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Abstract 

Polygenic risk scores (PRS) can provide useful information for personalized risk 

stratification and disease risk assessment, especially when combined with non-genetic 

risk factors. However, their construction depends on the availability of summary statistics 

from genome-wide association studies (GWAS) independent from the target sample. For 

best compatibility, it was reported that GWAS and the target sample should match in 

terms of ancestries. Yet, GWAS, especially in the field of cancer, often lack diversity and 

are predominated by European ancestry. This bias is a limiting factor in PRS research. 

By using electronic health records and genetic data from the UK Biobank, we contrast the 

utility of breast and prostate cancer PRS derived from external European-ancestry-based 

GWAS across African, East Asian, European, and South Asian ancestry groups. We 

highlight differences in the PRS distributions of these groups that are amplified when PRS 

methods condense hundreds of thousands of variants into a single score. While 

European-GWAS-derived PRS were not directly transferrable across ancestries on an 

absolute scale, we establish their predictive potential when considering them separately 

within each group. For example, the top 10% of the breast cancer PRS distributions within 

each ancestry group each revealed significant enrichments of breast cancer cases 

compared to the bottom 90% (odds ratio of 2.81 [95%CI: 2.69,2.93] in European, 2.88 

[1.85, 4.48] in African, 2.60 [1.25, 5.40] in East Asian, and 2.33 [1.55, 3.51] in South Asian 

individuals). Our findings highlight a compromise solution for PRS research to 

compensate for the lack of diversity in well-powered European GWAS efforts while 

recruitment of diverse participants in the field catches up.
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Introduction 

Translating findings from genome-wide association studies (GWAS) to clinical utility in 

terms of complex trait prediction is a major milestone in genetics research [1]. This is 

especially important for traits whose estimated heritability was reported to be high. 

However, the identified common single nucleotide polymorphisms (SNPs) seldom have 

deterministic consequences. While each identified common risk SNP contributes to the 

overall disease risk, by itself it is unlikely to predict a large degree of variation in a disease 

outcome and thus usually represents a poor predictor by itself. The combination of all risk 

SNPs into a polygenic risk score (PRS) is a popular approach to improve predictive power 

and can be valuable for risk stratification, i.e., the identification of a small subset of a 

population with extreme PRS values that is at higher risk to develop a disease [1].  

The discovery of risk SNPs through GWAS often depends on very large sample sizes of 

genotyped data (hundreds of thousands of tag SNPs or more) especially if one aims to 

capture a large fraction of the SNP heritability [2-4]. Until recently, GWAS of this scale 

were either exclusively or predominantly based on European populations, trailed by Asian 

populations, while all other ancestry groups comprised less than 5% [5]. The resulting 

bias in published GWAS results [6] is passed on to the development and application of 

PRS for many complex traits and despite current efforts to increase diversity in genetics 

research will likely continue in the foreseeable future [6]. 

The lack of portability of PRS across populations with different ancestry compositions is 

known and usually attributed to differences in causal variants, linkage disequilibrium (LD) 

patterns, allele frequencies, and effect sizes [7, 8]. In addition, genotyping or imputation 
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methods that were originally developed for European ancestry (EA) studies can amplify 

such differences [7, 8].  

There are several examples of studies that explore PRS constructed using GWAS results 

from different ancestry groups. Belsky et al. [9] constructed an obesity PRS based on EA-

GWAS and found that it performed poorly individuals of African American compared to 

those of EA.[9] Grinde et al. [10] assessed the performance of PRS based on EA GWAS 

in a Hispanic/Latino population for three groups of traits: anthropometric measures, blood 

pressure, and blood count. The EA-based PRS performed well for anthropometric and 

blood count traits but performed poorly for blood pressure traits [10]. EA-based PRS for 

these quantitative traits also showed on average a 3.3-fold decrease in predictive 

performance in East Asian population when compared to the European population [11]. 

Others have demonstrated an association between PRS and genetic ancestry [12, 13]. 

