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Abstract 
There is an urgent need to identify cellular and molecular mechanisms responsible for severe 
COVID-19 disease accompanied by multiple organ failure and high mortality rates. Here, we 
performed untargeted/targeted lipidomics and focused biochemistry on 127 patient plasma 
samples, and showed high levels of circulating, enzymatically active secreted phospholipase A2 
Group IIA (sPLA2-IIA) in severe and fatal COVID-19 disease compared with uninfected patients 
or mild illness. Machine learning demonstrated that sPLA2-IIA effectively stratifies severe from 
fatal COVID-19 disease. We further introduce a PLA-BUN index that combines sPLA2-IIA and 
blood urea nitrogen (BUN) threshold levels as a critical risk factor for mitochondrial dysfunction, 
sustained inflammatory injury and lethal COVID-19. With the availability of clinically tested 
inhibitors of sPLA2-IIA, our study opens the door to a precision intervention using indices 
discovered here to reduce COVID-19 mortality.   
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Introduction 

Host resistance and disease tolerance are paramount to mounting a successful defense against 

infections such as SARS-CoV-21. Up to 80% of individuals infected with SARS-CoV-2 are 

asymptomatic or develop mild to moderate symptoms. However, others progress to severe and 

life-threatening conditions, requiring hospitalization and specialized medical care. COVID-19 

severity correlates with respiratory symptoms (i.e. dyspnea, hyperpnea, hypoxemia, pulmonary 

infiltration) and concomitant multiple organ failure with disseminated intravascular coagulation2. 

Consequently, there is an urgent need to elucidate central molecular mechanisms that underly 

severe and fatal COVID-19 disease to develop targeted therapeutic approaches. 

Early studies suggested that the host response to COVID-19 may be associated with an 

excessive proinflammatory response caused by a cytokine storm syndrome (CSS)3-5. However, 

more recent studies show that a persistent CSS is uncommon (3-4%) in severe COVID-19 

disease, where high-dose steroids benefit only a small proportion of individuals with organ failure6-

8. Mounting evidence supports that immunometabolic suppression and not CSS compromises 

host immunity, leading to unrestrained viral replication and severe COVID-199,10. Even when viral 

burdens are reduced, immunopathologies including tissue and organ damage often remain11-13. 

Lipid metabolism plays an important role in determining COVID-19 outcomes. Early lipidomic 

studies14,15 revealed that severe COVID-19 modifies the circulating lipidome, with decreases in 

plasma levels of phospholipids and elevated quantities of lyso-phospholipids (lyso-PL), 

unesterified unsaturated fatty acids (UFA), and acylcarnitines. This lipidomic pattern suggests 

that increased COVID-19 severity may be accompanied by cellular or circulating phospholipase(s) 

that cleave intact phospholipids from cellular and mitochondrial membranes to form lyso-PL and 

UFA. Among phospholipases, the secreted phospholipase A2 (sPLA2) family includes 12 

members with highly conserved characteristics, including low molecular weight (13-17 kDa), high 

Ca2+ levels for catalytic activity, and the presence of histidine/aspartic acid dyads in the catalytic 
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site16. sPLA2-IIA elevations occur under various clinical conditions, including sepsis and systemic 

bacterial infections, adult respiratory disease syndrome (ARDS), atherosclerosis, cancer, and 

multiple organ trauma.16 Basal levels of circulating sPLA2-IIA in healthy humans are ~3 ng/ml; 

however, sPLA2-IIA plasma concentrations can reach 250-500 ng/ml during acute sepsis17.  

Here, we identify lipidomic signatures of PLA2 hydrolysis and mitochondrial dysfunction that 

correspond with COVID-19 severity in 127 patient plasma samples. Extremely high levels of 

circulating sPLA2-IIA mirrored disease severity, particularly in deceased COVID-19 patients. 

Circulating sPLA2-IIA remained catalytically active and was associated with indices of disease 

severity, hyperglycemia, kidney dysfunction, hypoxia, anemia, and multiple organ dysfunction. 

Importantly, unbiased machine learning identified sPLA2-IIA as a central node in predicting 

survivors from non-survivors in severe COVID-19 cases. Our findings demonstrate that the 

plasma sPLA2-IIA level, together with BUN, may serve as a potent clinical indicator for COVID-19 

related mortality and suggest that the use of sPLA2-IIA inhibitors may provide a novel, targeted 

therapeutic approach to treat severe COVID-19 disease.  

Results 

Patients  

A total of 127 patient plasma samples collected between May and July 2020 were analyzed. The 

demographics and baseline clinical characteristics of the patients are shown in Table 1. Age 

differed across groups, with deceased COVID-19 patients being older on average (Figure S1). 

