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Abstract  30 

Papillary thyroid cancer (PTC) is the most common thyroid malignancy. Although 31 

PTC usually has a favorable prognosis, some aggressive PTC subtypes and lymph 32 

node (LN) metastasis contribute to high rates of recurrence and poor clinical 33 

outcomes. We analyzed single-cell RNA sequencing (scRNA-seq) data from 15 34 

samples, including primary tumors of PTC, metastatic LNs, and paracancerous tissues. 35 

After quality filtering, 28,205 cells were detected. Of these, 13,390 cells originated 36 

from 7 tumor tissues, 2,869 cells from 2 metastatic LNs, and 11,945 cells from 6 37 

paracancerous tissues. The increase in the proportion of CD4+ Tregs may be a key 38 

factor responsible for the immunosuppressive property of PTC. A novel cell type was 39 

identified, named Protective EGR1+CD4+ T cell, which might be antagonistic to the 40 

CD4+ Tregs and inhibit the formation of the immunosuppressive microenvironment 41 

and tumor immune evasion. Inhibitory checkpoints TIGIT and CD96 were found to be 42 

better targets than PD-1 for immune therapy in PTC patients with LN metastasis. For 43 

PTC patients without LN metastasis, however, PD-1, TIGIT, and CD96 could be 44 

suitable targets of immunotherapy. These findings would contribute to the further 45 

understanding of molecular mechanisms resulting in occurrence and development of 46 

PTC, and provide a theoretical rationale for targeted therapy and immunotherapy.  47 
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Introduction 52 

According to the GLOBOCAN database, there were an estimated 586,202 new cases 53 

of thyroid cancer worldwide in 2020 1. The global incidence was up to 13.1 per 54 

100,000 people, ranking 11th in occurrence rate. The most common pathological type 55 

of thyroid cancer is papillary thyroid cancer (PTC), accounting for approximately 85% 56 

of all cases 2. Although PTC usually has a favorable prognosis, some aggressive PTC 57 

subtypes (e.g. tall cell variant and Hürthle cell cancer) and lymph node (LN) 58 

metastasis contribute to high rates of recurrence and poor clinical outcomes 3, 4. For 59 

PTC patients with a high risk of recurrence, radioiodine treatment could be used to 60 

improve their prognosis 5. However, some PTC patients would develop into 61 

radioiodine-refractory PTC, which in turn lead to low survival rate 6, 7. Therefore, a 62 

deeper understanding of molecular and cellular mechanisms of PTC would help in the 63 

development of therapeutic strategies. 64 

Currently, efforts to study the tumor progression and metastatic process of 65 

thyroid cancer have mainly focused on the analysis of cancer cells using genetic 66 

aberrations8, 9, 10, 11. However, the tumor progression and metastasis are a complicated 67 

biological process, which were not only affected by the characteristic features of 68 

cancer cells themselves but also by the tumor microenvironment (TME) 12, 13, 14, 15. 69 

TME refers to a tumor pathology-related environment, comprising stromal cells, 70 

extracellular matrix (ECM), and cytokines. A comprehensive analysis of TME in PTC 71 

can reveal the key elements involved in the susceptibility of tumor-induced 72 

immunological changes, which could be employed to develop new immunotherapy 73 

strategies. 74 

Genomic and transcriptomic studies have revealed a huge number of driver 75 

mutations, abnormal regulatory programs, and disease subtypes in major human 76 

tumors16, 17, 18, 19. However, the conventional bulk sequencing frequently adopted in 77 

these studies only revealed the overall biological characteristics of each tumor and 78 

lacked the ability to  capture signatures in intratumoral and intercellular 79 

heterogeneity. As opposed to bulk sequencing, the emergence of single-cell RNA 80 

sequencing (scRNA-seq) provided a new opportunity to enables characterization of 81 

cell populations at the single-cell level, and made it more independent of any previous 82 

assumptions about surface markers 20. scRNA-seq has been applied to investigate 83 

cellular properties in various solid tumor types 21. However, the single-cell atlas of 84 
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PTC remains to be fully revealed. Therefore, we analyzed primary PTC tumors, 85 

paracancerous tissues, and metastatic LNs using the scRNA-seq-based profiling 86 

method to better understand the intratumoral heterogeneity and complexity during the 87 

development of PTC.  88 

Results 89 

Single cell atlas and heterogeneity of PTC 90 

A total of 15 samples from seven PTC patients were involved in this study. After 91 

quality filtering, 28,205 cells were detected. Of these, 13,390 cells originated from 7 92 

tumor tissues, 2,869 cells from 2 metastatic LNs, and 11,945 cells from 6 93 

paracancerous tissues (Fig. 1a and 1b). Subsequently, we partitioned the cells into 26 94 

clusters, which were further classified into 10 major cell types based on known 95 

markers described in previous studies: B cells (CD19+, MS4A1+, CD38+, CD79A+, 96 

CD79B+); CD4+ T cells (CD3D+, CD4+); CD8+ T cells (CD3D+, CD8A+); endothelial 97 

cells (CD31+, CD34+); epithelial cells (EPCAM+, KRT18+); fibroblasts (COL1A1+); 98 

myeloid cells (CD14+, CD86+, ITGAX+, CD80+, CD83+, ITGAM+); naive T cells 99 

(CD3D+, CCR7+); natural killer T (NKT) cells (CD3D+, NKG7+); and plasma cells 100 

