the time point with the highest antibody levels according to 

Fig 3B. 
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Fig EV3 - Proteome correlation of COVID-19 patients  

Individuals are numbered from 1 to 31 and samples are ordered according to the day of sampling. 
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Fig EV4 - Protein correlations to SARS-CoV-2 antibody assays  

A-E. Correlation analyses of proteins with Roche S-Ab (A), EUR S-IgG (B), EUR S-IgA (C), Roche N-Ab (D) and EUR N-IgG tests (E). 

Antibodies are highlighted in red. Other significant proteins are highlighted in blue. 
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Fig EV5 - Time-resolved SARS-CoV-2 antibody immunoassay responses of COVID-19 patients  

A. Trajectories of the Roche S-Ab. 

B. Zoom-in of the Roche S-Ab response from (A).  

C-F. Longitudinal trajectories of the EUR S-IgG, EUR S-IgA, Roche N-Ab, and EUR N-IgG test, respectively.  

 

 

 

Fig EV6 - Proteins significantly correlating to the EUR S-IgG assay for patient 15 

A-D. Examples of correlations of four different immunoglobulin regions measured with the EUR S-IgG test within one patient. Labels 

indicate the day of sampling. The data points of early sampling days are clustered near the origin, in contrast to later sample dates where 

both protein expression values and EUR S-IgG values are increased, consistent with seroconversion. 
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Fig EV7 - Proteins correlating to different SARS-CoV-2 antibody assays 

A-D. Number of immunoglobulins significantly correlating in the indicated individuals to EUR S-IgG (A), EUR S-IgA (B), Roche N-Ab (C), 

and EUR N-IgG test (D).  
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