There were no significant trends in BMI or obesity. Prevalence of various co-morbidities was 

comparable across groups, except for rheumatologic disease in mild COVID-19 patients (Figure 

S1). Severe and deceased COVID-19 patients experienced more complications, with higher 

incidences of cardiac arrest, acute kidney injury/renal failure, bacterial pneumonia, ARDS, and 

sepsis (Figure S1).  
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Plasma Lipidomic Profiles and Covid Disease Status 

Untargeted lipidomic analysis of the plasma samples revealed that the most significant changes 

in the lipid profile occurred in deceased COVID-19 patients (Figure 1A), with 181 unique 

molecules identified.  Further analysis of the 20 most significant molecules demonstrated an 

enrichment in metabolites associated with acylcarnitine and phospholipid metabolism (Figure 1B). 

Initial analysis showed that several lyso-phosphatidylethanolamine (lyso-PE) molecular species 

typified by C16eLysoPE and unsaturated fatty acids such as linoleic (18:2) and oleic acids (18:1) 

were elevated in severe/deceased COVID-19 patients (Figure 1C). Targeted lipidomics confirmed 

the compositional untargeted lipidomic analysis, showing significant increases in major molecular 

species of lyso-PE and lyso-phosphatidylserine (lyso-PS) while demonstrating no changes in 

lyso-phosphatidylcholine (lyso-PC) (Figure S2). Together, this suggested hydrolysis by a PLA2 

activity (Figure 1D). 

Plasma short chain acyl carnitine and particularly acetylcarnitine has recently been shown to 

serve as an independent prognostic biomarker for mortality in sepsis and heart failure18,19. 

Interestingly, short- and medium-chain acylcarnitines (acetyl and hexanoyl carnitines) were also 

elevated in severe and deceased COVID-19 patients (Figure 1C). Furthermore, acetylcarnitine 

showed high areas under ROC curves: 0.810 (95% CI, 0.694-0.925) for mild vs. severe and 0.849 

(95% CI, 0.752-0.945) for mild vs. deceased (Figure S3A). Additionally, plasma concentrations of 

mitochondrially encoded cytochrome B (MT-CYB) and cytochrome c oxidase subunit III (MT-

COX3) were significantly elevated in deceased COVID-19 patients compared to non-COVID-19 

and mild COVID-19 patients, suggesting elevated mtDNA (Figure S3B). 

Circulating Secreted PLA2-IIA Associated with Covid-19 Disease Status 

Given the critical role of sPLA2-IIA in several related diseases16, its levels were quantified in all 

127 patients. Figure 2A shows the distribution of sPLA2-IIA in all patients and the marked increase 

of sPLA2-IIA in severe (66.6 ± 25.2 ng/ml) and deceased COVID-19 patients (187.3 ± 46.6 ng/ml) 
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compared to non-COVID-19 (24.1 ± 7.4 ng/ml) and mild COVID-19 patients (31.5 ± 9.4 ng/ml). 

There was heterogeneity among the severe COVID-19 patients with 48% of severe patients 

having relatively normal (< 10 ng/ml) levels of circulating sPLA2-IIA levels (inset, Figure 2A). In 

contrast, sPLA2-IIA in all deceased COVID-19 patients exceeded 10 ng/ml, with 46% of these 

patients having at least 10-fold higher levels (ranging from 102 ng/ml to 1020 ng/ml). Enzymatic 

assays showed sPLA2-IIA was catalytically active (Figure 2B), with a strong correlation (r2 = 0.84, 

p = 1.2 x 10-13) between sPLA2-IIA levels and enzymatic activity (Figure 2C). 

Elevated levels of plasma sPLA2-IIA were significantly associated with several critical clinical 

indices (Figure 2D). Its positive correlation with higher baseline NEWS2 and 7-category ordinal 

scale scores suggests a role of sPLA2-IIA in disease severity. The positive correlation of sPLA2-

IIA with glucose levels highlights its link to inflammation. Consistently, hyperglycemia has been 

reported to be an important prognostic factor for COVID-19, associated with a pro-

oxidative/proinflammatory state20. The positive correlations with creatinine and BUN levels 

demonstrate how sPLA2-IIA levels may also reflect kidney dysfunction. Finally, the negative 

correlations with hematocrit, hemoglobin levels, and baseline oxygen saturation suggest elevated 

sPLA2-IIA levels may be associated with hypoxia, anemia, and multiple organ dysfunction21.  