Simply put, the literature cautions against the transferability of EA-based GWAS to other 

populations [5, 8]. Recently we have provided a catalog of more than 500 PRS for various 

cancer using EA-based GWAS [14]. However, there are little or no reports on the 

transferability of cancer PRS or whether these PRS can be used for other ancestries. 

The UK Biobank Study (UKB) offers detailed questionnaire, electronic health record 

(EHR) and genetic data representing an excellent resource to study the influence of 

genetic risk factors on common complex disease. While predominantly European 

ancestry, it also includes over 20,000 participants of self-reported non-EA ancestry 

(reported as “ethnic groups”) [15] that can, together with genetically inferred ancestry 

information, be stratified into the four main ancestry groups: African, East Asian, 

European or South Asian ancestry (S1 Table). Thus, UKB offers the opportunity to 
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evaluate the performance of PRS across various ancestry groups and to assess the 

transferability of EA-based cancer PRS.  

To increase power for such an evaluation, we focus on two common cancer traits, breast 

and prostate cancer. Both of these traits offer several advantages for PRS explorations: 

high disease prevalence, large fraction of heritability already explained through known 

risk variants, low chance of phenotype misclassification, and available full summary 

statistics from very large, EA-based GWAS [16, 17]. 

Results 

We constructed cancer PRS specifically for the European subgroup of UKB individuals 

using two different approaches for each cancer trait: “GWAS hits PRS” is an effect-size 

weighted PRS based on a sparse set of GWAS hits (independent risk SNPs with P-value 

below 5x10-8) and “PRS-CS”, a Bayesian-regression-based PRS method that uses 

continuous shrinkage (CS) priors [18]. Relatively sparse sets of 334 and 377 SNPs were 

incorporated in the GWAS hits PRS for breast cancer and prostate cancer, respectively. 

By contrast the PRS-CS constructs integrated over 1.1 million SNPs for each of the two 

cancers.  

What can be clearly seen in Fig 1 are the different distributions of PRS across the 

European, South Asian, African and East Asian ancestry groups that were statistically 

significantly different in group means by one-way ANOVA (P < 2.31x10-141; S2 Table). 

Both breast cancer PRS were on average higher in non-EA groups, whereas prostate 

cancer PRS were higher in African and lower in East and South Asian ancestry groups 

(Fig 1; S2 Table). These differences were pronounced for the PRS-CS-based PRS. This 

is likely a result of the summation of hundreds of thousands allele-frequency differences 
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between ancestry groups compared to a few hundred for the GWAS hits PRS. Overall, 

this suggests that these PRS are not directly transferable, e.g., a high breast cancer PRS 

in EA individuals might fall into the lower PRS distribution of Africans ancestry individuals. 

This can also be observed when using a single PRS scale on the overall, heterogenous 

UK population, e.g., almost all African ancestry females have breast cancer PRS-CS 

scores above the population top 10% threshold while no East Asian ancestry male had a 

prostate cancer PRS-CS score above the population top 10% threshold (Fig 1). 

Still, what is striking is the consistent right shift of the PRS distributions in cases compared 

to controls with each ancestry group (Fig 1). With exception of the small sample of East 

Asian prostate cancer cases (n = 7), all PRS were significantly associated with increased 

continuous ORs for their corresponding cancers when standardized to one standard 

deviation (S.D.) within each ancestry group (OR [per unit S.D.]  1.44, Table 1). 

Furthermore, all PRS also indicated satisfactory discriminative performance within each 

ancestry group (covariate-adjusted AUC [AAUC] > 0.589). 
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Table 1. Association and evaluation of cancer PRS across ancestry groups.  