(CD79A+, SDC1+) (Fig. 1c, Supplementary Fig. 1 and 2). 101 

Based on the frequencies of cell types, we detected cellular landscapes in 102 

primary tumors, paracancerous tissues, and metastatic LNs, respectively. significant 103 

differences were observed in several cell types (Fig. 1d). The immune cells accounted 104 

for the major differences between primary tumors and paracancerous tissues, with the 105 

frequency of NKT cells and plasma cells increasing, and CD4+ T cells and B cells 106 

decreasing in the primary tumors (P<0.05). The most striking changes between 107 

metastatic LNs and primary tumors were observed in CD8+ T cells. At the cluster 108 

level, there were also significant differences within the same cell types. As 109 

exemplified by myeloid cells, we observed an increase in the frequency of cluster 21 110 

and a decrease in the proportion of cluster 25 in metastatic LNs compared with 111 

primary tumors and paracancerous tissues. These results demonstrated that the disease 112 

progression might also be somehow associated with evolutionary immune cells, 113 

reflecting the existence of heterogeneity among samples and cell populations.  114 

To conduct the interaction network of tumor microenvironment in PTC, 115 

CellphoneDB was used to calculate potential ligand-receptor pairs in cells. And 116 

Cytoscape was performed to visualize the cell interaction. We found that myeloid 117 

cells and T cell-related cells possessed more interaction pairs with other cells than 118 
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others (Fig. 1e), showing the dominant roles of myeloid cells and T cells. 119 

Identification of malignant cells in epithelial cells 120 

To distinguish malignant from non-malignant cells within the epithelial cells, 121 

CopyKAT was performed to identify PTC genome alterations. Despite the 122 

heterogeneity, almost all malignant cells possessed deletions from chromosomes 16 123 

and 19 and amplifications in chromosomes 13 (Fig. 2a and 2b). We distinguished 124 

1,679 non-malignant cells and 450 cells were identified as malignant cells. Very few 125 

malignant cells were also found in paracancerous tissues (Fig. 2b). In order to support 126 

the identification results of the malignant cells, pseudotime trajectory analysis was 127 

performed. The results showed that malignant cells were present at the end of the 128 

differentiation trajectory (Fig. 2c). 129 

To screen for key regulons in malignant cells, we conducted SCENIC analysis 130 

and identified motifs ATF3 and BHLHE40 that were highly activated in malignant 131 

cells (Fig. 2d). In a previous study, ATF3 was found to enhance breast cancer 132 

metastasis 36. At the same time, decreased activity was found in CREM and ETS1. In 133 

TCGA THCA cohort, a high level of CREM and ETS1 was significantly related to a 134 

good prognosis, and BHLHE40 is highly expressed in patients with LN metastasis 135 

compared with patients without LN metastasis (Fig. 2e and 2f). These results provide 136 

potential targets for suppressing cells to possess malignant characteristics.  137 

We further characterized the functions of differential genes between metastatic 138 

LNs and primary tumors by comparing pathway activities. Pathways involved in 139 

cellular component assembly, protein-containing complex assembly, and regulation of 140 

microtubule motor activity were relatively upregulated in LN-derived malignant cells 141 

(Fig. 2g). The results showed that malignant cells in metastatic LNs have stronger cell 142 

proliferative and invasive abilities. 143 

Identification of a novel T cell type 144 

Reclustering of T cells identified 10 subclusters: CD4+ Tregs, Cytotoxic CD8+ T 145 

cells, Exhausted CD4+ T cells, Follicular helper (Tfh) T cels, Naïve CD4+ T cells, 146 

Naïve T cells; NKT cells, Pre-exhausted CD8+ T cells, Proliferating CD8+ T cells, and 147 

Protective EGR1+CD4+ T cells (Fig. 3a and 3b). In addition to the markers used above, 148 

we also found some other makers that can be used for cell population identification. 149 

For example, TYMS can be used for Pre-exhausted CD8+ T cells identification, and 150 

RTKN2 can be used for Pre-exhausted CD4+ Tregs identification (Fig. 3c, 151 

Supplementary Fig. 3). Notably, a novel cell type was identified, which was totally 152 
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different from preconceived cellular definitions. The novel cell type specifically 153 

highly expressed EGR1, and we named it as Protective EGR1+CD4+T cells. The 154 

mRNA expression level and protein level of EGR1 were significantly decreased in 155 

tumor tissues compared with normal tissues (Fig. 3d). Survival analysis showed that 156 

patients with high EGR1 levels had a better prognosis than those with low EGR1 157 

levels  (Fig. 3e). Through cell frequency analysis, we found an interesting 158 

phenomenon that the proportion of CD4+ Tregs tended to increase with PTC disease 159 

progression and Protective EGR1+CD4+ T cells exhibited a quite opposite trend (Fig. 160 