Levels of Secreted PLA2-IIA as a Central Predictor of Covid-19 Mortality 

The eighty clinical indices measured in our cohort of 127 patients were analyzed by machine 

learning models. First, a decision tree was generated by recursive partitioning to identify critical 

indices that separate the four patient groups with high accuracy (area under ROC curve = 0.93-

1.0, Figure 3A inset). Specifically, patients positive for COVID-19 were stratified using the 

predictor "7-category ordinal scale" into "mild" and "severe or deceased", with 91% and 100% 

accuracy, respectively. Of patients in "severe or deceased", sPLA2-IIA levels were found to 

effectively separate the survivors from non-survivors. Those with sPLA2-IIA <10 ng/mL were 

classified as "severe" but not "deceased" with a 100% accuracy; in contrast, those with sPLA2-IIA 
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≥ 10 ng/mL were placed as "deceased" with a 63% accuracy. Of these sPLA2-high (≥ 10 ng/mL) 

patients, BUN levels further helped improve the prediction of survival: those with BUN <16 mg/dL 

were classified as "severe" but not "deceased" (100% accuracy); conversely, those with BUN ≥ 

16 mg/dL were markedly enriched (76%) with "deceased" patients. In short, the decision tree 

identified sPLA2 and BUN as two critical risk factors for COVID-19 mortality. Correspondingly, the 

effective separation of mild, severe, and deceased COVID-19 patients can be visualized in the 

sPLA2-BUN boundary graphs (Figure 3B).  

The decision tree provides a clinical blueprint to identify COVID-19 patients that progress to 

mortality. To validate sPLA2 and BUN as two critical predictors of COVID-19 mortality, an 

additional random forest analysis was performed to evaluate the relative importance of all 80 

clinical indices. We randomly selected subsets of patients and features (clinical indices) and built 

decision trees (1,000 trees each in 10 repeats) to provide a robust assessment of feature 

importance in separating severe vs. deceased COVID-19 patients. Consistently, sPLA2 and BUN 

were identified as the top 2 features ranking significantly higher (p < 0.0001) above all other 

clinical indices to accurately predict COVID-19 related mortality (Figure 4). Importantly, combining 

both decision boundary conditions of sPLA2 and BUN (the PLA-BUN index) performed more 

accurately than using either index alone (Figure 3C).  

Conclusion 

Given growing evidence suggesting that lipid metabolism plays a critical role in determining 

COVID-19 outcomes, we sought to identify molecular mechanisms that reconcile key lipidomic 

changes. Untargeted lipidomic analysis in this study, consistent with other reports, suggest that 

PLA2 activation and mitochondrial dysfunction are central determinants of COVID-19 severity and 

mortality14,15,22,23. Specifically, significant elevations in lyso-PLs (PE, PS, but not PC) and 

increased linoleic and oleic acid levels are hallmarks of catalysis by a sPLA2 isoform. Further 

PLA2 analysis revealed that high concentrations of catalytically active sPLA2 circulate in the 
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plasma of severe and deceased COVID-19 patients. Elevated PLA2 activity in plasma of severe 

sepsis patients was initially described in the 1980s24-27. These studies showed that high levels of 

plasma PLA2 activity (~20-fold increase) were not only sustained, but also further elevated in 

patients who succumbed to sepsis, suggesting distinct cellular and molecular mechanisms 

associated with mortality. In the present study, PLA2 activity was identified as sPLA2-IIA28, and 

deceased COVID-19 patients averaged 18.7-fold higher than normal (<10 ng/ml) with 

concentrations as high as 1,020 ng/ml. Forty-six percent of deceased COVID-19 patients had 

concentrations 10-fold or greater, and elevated sPLA2-IIA levels in patients were associated with 

several indices of COVID-19 disease severity (e.g., hyperglycemia, kidney dysfunction, hypoxia, 

anemia, and multiple organ dysfunction). These findings support that sPLA2-IIA is a central 

mediator in determining poor COVID-19 outcomes. 

Further evidence of lipid dysregulaton during systemic inflammatory disease were the elevations 

in circulating short-chain acylcarnitines (particularly acetylcarnitine) and mtDNA in severe and 

deceased COVID-19 patients indicating systemic mitochondrial energy derangement and 

defective fatty acid oxidation29,30. Elevated plasma acetylcarnitine is not only associated with 

multiple organ failure, inflammation, and infection in sepsis patients, but is an important predictor 

of mortality18. Our data not only corroborates emerging evidence of elevated acetylcarnitine in 

COVID-19 patients, but also show that acetylcarnitine is an indicator of COVID-19 related 

mortality. Increases in mtDNA levels further support severe disease and mortality in COVID-1931. 

Together, our data indicate that defective fatty acid oxidation and mitochondrial dysfunction within 

vital organs may not only induce inflammatory damage32,33, but could underly sPLA2-IIA-related 

COVID-19 severity and mortality.  

The clinical decision tree developed in this study offers a framework to identify COVID-19 patients 

at high risk for progressing to mortality (Figure 3A). Circulating sPLA2-IIA ≥ 10 ng/ml was identified 

as a critical marker to stratify deceased from severe (yet survived) COVID-19 patients, pinpointing 
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sPLA2-IIA as a risk factor for COVID-19 related mortality. Our decision tree further corroborates 

BUN as an important risk factor associated with COVID-19 mortality34. Strikingly, sPLA2-IIA and 

BUN also stood out as the two unique and essential predictors of the mortality in severe COVID-

19 patients, with their feature importance rankings significantly higher (p < 0.0001) than other 

clinical indices in our random forest analysis. When we combined sPLA2-IIA and BUN into a PLA-

BUN index, severe and deceased patients separated more accurately than using either one alone. 

Thus, we introduce the PLA-BUN index as a novel and potentially powerful clinical tool to predict 

COVID-19 related mortality and stratify severe patients to receive treatment of sPLA2-IIA 

inhibitors. 

sPLA2-IIA has direct and organism-wide pathogenic characteristics (Figure 5)16,35-38 with the 

capacity to impact COVID-19 severity and patient outcomes. During cell activation and initiation 

of multiple cell death mechanisms, anionic phospholipids PS and PE are externalized, exposing 

them to phospholipid hydrolysis by sPLA2-IIA (Figure 5A)39.  Hydrolysis of cellular membranes 

would broadly invoke tissue damage and organ cell dysfunction.  Additionally, activated cells and 

damaged tissues/organs secrete extracellular mitochondria35. As mitochondrial phospholipids are 

the preferred substrates for sPLA2-IIA, our data supports that catalysis releases mtDNA, 

acetylcarnitine and several danger-associated molecular patterns (DAMPs) (Figure 5B)40. 

Damaged mitochondria can then be internalized by bystander leukocytes (Figure 5C) to increase 

inflammatory mediators including lyso-PLs, unsaturated fatty acids, eicosanoids, and cytokines. 

sPLA2-IIA also hydrolyzes platelet-derived extracellular vesicles (EV) to release cyclooxygenase, 

thromboxane synthase, and 12-lipoygenase inflammatory eicosanoids16. Collectively, this study 

suggests that cell injury and destructive events spreading across organs amplify inflammation 

with the potential to further damage tissues and organs in severe and fatal COVID-19 disease. 

As a retrospective observational study, there are limitations. Since study patients were selected 

on plasma sample availability, the study is subject to potential confounders and may not represent 
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the general population. Additionally, clinical data availability was restricted to existing medical 

records, and there were missing values in the dataset. Furthermore, temporal relationships are 

difficult to assess as plasma sampling was not standardized. Finally, given the chaotic nature of 

COVID-19 management in early 2020, current standards of care may differ. In spite of these 

limitations, the study provides key mechanistic insights into COVID-19 mortality. It identifies 

sPLA2-IIA as a previously unrecognized and plausible life-threatening mechanism underlying 

COVID-19 severity and mortality. It also provides a clinical blueprint to identify those COVID-19 

patients at risk of death and supports sPLA2-IIA as a therapeutic target. 

sPLA2-IIA secretion increases during other forms of critical illness, often complicated by multiple 

organ failure and high mortality rates41-43. Consequently, structurally diverse classes of sPLA2-IIA 

inhibitors were developed that selectively inhibit sPLA2-IIA. Although deemed safe for clinical use, 

clinical trials using a sPLA2-IIA inhibitor only improved survival in sepsis patients when treatment 

was initiated within 18 hours of organ failure44,45. Further examination of these studies’ design 

revealed limitations: 1) patient selection criteria did not incorporate patient sPLA2-IIA levels and 

2) circulating sPLA2-IIA levels were not reported in the studies. Therefore, inappropriate patient 

selection likely contributed to patient heterogeneity, resulting in negative findings. Indeed, a recent 

study reported that, using a cutoff value of 25 ng/ml, sPLA2-IIA is highly sensitive and specific in 

detecting sepsis46. Given that all deceased COVID-19 patients in our study had elevated sPLA2-

IIA levels (>10 ng/ml), we propose incorporating sPLA2-IIA levels and specifically the newly 

identified PLA-BUN index into patient selection criteria to assess the efficacy of sPLA2-IIA 

inhibitors in increasing survival of severe COVID-19 patients. 

In conclusion, we show for what we believe is the first time that sPLA2-IIA is a novel clinical 

indicator of COVID-19 disease severity and mortality and likely a central mechanistic driver of 

immune and multiorgan failure. Given the new stratification tools discovered here, sPLA2-IIA 

inhibitors merit testing in clinical trials against severe COVID-19 to reduce mortality. 
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Methods 

Study Design 

This retrospective study analyzed 127 plasma samples from patients hospitalized at Stony Brook 

University Medical Center (Stony Brook, NY, United States) from January to July 2020. This study 

followed Good Clinical Practice guidelines and was approved by the central institutional review 

board at Stony Brook University (IRB2020-00423). COVID-19 was diagnosed using the viral 

nucleic acid test (RT-PCR) per guidelines from Centers for Disease Control and Prevention 

(CDC). COVID-19 patients were classified into 3 groups: 1) mild = mild symptoms without 

pneumonia on imaging and discharged from inpatient care, 2) severe = respiratory tract or non-

specific symptoms, pneumonia confirmed by chest imaging, oxygenation index below 94% on 

room air, and discharged from inpatient care, 3) deceased = expired during inpatient care.  