3f). The results were validated with TCGA data calculated using Cibersortx (Fig. 3g) 161 

and further validated by the changes of marker gene expression levels in the TCGA 162 

THCA cohort (Supplementary Fig. 4a). These findings indicated that both of CD4+ 163 

Tregs and Protective EGR1+CD4+ T cells may have an important impact on disease 164 

progression, and our newly identified cell type (Protective EGR1+CD4+T cells) may 165 

be antagonistic to the CD4+ Tregs. 166 

We further characterized the functions of CD4+ Tregs and Protective 167 

EGR1+CD4+ T cells by comparing pathway activities. In the primary tumors, CD4+ 168 

Tregs and Protective EGR1+CD4+ T cells exhibited vastly different signaling 169 

pathways. CD4+ Tregs were related to epithelial-mesenchymal transition (EMT) and 170 

hypoxia, whereas G2M checkpoint and KRAS signaling pathway were significantly 171 

down-regulated in Protective EGR1+CD4+ T cells (Fig. 4a). In the metastatic LNs, 172 

mitotic spindle and oxidative phosphorylation were also down-regulated in Protective 173 

EGR1+CD4+ T cells (Supplementary Fig. 4b). To screen for key genes related to 174 

tumorigenesis and tumor development in CD4+ Tregs and Protective EGR1+CD4+ T 175 

cells, we conducted SCENIC analysis and identified essential motifs in CD4+ Tregs 176 

and Protective EGR1+CD4+ T cells. FOSL2, ATF3, REL, and HES1 were CD4+ 177 

Tregs-specific motifs. BCLAF1 and ETS1 motifs were highly activated in Protective 178 

EGR1+CD4+ T cells (Fig. 4b). These results provided potential targets for inhibiting 179 

or reversing the formation of the immunosuppressive microenvironment.  180 

The DEGs derived from Protective EGR1+CD4+ T cells were identified, 181 

including 31 up-regulated mRNAs and 50 down-regulated mRNAs in primary tumors 182 

compared with paracancerous tissues (Supplementary Fig. 4c). The DEGs derived 183 

from CD4+ Tregs were also identified (Supplementary Fig. 4d). Subsequently, we 184 

examined the immune checkpoints in the cell clusters (Fig. 4c and 4d). Notably, we 185 

found that TIGIT, an inhibitory checkpoint, was upregulated in Exhausted CD4+ T 186 
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cells and CD96 was upregulated in Pre-exhausted CD8+ T cells in metastatic LNs. In 187 

tumor tissues, PDCD1 (PD-1) and TIGHT were significantly upregulated in 188 

Exhausted CD4+ T cells, and CD96 was significantly upregulated in Pre-exhausted 189 

CD8+ T cells. Since TIGIT, CD96, and PDCD1 (PD-1) are markers of T cell 190 

exhaustion, these data indicated that Exhausted CD4+ T cells and Pre-exhausted CD8+ 191 

T cells were exhausted in the tumor microenvironment, which was consistent with our 192 

previous cell population classification results. 193 

Neutrophils cells are extremely reduced in tumor 194 

For exploring the heterogeneity among myeloid cells, 1607 myeloid cells were 195 

clustered into 5 cell subtypes based on known markers described in previous studies: 196 

macrophages, dendritic cells, monocytes, neutrophils, and myeloid-derived suppressor 197 

cells (Fig. 5a and 5b). Through cell frequency analysis, a marked decrease of 198 

neutrophils was observed in tumors while the proportion of macrophages increased 199 

continuously as the disease progressed (Fig. 5c). The trend was consistent with TCGA 200 

data calculated by cibersortx (Fig. 5d). Survival analysis showed that disease-free 201 

survival (DFS) of patients with low-level dendritic cell was longer than that of the 202 

high-level group in the TCGA cohort (Fig. 5e). Similar results were observed in 203 

macrophages (Supplementary Fig. 5a). However, low-level neutrophil was observed 204 

to be associated with better prognosis (Supplementary Fig. 5b). These results 205 

suggested that macrophages, dendritic cells, and neutrophils are more relevant to the 206 

development of PTC. 207 

We further characterized the functions of myeloid cell subtypes by comparing 208 

pathway activities. Compared with paracancerous tissues, the cancer hallmark-related 209 

pathways were relatively enriched in myeloid-derived suppressor cells from tumors, 210 

whereas they were generally down-regulated in neutrophils from tumors (Fig. 6a). 211 

These were consistent with the changes in cell proportions we observed earlier (Fig. 212 

5c). Compared with tumor tissues, however, some cancer hallmark-related pathways 213 

(i.e. mTORC1 signaling and E2F targets ) were down-regulated in myeloid-derived 214 

suppressor cells from metastatic LNs (Fig. 6b). The results indicated that 215 

myeloid-derived suppressor cells were involved in cancer cell proliferation, but not in 216 

tumor metastasis.  217 

In order to screen for key genes related to tumor occurrence and development in 218 

myeloid cells, we conducted SCENIC analysis and identified essential motifs in 219 

myeloid cells subtypes. Similar to the results of pathway analysis, the overall 220 
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regulatory factors in neutrophils were also inconsistent with the other cell types (Fig. 221 