Sample Processing and Lipidomic Analyses 

Frozen EDTA plasma samples were processed utilizing Biosafety Level 2 conditions as per CDC 

Guidelines for the handling and processing of specimens associated with Corona Virus Disease 

2019. Metabolites were isolated from plasma via methanol-based containing 10 µl Splash 

Lipidomix (#330707, Avanti Polar Lipids, Alabaster, AL) and separated utilizing a reverse phase 

chromatography as previously described by Najdekr et al.47 Samples were analyzed utilizing an 

UHPLC-ESI-MS/MS system (UHPLC, Thermo Horizon Vanquish Duo System, MS, Thermo 

Exploris 480) and separation was achieved utilizing an Hypersil GOLD aQ UPLC column (100 x 

2.1 mm, 1.9 μm, Thermo Fisher Scientific, Part No. 25302-102130) with mobile phases composed 

of water containing 0.1% formic acid and methanol containing 0.1% formic acid. Metabolites were 

eluted over a 15 min gradient with the Exploris 480 operating in positive ion mode, utilizing an ion 

transfer tube temperature of 350 °C, sheath gas of 45, aux gas of 5, and spray voltage of 4000. 

MS data for all samples were collected using dynamic exclusion and then aligned with pooled 
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samples collected using Thermo AquireX to achieve optimal metabolite identification in Lipid 

Search 4.0 and Thermo Compound Discoverer 2.3 software.   

Targeted lipidomic analysis was performed using an Agilent 1200 HPLC tandem Thermo 

Quantum Ultra triple quadrupole mass spectrometer (Thermo Fisher Scientific, San Jose, USA) 

to quantify levels of major molecular species of lyso-phospholipids (lyso-PLs). C16, C18:1, C18:2, 

and C20:4 molecular species for lyso-phosphatidylcholine (lyso-PC), lyso-

phosphatidylethanolamine (lyso-PE), and lyso-phosphatidylserine (lyso-PS) (Cayman Chemical, 

Ann Arbor, MI) were used as standards and deuterated Splash Lipidomix as internal standards. 

Lyso-PLs were separated using an Agilent Poroshell 120 EC-C18 1.9 µm (2.1x50 mm) with mobile 

phases composed of water containing 2 mM ammonium formate/0.1% formic acid (A) and 

methanol containing 1 mM ammonium formate/0.1% formic acid. Chromatographic gradient 

elution began at 40% A and remained there for the first minute, proceeding to 1% A at 6 minutes, 

staying there for 10.5 min before returning to 40% MPA over 1.5 min and remaining till the end of 

the 20 min run.  

sPLA2-IIA Concentrations 

sPLA2-IIA levels in plasma were determined by ELISA (Cayman Chemical Company). Plasma 

samples were diluted (1:20-1:800) and assayed in duplicate. Concentrations of sPLA2-IIA in 

plasma were calculated using standard curves. 

Enzymatic Assay for sPLA2-IIA Activity 

A subset of 34 patient samples (9 non-COVID-19, 8 mild, 7 severe, and 10 deceased COVID-19) 

were selected for PLA2 activity analysis. sPLA2 activity was assayed by modifying techniques 

from Kramer and Pepinsky48. Hydrolytic activity was determined in plasma samples from 34 

patients (9 non-COVID-19, 8 mild, 7 severe, and 10 deceased COVID-19 patients) representing 

a wide range of sPLA2-IIA levels. Assays contained 5 µl of plasma in a final volume of 400 µl 
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containing 50 mM Tris/NaCl, pH 8.5, with 5 mM CaCl2 and 5 nmol of 3H-oleate-labeled E. coli 

phospholipids and incubated for 30 mins at 37 °C.2 Lipids were extracted utilizing a modified Bligh 

and Dyer49, and hydrolyzed fatty acids were separated from phospholipids using thin layer 

chromatography (Silica Gel G) and a mobile phase of hexane:ether:formic acid (90:60:6, v:v:v), 

and visualized by iodine vapor relative to cold standards.   

Mitochonrial DNA Quantification 

Mitochondrial DNA (mtDNA) was quantified in the same 34 patient samples as the enzymatic 

assay. Mitochondrial DNA (mtDNA) was quantified by adapting methods from Scozzi et. al.31 

Using genes for human cytochrome C (MT-CYB) and cytochrome C oxidase subunit III (MT-

COX3), mtDNA was quantified in plasma samples from the same 34 patients (9 non-COVID-19, 

8 mild, 7 severe, and 10 deceased COVID-19 patients) as in the sPLA2 activity assay utilizing an 

ABI 7900HT real-time PCR instrument in 384-well format. Synthetic oligonucleotide copies of the 

MT-CYB and MT-COX3 genomic sequences (gBlock Gene Fragments from Integrated DNA 

Technologies) were included to generate a standard curve at 105, 104, 103, and 102 copies per 

µL. Primer sequences were as follows:  

forward MT-CYB: 5’– ATGACCCCAATACGCAAAA-3’  

reverse MT-CYB:  5’–CGAAGTTTCATCATGCGGAG-3’  

forward MT-COX3: 5’–ATGACCCACCAATCACATGC-3’  

reverse MT-COX3: 5’–ATCACATGGCTAGGCCGGAG-3’.   

Each diluted serum sample was compared to a control reaction of a gBlock standard, and the 

delta-Ct was used to correct the calculated concentrations from triplicate reactions. 

Statistical Analyses 

Untargeted lipidomic data were transformed, normalized, and analyzed using MetaboAnalyst 4.0. 

The Benjamini–Hochberg procedure was used to control the false discovery rate (FDR), and the 
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molecules with FDR ≤ 0.1 and absolute log2 fold change (FC) ≥ 1.5 were considered as significant 

and biologically relevant. Individual metabolites, sPLA2 levels, sPLA2 activity, and mtDNA levels 

were compared between groups with non-parametric Mann-Whitney Wilcoxon tests at an α-level 

of 0.05. Spearman correlations between sPLA2 levels and clinical indices were computed in R. 

Receiver operating characteristic (ROC) curves, area under the curves (AUC), and confidence 

intervals were generated using the R packages ROCR and pROC. 

Decision Tree and Random Forest Construction  

Eighty initial clinical indices were used as input variables to build a predictive model (i.e., decision 

tree) by recursive partitioning, using the Classification and Regression Trees (CART) algorithm50 

implemented in the R package RPART. The tree model identified a set of predictive features 

(branch conditions) that best classified the 127 patients into the 4 groups: non-COVID-19, mild, 

severe, and deceased COVID-19 patients. The tree split points were determined by the Gini index 

with the minimum leaf size = 10. A tenfold cross-validation method was used to tune the tree 

model and evaluate its prediction accuracy. To avoid overfitting, the tree was pruned back to the 

smallest size while minimizing the cross-validated error. The classification accuracy of the tree to 

determine each group membership (e.g., deceased vs. non-deceased) was assessed using the 

area under the ROC curve. To further evaluate the relative feature importance in accurately 

separating severe and deceased COVID-19 patients, a random forest analysis was performed 

using the R package randomForest51. An assembly of 1,000 random decision trees was 

constructed in each forest, and 10 forests were constructed in replicate. The importance of a given 

feature (i.e., one of the 80 clinical indices) was assessed by the decrease of prediction accuracy 

when such a feature was omitted in the model, based on two measurement metrics: Gini 

importance or Mean Decrease Impurity (MDI), and permutation importance or Mean Decrease 

Accuracy (MDA).  
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Table 1: Demographics and Clinical Characteristics at Baseline 

  COVID-19  

Variables 
Non COVID-

19 (n=37) 

Mild 

(n=30) 

Severe 

(n=30) 

Deceased 

(n=30) 
p-value 

Demographics 

Mean age (range) 

– yr 

57.08 (10-

84) 

53.37 (14-

93) 
62.4 (35-86) 71.17 (48-96) 0.0027 

Sex: no. of patients (%) 

Male 20 (54.0) 12 (40.0) 16 (53.3) 20 (66.7) 
0.2314 

Female 17 (46.0) 18 (60.0) 14 (46.7) 10 (33.3) 

Race/ethnicity: no. of patients (%) 

White 28 (75.7) 19 (63.3) 14 (46.7) 19 (63.3) 

0.0605 

Black or African 

American 
2 (5.4) 1 (3.3) 2 (6.7) 0 (0.0) 

Asian 1 (2.7) 0 (0.0) 0 (0.0) 4 (13.3) 

Hispanic or Latino 5 (13.5) 9 (30.0) 14 (46.7) 7 (23.3) 

Other 1 (2.7) 1 (3.3) 0 (0.0) 0 (0.0) 

Characteristics 

Median BMI, kg/m2 

(IQR) 

29.54 

(24.45-

34.82) 

28.55 

(24.43-

34.04) 

29.3 (25.08-

34.57) 

25.86 (23.18-

34.71) 
0.0334 
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Median Charlson 

Comorbidity Index 

(IQR) 

1 (0-2.5) 0 (0-2.25) 1 (0-3) 1 (0-3) 0.5738 

Hypertension – no. 

of patients (%) 
18 (48.7) 14 (46.7) 21 (70.0) 18 (60.0) 0.2167 

Major cardiac 

disease* – no. of 

patients (%) 

8 (21.6) 6 (20.0) 5 (16.7) 11 (36.7) 0.2687 

Diabetes – no. of 

patients (%) 
7 (18.9) 6 (20.0) 9 (30.0) 9 (30.0) 0.5856 

Obesity¢ – no. of 

patients (%) 
16 (43.2) 13 (43.3) 12 (40.0) 5 (16.7) 0.0859 

Lipid disorder¥ – 

no. of patients (%) 
13 (35.1) 9 (30.0) 12 (40.0) 10 (33.3) 0.8750 

Kidney disease – 

no. of patients (%) 
5 (13.5) 3 (10.0) 7 (23.3) 6 (20.0) 0.4865 

Liver disease – no.  