6c). We recognized that the decreased activity of a lot of motifs (i.e. YY1 and IRF5) 222 

and activation of the STAT3, ZNF143, and HCFC1 motifs led to the reduction of 223 

neutrophils. 224 

As shown in Fig. 6d, cells from myeloid cell-derived cluster 8 uniquely 225 

expressed the M1 macrophages marker CCL5, whereas M2 macrophages markers 226 

including CTSB/CTSD/FN1 were relatively highly expressed in cluster 0. The 227 

proportion of cluster 0 was high in tumors and LNs, although the difference has not 228 

reached a significant level (Fig. 5c). All of this evidence certified that cluster 0 229 

represented an M2-like tumor-associated macrophages (TAM) cluster, the increase of 230 

which may be related to disease progression. Cluster 9 highly expressed the cytokines 231 

CCL17/CCL19/CCL22. These cytokines could bind to CCR4, a marker on the cell 232 

membrane of CD4+ Tregs, and showed strong chemotaxis to CD4+ Tregs 37, 38. It 233 

corroborated with our above results that the increasing trend of CD4+ Tregs with 234 

disease progression was coincident with that of myeloid cell-derived cluster 9 (Fig. 3f 235 

and 5c). The findings indicated that the dendritic cells (cluster 9) could recruit CD4+ 236 

Tregs into the tumor regions, thereby acting as an immunosuppressive effect.  237 

Discussion 238 

At present, the study of molecular mechanisms underlying the occurrence and 239 

development of PTC mainly focused on the genetical alteration based on bulk 240 

sequencing data. We profiled integrated and heterologous transcriptional landscapes 241 

of PTC using single-cell sequencing methods, including cancer cells and TME of 242 

primary tumors and metastatic lesions. Through sequencing 28,205 cells, we found 243 

that the majority of cell clusters possessed strong heterogeneities. Tumor 244 

heterogeneity exists in various malignancies and remains not only between tumors but 245 

also within a single tumor 39, which is considered as a cause of chemoresistance of 246 

cancer. In-depth knowledge of tumor heterogeneity of PTC will make molecular 247 

testing more reliable and accurate prior to surgery (whether to undergo the surgery or 248 

close follow-up only), and benefit to stratify the recurrence risk and personalized 249 

precision treatment (thyroidectomy or total thyroidectomy or plus radioiodine 250 

treatment). On the other hand, TME on disease progression and metastasis has also 251 

been confirmed in numerous diseases40, 41. Investigations of TME-related cellular and 252 

molecular events will provide a theoretical rationale for drug discovery and 253 

development, especially for targeted therapy and immunotherapy.  254 
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In addition to previously described cell types, we discovered a novel cell 255 

subpopulation, named Protective EGR1+CD4+T cells. EGR1 is a transcription factor 256 

primarily mediate cellular functions (i.e. cell growth, cancer progress and apoptosis) 257 

via the RAS/RAF/MEK/ERK signaling pathway 42, which was a hallmark of PTC 43. 258 

It has also been previously reported that p53 could bind to EGR1 promoter and 259 

subsequently resulted in efficient apoptosis 44. EGR1 was usually considered a tumor 260 

suppressor in many human malignancies including PTC 45, 46, 47, 48. By comparing the 261 

proportion of cells from different tissues and pathway enrichment analyzing, we 262 

found that KRAS signaling pathway (part of RAS/RAF/MEK/ERK signaling pathway) 263 

was significantly down-regulated in Protective EGR1+CD4+ T cells. It indicated that 264 

Protective EGR1+CD4+T cells might inhibit the formation of the immunosuppressive 265 

microenvironment and tumor immune evasion via RAS/RAF/MEK/ERK signaling 266 

pathway, thereby restraining tumor growth. Therefore, EGR1 might represent a 267 

potential therapeutic target for PTC.  268 

CD4+ Tregs, were overall considered to disrupt anti-tumor immunity and then 269 

help tumor cells to achieve immune evasion, leading to the tumor growth and 270 

metastasis 49. Our results also showed that CD4+ Tregs had the greatest positive 271 

correlation with the process of EMT, which matched those reported in other studies of 272 

PTC patients 50. Using pathway enrichment analysis, we found that relevant pathways 273 

associated with CD4+ Tregs and Protective EGR1+CD4+T cells were almost the 274 

opposite. The proportion of CD4+ Tregs among three samples increased in the disease 275 

progression order (paracancerous tissues < tumors < LNs) while the proportion of 276 

Protective EGR1+CD4+T cells decreased sequentially. This strongly suggested that 277 