of patients (%) 
2 (5.4) 3 (10.0) 1 (3.3) 1 (3.3) 0.6352 

Malignancy – no. 

of patients (%) 
7 (18.9) 2 (6.7) 2 (6.7) 5 (16.7) 0.2945 

Rheumatologic 

/connective tissue 
8 (21.6) 0 (0.0) 2 (6.7) 2 (6.7) 0.0179 
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disease – no. of 

patients (%) 

Chronic lung 

disease, not 

asthma – no. of 

patients (%) 

2 (5.4) 2 (6.7) 4 (13.3) 6 (20.0) 0.2215 

Smoking – no. of 

patients (%) 
17 (45.9) 8 (26.7) 8 (26.7) 8 (26.7) 0.2161 

Asthma – no. of 

patients (%) 
3 (8.1) 1 (3.3) 4 (13.3) 2 (6.7) 0.5422 

Presenting signs and symptoms 

Median NEWS2 

score (IQR) 
0 (0-1) 0 (0-1) 7 (5-9) 7 (5.75-9) <0.0001 

Median 7-category 

ordinal scale (IQR) 
3 (1-3) 3 (3-3) 5 (5-5) 5 (4.75-5) <0.0001 

Pulmonary 

infiltration – no. of 

patients (%) 

0 (0.0) 0 (0.0) 30 (100.0) 30 (100.0) <0.0001 

Bilateral 

pulmonary 

infiltration– no. of 

patients (%) 

0 (0.0) 0 (0.0) 26 (86.7) 27 (90.0) <0.0001 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.21252237doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.22.21252237


24 

Oxygen 

saturation, % 

(IQR)§ 

98 (97-99) 
98 (96.75-

99) 

92 (84.25-

93) 

90.5 (81.25-

95) 
<0.0001 

Oxygen modality – no. of patients (%) 

Room air  33 30 17 21 
<0.0001 

Oxygen therapy 4 0 13 9 

Symptoms – no. of patients (%) 

Abdominal pain 4 (10.8) 5 (16.7) 0 (0.0) 2 (6.7) 0.1304 

Loss of appetite 4 (10.8) 2 (6.7) 7 (23.3) 8 (26.7) 0.1009 

Chest pain 8 (21.6) 5 (16.7) 5 (16.7) 4 (13.3) 0.8426 

Chills/rigors 0 (0.0) 3 (10.0) 5 (16.7) 3 (10.0) 0.1080 

Confusion/delirium 0 (0.0) 1 (3.3) 6 (20.0) 10 (33.3) 0.0002 

Dry cough 0 (0.0) 1 (3.3) 5 (16.7) 10 (33.3) 0.0002 

Cough with 

sputum 
2 (5.4) 1 (3.3) 11 (36.7) 6 (20.0) 0.0008 

Diarrhea 3 (8.1) 3 (10.0) 8 (26.7) 6 (20.0) 0.1399 

Dizziness 5 (13.5) 1 (3.3) 0 (0.0) 2 (6.7) 0.1253 

Shortness of 

breath 
7 (18.9) 6 (20.0) 21 (70.0) 23 (76.7) <0.0001 

Fever 0 (0.0) 1 (3.3) 16 (53.3) 15 (50.0) <0.0001 

Headache 1 (2.7) 2 (6.7) 2 (6.7) 1 (3.3) 0.8090 

Malaise 5 (13.5) 2 (6.7) 10 (33.3) 10 (33.3) 0.0157 

Fatigue 3 (8.1) 2 (6.7) 10 (33.3) 11 (36.7) 0.0019 
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Nasal congestion 0 (0.0) 1 (3.3) 2 (6.7) 2 (6.7) 0.4356 

Nausea/vomiting 4 (10.8) 3 (10.0) 4 (13.3) 3 (10.0) 0.9728 

Other 22 (59.5) 21 (70.0) 8 (26.7) 12 (40.0) 0.0031 

*Major cardiac disease: coronary artery disease, congestive heart failure, history of 

myocardial infarction 

¢Obesity defined as BMI ≥ 30 kg/m2 

¥Lipid disorder: hyperlipidemia, dyslipidemia, antiphospholipid syndrome 

§Some oxygenation indices measured while on oxygen therapy (no baseline 

measurement on room air). 

 

Table 1: Demographics and Clinical Characteristics at Baseline. All categorical variables are 

represented as proportions (%) whereas continuous variables are reported as median 

(interquartile range). D’Agostino-Pearson normality test was used to assess continuous variables 

and determined all that had non-Gaussian distributions; Kruskal-Wallis test were then used to 

assess for equality of group variance. Categorical variables were compared using the chi-square 

test. P-values reflect comparisons of group variance; significant trends are reported in Figure S1.   
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Figure 1. Untargeted Lipidomic Analysis and COVID-19 Status.  Plasma samples from non-

COVID-19, mild, severe and deceased COVID-19 patients were subjected to untargeted 

metabolomics analyses.  Lipidome data were extracted from the metabolomics data set and 

analyzed. A) Volcano plots show significant alterations in the lipidome of the deceased COVID-

19 patients compared with non-COVID19, mild and severe COVID-19 patients. B)  Heatmap of 

the top 20 metabolites whose abundances varied significantly across non-COVID-19, mild, 

severe, and deceased COVID-19 patients. C) Abundances of two lyso-PL, two free fatty acids 

(FFA) and two short chain acyl carnitines extracted from the untargeted lipid data were calculated 

and analyzed using a one-sided Wilcoxon test. Significance indicated as: * p<0.05; ** p<0.01; *** 

p<0.001; **** p<0.0001.  D) Model of PLA2 reaction showing how PLA2 hydrolyzes the sn-2 

position of the glycerol backbone of phospholipids to form lyso-PL and FFA products.  
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Figure 2. Association of sPLA2-IIA and COVID-19 Status. A) sPLA2-IIA levels were determined 

in 127 plasma samples. The inset boxplot demonstrates the medians, bottom and top quantiles, 

and statistical significance across all four groups. B) sPLA2 enzymatic activity was assayed within 

the plasma of selected samples (see Supplementary Methods). C) The scatter plot depicts a linear 

relationship between plasma sPLA2-IIA levels and sPLA2 activity. D) The heatmap shows the 

significant associations between sPLA2-IIA levels and clinical indices of disease severity (FDR < 

0.05 in Spearman correlation, samples with > 15 missing values were filtered out). Color scheme: 

intensity representing the magnitude of value (mean-centered, scaled by the standard deviation, 

and log-transformed with non-Gaussian distribution). 
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Figure 3. A Clinical Decision Tree Predicting COVID-19 Severity and Mortality. A) The tree 

model. Patients are classified based on the indicated clinical indices (shown in orange diamonds) 

and boundary conditions (above split arrows). The number of patients following each split is 

shown in parentheses beneath the split arrow (patients with missing index values were not split). 

In each node, percentages of patients in corresponding categories are shown. (Inset) The area 

under the ROC curve, AUC, of the tree in determining each group membership (e.g., deceased 

vs. non-deceased). B) Decision surface based on the sPLA2 and BUN boundary conditions in A. 

Left (L) and right (R) graphs show the results of applying the sPLA2 and BUN boundary conditions 

to the L and R subsets of patients (split following the 7-category ordinal scale), as indicated in A. 

C) The PLA-BUN index. (Top) The accuracies of combining both decision boundary conditions of 

sPLA2 and BUN as in B (i.e., the PLA-BUN index) in classifying severe and deceased COVID-19 

patients were compared to such classification accuracies using the single decision boundary (as 

in B) of either sPLA2 or BUN. (Bottom) The accuracies of the PLA-BUN index in classifying severe 
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(x-axis) and deceased (y-axis) COVID-19 patients are indicated with a red star, which are higher 

than such classification accuracies of using the single index of sPLA2 (light blue curve) or BUN 

(dark blue curve) with varying cutoff values in the corresponding data range (sPLA2, 3.4-1101.2 

ng/mL; BUN, 5-242 mg/dL). 
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Figure 4. Feature importance ranking of clinical indices.  The relative importance of the 80 

clinical indices in separating the deceased from severe COVID-19 patients (n = 30 each) was 

evaluated in a random forest analysis (tree number = 1,000 each in 10 repeats). The 

importance of a feature (i.e., clinical index) was assessed by the decrease of prediction 

accuracy when such a feature was excluded from the model, based on the Gini impurity 

following a node split (A; MDI, Mean Decrease Impurity) and the permuted values of the feature 

(B; MDA, Mean Decrease Accuracy). The top 30 features in each importance measurement are 

shown (color scheme is proportional to the importance score). 
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Figure 5. Potential Central Roles of sPLA2-Group II in Mediating COVID-19 Severity and 

Outcomes. A) sPLA2-IIA hydrolyzes phospholipids in activated and dying cells within tissues and 

organs. B) sPLA2-IIA hydrolyzes mitochondrial membranes. C)  Damaged mitochondria are 

internalized by bystander leukocytes. D) sPLA2-IIA hydrolyzes extracellular vesicles (EV) 

containing eicosanoid-producing enzymes (cyclooxygenase (COX-1), thromboxane synthase (Tx 

synthase) and 12-lipoxygenase). Collectively, these events amplify late inflammatory responses, 

further damaging tissues and organs. Progressive tissue/organ damage plays a critical role in 

progressing COVID-19 disease to mortality. 
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