CD4+ Tregs and Protective EGR1+CD4+T cells might act antagonistically to each 278 

other. 279 

Immunotherapy is an emerging method for cancer treatment and promising 280 

results have been obtained in both hematologic and solid tumors 51, 52. T cell 281 

exhaustion is a critical mechanism of immune evasion. Blockade the PD1/PDL1 282 

interaction to reverse T cell exhaustion is considered a milestone achievement in the 283 

field of immunotherapy 53, 54, 55. Our results showed that PDCD1 (PD-1), TIGIT, and 284 

CD96 could be suitable targets of immunotherapy in PTC patients without LN 285 

metastasis since they were upregulated in tumor tissues. However, the expression 286 

levels of TIGIT and CD96 were much higher than that of PDCD1 (PD-1) in 287 

LN-derived exhausted T cell types (Exhausted CD4+ T cells and Pre-exhausted CD8+ 288 
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T cells). Therefore, TIGIT and CD96 might be better therapeutic targets for 289 

immunotherapy in PTC patients with LN metastasis than PDCD1 (PD-1). Jill et al. 56 290 

investigated the CD4+ and CD8+ T cell exhaustion in PTC patients with LN metastasis 291 

using flow cytometry, and found that CD8+ T cell exhaustion was incomplete. This 292 

was most likely because TIGHT and CD96 were not included into analysis in their 293 

study, both of which were very important inhibitory immune checkpoints. However, 294 

their findings supported our conclusions to some extent that PDCD1 (PD-1) was not a 295 

suitable molecular target for the treatment of PTC with LN metastasis.  296 

We initially applied a commonly used method inferCNV for the identification of 297 

malignant cells 57, which was shown to be unable to identify efficiently malignant 298 

tumor cells from epithelial cells in this study. Thus, we adapted an integrative 299 

Bayesian segmentation approach called CopyKAT and solved the conundrum 300 

successfully 35. As a result, more than half of tumor-derived epithelial cells were 301 

non-malignant cells, which might well explain the reason for the indolent clinical 302 

behavior of PTC. Additionally, there were also a very small number of malignant 303 

epithelial cells in paracancerous tissues, possibly due to the presence of the pre-tumor 304 

microenvironment in paracancerous tissues. There were several possible reasons. First, 305 

the pre-metastatic niche, a favorable microenvironment to tumor metastasis, formed in 306 

paracancerous tissues 58, and in turn lead to intra-thyroid metastasis. The concept of 307 

intra-thyroid metastasis of thyroid cancer has not been described yet. The reason is 308 

possibly caused by the small size of the thyroid gland itself and the narrow lumen of 309 

artery/vein nourishing the thyroid gland. As is well-known, liver cancer tends to 310 

present with intrahepatic metastatic disease, mainly due to the large diameter of the 311 

portal vein and hepatic artery. Second, multifocal PTC has already existed within the 312 

thyroid gland, whereas the extremely tiny lesion cannot be detected under 313 

microscopic examination. Based on the two points above,  thyroidectomy is 314 

necessary to be performed for patients with PTC at least to ensure a total removal of 315 

potential lesions. Third, CopyKAT is not able to discriminate malignant cells from 316 

non-malignant cells with hundred percent accuracy. 317 

In summary, we initially investigated the single-cell level heterogeneity of 318 

primary PTC tumors and metastatic lesions. A novel cell type, named Protective 319 

EGR1+CD4+T cells, was identified, which might inhibit the formation of the 320 

immunosuppressive microenvironment and tumor immune evasion. TIGIT and CD96 321 

might be better therapeutic targets for immunotherapy in PTC patients with LN 322 
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metastasis than PDCD1 (PD-1). These findings would contribute to the further 323 

understanding of molecular mechanisms resulting in occurrence and development of 324 

PTC, and provide a theoretical rationale for targeted therapy and immunotherapy. 325 

326 
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Methods 327 

Sample collection and clinical information 328 

Seven patients diagnosed with PTC were obtained from Shanghai Tenth People's 329 

Hospital. A total of 15 tissue samples (7 tumor tissues, 6 paracancerous tissues, and 2 330 

metastatic LNs) were obtained from 7 PTC patients. Written informed consent was 331 

obtained from all patients in the present study. Histological diagnosis of all the 332 

samples was confirmed by the pathology department. 333 

Tissue digestion and single-cell suspension preparation 334 

Cells of each sample were firstly stained with two fluorescent dye, Calcein AM 335 

(Thermo Fisher Scientific Cat. No. C1430) and Draq7 (Cat. No. 564904), for 336 

precisely determination of cell concentration and viability via BD Rhapsody™ 337 

Scanner before single-cell multiplexing labeling. The cells of each sample were 338 

sequentially labeled with BD Human Single-Cell Multiplexing Kit (Cat. No. 633781) 339 

which utilizing an innovative antibody-oligo technology 22 mainly to provide higher 340 

sample throughput and eliminate batch effect for single-cell library preparation and 341 

sequencing. A set of 12 antibodies in this kit recognize the same universally expressed 342 

cell-surface antigen of human cells. Each antibody is conjugated with a Sample Tag, a 343 

unique 45-nucleotide barcode sequence. Briefly, cells from each sample were labeled 344 

by antibodies with different sample tags respectively and washed twice with BD 345 

Pharmingen™ Stain Buffer (FBS) (Cat. No. 554656) before pooling all samples 346 

together. BD Rhapsody Express system23based on Fan et al. was utilized for 347 

single-cell transcriptome capturation. Pooled samples were then loaded in one BD 348 

Rhapsody™ Cartridge that was primed and treated strictly following the 349 

manufacturer's protocol (BD Biosciences). Cell Capture Beads (BD Biosciences) 350 

were then loaded excessively onto the cartridge to ensure that nearly every micro-well 351 

contains one bead, and excess beads were washed away from the cartridge. Viable 352 

cells with beads captured in wells were detected in BD Rhapsody™. Then cells were 353 

lysed, Cell Capture Beads were retrieved and washed before performing reverse 354 

transcription and treatment with exonuclease I. 355 

Library construction and sequencing  356 

Transcriptome and SampleTag information of single-cells was obtained through BD 357 

Rhapsody System. Microbeads-captured single cell transcriptome and SampleTag 358 

sequences were generated into the cDNA library and SampleTag library separately 359 
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containing cell labels and unique molecular identifiers (UMI) information. Briefly, 360 

double-strand cDNA was firstly generated from microbeads-captured single-cell 361 

transcriptome through several steps including reverse transcription, second-strand 362 

synthesis, end preparation, adapter ligation, and whole transcriptome amplification. 363 

Then final cDNA library was generated from double-strand full-length cDNA by 364 

random priming amplification with BD Rhapsody cDNA Kit (BD Biosciences, 365 

Catalog No.: 633773) and BD Rhapsody Targeted mRNA & AbSeq Amplification Kit 366 

(BD Biosciences, Catalog No.: 633774). On the other hand, the SampleTag library 367 

was generated from microbeads-captured single-cell SampleTag sequences through 368 

several steps including reverse transcription, nest PCR, and final index PCR. Libraries 369 

were sequenced on the NovaSeq platform (Illumina). 370 

Raw data preprocessing and quality control 371 

Raw sequencing reads of the cDNA library and SampleTag library were processed 372 

through the BD Rhapsody Whole Transcriptome Assay Analysis Pipeline (Early 373 

access), which included filtering by reads quality, annotating reads, annotating 374 

molecules, determining putative cells, and generating single-cell expression matrix. 375 

Briefly, read pairs with low sequencing quality were firstly removed. The 376 

quality-filtered R1 reads were analyzed to identify the sequence of cell labels, UMI 377 

sequence, and poly-dT tail sequence, meanwhile the quality-filtered R2 reads were 378 

mapped to Genome Reference Consortium Human Build 38 (GRCh38) using STAR 379 

(version 2.5.2b) in the reads annotation step. Further adjustment was performed with 380 

the recursive substitution error correction (RSEC) and distribution-based error 381 

correction (DBEC) algorithms to remove artifact molecules due to amplification bias 382 

in the molecules annotation step. Putative cells were distinguished from background 383 

noise with second derivative analysis in the putative cell determination step. Finally, 384 

putative cells information was combined with molecules adjusted by the recursive 385 

substitution error correction and distribution-based error correction algorithms to 386 

generate a single-cell expression matrix. The pipeline also determined the sample 387 

origin of every single cells via the sample determination algorithm according to the 388 

sequencing reads of the SampleTag library. The algorithm classified all putative single 389 

cell into three categories: Multiplet, two or more SampleTag exceed their minimum 390 

thresholds, indicating more than one actual cell in one micro-well. Undetermined, not 391 

enough SampleTag reads for the sample origin. SampleTag01-12, only one 392 

SampleTag exceed their minimum thresholds. . Among all the output files, Matrix for 393 
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UMI counts per cell corrected by DBEC and SampleTag annotation result were used 394 

for downstream clustering analysis. 395 

Dimension reduction and clustering  396 

The R package Seurat 23 was utilized for subsequent analysis. Raw gene expression 397 

matrices from the cartridge were read into R (version 3.6.0) and converted to Seurat 398 

objects. Cells label as “Undetermined” and “Multiple” were excluded in the following 399 

analysis. The gene expression matrix was then normalized to the total cellular UMI 400 

count. Top 2000 features were selected as highly variable genes for further clustering 401 

analysis. In order to reduce dimensionality, PCA was performed based on the highly 402 

variable genes after scaling the data with respect to UMI counts. On top of that, the 403 

first 9 principal components were chosen for downstream clustering based on the 404 

heatmap of principle components, and the elbow plot of principle components to 405 

further reduce dimensionality using the UMAP algorithm. The transcriptional markers 406 

of each cluster were calculated using the FindAllMarkers function with theMAST 407 

package to run the DE testing under the following criteria: log2 fold change > 0.1; p < 408 

0.05; min. percentage > 0.25. Top 500 markers of each cluster were then selected to 409 

perform a heatmap plot. 410 

Cell annotation and cell type identification 411 

Cell populations were matched to cell types based on the expression of known marker 412 

genes and previously identified expression signatures 23, 24, 25, 26, 27, 28.  413 

Comparison of cell clusters and cell type proportion  414 

The change in the fraction of the different cell types was separately computed for each 415 

sample across all clusters, as the fraction of cell in each cluster, out of the total 416 

number of cells 29. To assess a statistically significant difference in a fraction of a 417 

specific cell type, we performed paired t-test.  418 

Significantly dysregulated genes identification  419 

We identified differentially expressed genes (DEGs) based on analysis of the MAST 420 

package using the R. The threshold of DEGs was set as: 1)P-value of F test < 0.05; 2) 421 

|FC| ≥1.5. 422 

External data validation with TCGA datasets 423 

CIBERSORTx was used to detect the abundance of cell types identified in the present 424 

work in bulk RNA-seq data 30. After calculated the relative abundance of each cell 425 

type, we divided the patients into two groups: high 50% and low 50%. Subsequently, 426 

Kaplan-Meier analysis was performed using ggsurvplot function of the R package 427 
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‘survminer’. Whether the occurrence of cell types in the different subgroups showed 428 

significant differences was evaluated by Wilcoxon test.  429 

Functional annotation and enrichment  430 

GO enrichment and KEGG enrichment of DEGs were performed using Fisher exact 431 

test with Benjamini-Hochberg multiple testing adjustment. The results were 432 

visualized using R package. Gene set variation analysis (GSVA) 31 was performed 433 

using 50 hallmark-related gene sets, as described in the GSVA package. 434 

Identification of hub regulons with SENIC  435 

In order to investigate the gene regulatory network of different sample groups, we 436 

utilized SCENIC 32 using the R. 437 

Cell-cell communication analysis based on ligand-receptor pairs 438 

Cell-cell communication at the molecular level was analyzed with CellPhoneDB 33.  439 

Cell trajectory analysis with Monocle  440 

In order to reveal the development of malignant cells, we employed Monocle 2, an R 441 

package designed for single cell trajectories 34. After obtaining the differentially 442 

expressed genes through differential Gene Test function, the trajectories were 443 

visualized as 2D tSNE plots. 444 

Drug-target analysis with TCMID database 445 

After obtaining the differentially expressed genes, we obtain the targeted relationship 446 

between drugs and genes from the TCMID database 447 

(http://www.megabionet.org/tcmid). 448 

CNV Estimation 449 

CopyKAT 35 (Copynumber Karyotyping of Tumors), a R package was performed to 450 

separate tumor cells from normal cells using high-throughput sc-RNAseq data. Cells 451 

with extensive genome-wide copy number aberrations (aneuploidy) are considered as 452 

tumor cells, whereas stromal normal cells and immune cells often have 2N diploid or 453 

near-diploid copy number profiles.  454 

Statistical analysis 455 

Box plots were drawn with the R base package. Hence, the boxes span from the 25th 456 

to the 75th percentiles. Violin plots were generated by the ggplot2 R package. 457 

Unpaired two-tailed t-tests was used to compare the difference between two groups. 458 

While One-way analysis of variance (ANOVA) was used for multiple group 459 

comparisons.  460 

Data availability 461 
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The cancer genome atlas (TCGA) thyroid cancer (THCA) cohort were downloaded 462 

from UCSC XENA (http://xena.ucsc.edu/).  463 

 464 
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Figure legends 671 

Fig.1 Overall design and single cell atlas in papillary thyroid carcinoma. a  672 

Workflow diagram showing the processing of samples. b UMAP plots of total cells, 673 

colored by the sample origin (tumor, metastatic LN, and paracancerous tissues). c 674 

Expression of cell marker genes. d Changes in frequency of multiple cell types and 675 

clusters in tumors and metastatic LNs. Asterisks on the left of the vertical line denote 676 

statistically significant differences between tumors and paracancerous tissues while 677 

asterisks on the right are used to show statistically significant differences between 678 

metastatic LNs and tumors. *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed t-tests. e 679 

Interaction network constructed by CellPhoneDB. Size of circles and color of arrows 680 

represent interaction counts, and brighter color and larger size mean more interaction 681 

with other cell types.  682 

Fig.2 Identification of malignant cells in epithelial cells. a Clonal substructure of 683 

epithelial cells delineated by clustering single-cell copy number profiles inferred from 684 

scRNA-seq data by CopyKAT. b UMAP plots of total epithelial cells, colored by the 685 

sample origin (left and middle). Cell counts of malignant and non-malignant cells, 686 

colored by the sample origin (right). c Differentiation trajectory of epithelial cells, 687 

with each color coded for pseudotime (right) and clusters (left). d Heatmap of the area 688 

under the curve (AUC) scores of transcription factor (TF) motifs estimated by 689 

SCENIC. Shown are differentially activated motifs in malignant and non-malignant 690 

cells, respectively. e High level of CREM and ETS1 predicted good prognosis in the 691 

TCGA THCA cohort. Log-rank p value < 0.05 was considered as statistically 692 

significant. f BHLHE40 was highly expressed in LN samples (p < 0.001). g GO 693 

enrichment analysis of up-regulated genes in malignant lymphatic metastasis cells.  694 

Fig.3 Heterogeneity of T cell populations. a UMAP plot of T cells color-coded by 695 

their associated cell types. b Dotplot of cell markers; sizes of dots represent 696 

abundance while color represents expression level. c Potential new cell markers. d 697 

The protein level of EGR1 was decreased in tumor tissues compared with normal 698 

tissues. e High level of EGR1 predicted good prognosis in the TCGA THCA cohort.  699 

f Changes in frequency of multiple cell types in T cell populations. Asterisks on the 700 

left of the vertical line denote statistically significant differences between tumors and 701 

paracancerous tissues while asterisks on the right are used to show statistically 702 

significant differences between LNs and tumors. *p < 0.05, **p < 0.01, ***p < 0.001, 703 

two-tailed t-tests. g Violin of cell abundance predicted from the TCGA THCA cohort 704 
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by CIBERSORTx.  705 

Fig.4 Novel cell type, named Protective EGR1+CD4+ T cells, and potential 706 

therapeutic targets. a Differences in 50 hallmark pathway activities scored with 707 

GSVA software. Shown are t values calculated by a linear model. b Heatmap of the 708 

AUC scores of TF motifs estimated by SCENIC. Shown are differentially activated 709 

motifs in CD4+ Tregs and Protective EGR1+CD4+ T cells, respectively. c-d Heatmap 710 

of positive and negative immune checkpoint expression on T cells in LNs (c) and 711 

tumors (d), respectively.  712 

Fig.5 Heterogeneity of Myeloid cell populations. a UMAP plot of Myeloid cells 713 

color-coded by their associated cell types. b Dotplot of cell markers; sizes of dots 714 

represent abundance while color represents expression level. c Changes in frequency 715 

of multiple cell types and clusters in Myeloid cell populations. Asterisks on the left of 716 

the vertical line denote statistically significant differences between tumors and 717 

paracancerous tissues while asterisks on the right are used to show statistically 718 

significant differences between LNs and tumors. *p < 0.05, **p < 0.01, ***p < 0.001, 719 

two-tailed t-tests. d Violin of Macrophage abundance predicted from the TCGA 720 

THCA cohort by CIBERSORTx. e Kaplan-Meier curves of DFS based on the 721 

percentage of dendritic cells in the TCGA database. 722 

Fig.6 M2 macrophages were strongly enriched in the tumor tissues. a-b Heatmap 723 

shows the differences in pathway activities scored by GSVA between different sample 724 

origins. Shown are t values calculated by a linear model. c Heatmap of the AUC 725 

scores of TF motifs estimated by SCENIC. Shown are differentially activated motifs 726 

in subtypes of Myeloid cells, respectively. d Violin plot shows the expression level of 727 

related genes in Macrophage subclusters (left) and cytokines in dendritic cells (right). 728 

Supplementary information 729 

Supplementary Fig. 1 Identification of major cell types in PTC. UMAP plots for 730 

expression of the marker genes from Fig 1c and of additional marker genes for major 731 

cell types. For B cells: CD19, MS4A1(CD20), CD38, CD79A, and CD79B; for CD4+ 
732 

T cells: CD4 and CD3D; for CD8+T cells: CD8A and CD3D; for Endothelial cells: 733 

CD34 and CD31(PECAM); for Epithelial cells: EPCAM and KRT18; for Fibroblasts: 734 

COL1A1; for Myeloid cells: CD14, CD86, ITGAX, CD80, CD83, and ITGAM; for 735 

Naive T cells: CCR7 and CD3D; for NKT cells: NKG7 and CD3D; for Plasma cells: 736 
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CD79A and SDC1. 737 

Supplementary Fig. 2 Overview of the 28,205 single cells from tumors, 738 

paracancerous tissues, and metastatic LNs. a The fraction of multiple cell types 739 

originating from 7 tumor tissues, 6 paracancerous tissues, and 2 metastatic LNs. b The 740 

fraction of multiple cell types originating from 15 samples. c The number of multiple 741 

cell types. d Box plots of the number of transcripts. 742 

Supplementary Fig. 3 Potential new cell markers in T cells. 743 

Supplementary Fig. 4 DEGs related to CD4+Tregs and transitional EGR1+CD4+T 744 

cells. a The expression of the maker genes in the TCGA THCA cohort. b Differences 745 

in 50 hallmark pathway activities scored with GSVA software. Shown are t values 746 

calculated by a linear model. c DEGs related to Protective EGR1+CD4+ T cells in 747 

tumors and LNs, respectively. d DEGs related to CD4+Tregs in tumors and LNs, 748 

respectively. Upregulated genes and downregulated genes were colored in red and 749 

blue, respectively. FC≥2. 750 

Supplementary Fig. 5 External verification based on the TCGA data. a High level 751 

of Macrophage abundance predicted poor prognosis in the TCGA THCA cohort, and 752 

neutrophil was the opposite. b Kaplan-Meier survival curve for IFITM2. 753 
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