GWAS Trait 
 / Outcome 

PRS Method 
(SNPs) 

Ancestry Group 
n 

Cases 
n 

Controls 

PRS Association PRS Evaluation 
AAUC 

(95% CI) 
Odds Ratio* 

(95% CI) 
P 

Overall 
Breast Cancer 

GWAS Hits 
(334) 

EUR 14109 214163 
1.594 

(1.567, 1.622) 
1.7x10-613 

0.628 
(0.623, 0.632) 

SAS 149 3598 
1.451 

(1.231, 1.71) 
8.80x10-6 

0.603 
(0.557, 0.651) 

AFR 116 3666 
1.442 

(1.199, 1.735) 
0.00011 

0.6 
(0.546, 0.65) 

EAS 45 1069 
1.852 

(1.385, 2.475) 
3.20x10-5 

0.676 
(0.59, 0.757) 

PRS-CS 
(1,120,410) 

EUR 14109 214163 
1.771 

(1.739, 1.803) 
5.4x10-857 

0.653 
(0.648, 0.657) 

SAS 149 3598 
1.656 

(1.4, 1.958) 
4.00x10-9 

0.641 
(0.594, 0.687) 

AFR 116 3666 
1.761 

(1.453, 2.134) 
7.90x10-9 

0.651 
(0.598, 0.701) 

EAS 45 1069 
1.761 

(1.297, 2.39) 
0.00029 

0.66 
(0.585, 0.735) 

Prostate 
Cancer 

GWAS Hits 
(377) 

EUR 6561 182590 
1.943 

(1.894, 1.993) 
3.1x10-566 

0.68 
(0.674, 0.687) 

SAS 51 4305 
1.785 

(1.389, 2.295) 
6.00x10-6 

0.652 
(0.576, 0.726) 

AFR 144 2681 
1.501 

(1.254, 1.796) 
9.70x10-6 

0.615 
(0.567, 0.66) 

EAS 7 622 
1.63 

(0.83, 3.205) 
0.16 

0.619 
(0.442, 0.811) 

PRS-CS 
(1,120,596) 

EUR 6561 182590 
2.14 

(2.085, 2.197) 
4.2x10-711 

0.702 
(0.695, 0.708) 

SAS 51 4305 
2.383 

(1.826, 3.111) 
1.70x10-10 

0.745 
(0.684, 0.8) 

AFR 144 2681 
1.325 

(1.107, 1.586) 
0.0021 

0.579 
(0.527, 0.63) 

EAS 7 622 
1.943 

(1.005, 3.755) 
0.048 

0.626 
(0.385, 0.853) 

Analyses were adjusted for birth year, genotyping array, and first ten principal components. Odds ratios are given per standard 
deviation within ethnic group. Abbreviations: AAUC, covariate-adjusted area under the receiver-operator characteristics curve; CI, 
confidence interval; GWAS, genome-wide association study; PRS, polygenic risk score; SNP, single nucleotide polymorphism; AFR: 
African; EAS: East Asian; EUR: European, SAS: South Asian 
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The PRS-CS method usually outperformed the GWAS-hits-PRS in terms of association 

strength, accuracy and discrimination (Table 1). Especially for the breast cancer, the 

PRS-CS construct showed consistent effect sizes across the ancestry groups (1.66  OR 

[per unit S.D.]  1.77) and good discriminatory ability (0.64  AAUC  0.66) 

 

To evaluate if the increased risk is observable with increasing score or only present in the 

tails of the distribution, we stratified the PRS, again standardized within each ancestry 

group, and detected a trend of increasing number of cases within the increasing PRS-CS 

score deciles. This trend was strikingly monotonous in the substantially larger sample of 

European ancestry and, except for the small sample of prostate cancer cases of East 

Asian ancestry, noticeable though more capricious in non-EA groups (Cochran-Armitage 

P < 0.00297; Fig 2, S3 and S4 Tables). We saw similar trends for the GWAS hit PRS (S1 

Fig, S3 and S4 Tables). 

 

Finally, we quantified the PRS’s ability to enrich cases in the top 10% of the PRS 

distribution (defined in controls within each ancestry group) when compared to the bottom 

90%. We observed an enrichment for breast cancer cases in the tail of the PRS 

distribution when we defined the top 10% within each ancestry group (breast cancer: OR 

Top10% > 2.18; prostate cancer: OR Top10% > 1.41). The enrichment was particularly 

sizable for breast cancer PRS-CS score for cases in European and African ancestry 

females (OR Top10%: 2.81 [95% CI: 2.69, 2.93] and 2.88 [95% CI: 1.85, 4.48], 

respectively) as well as for the prostate cancer PRS-CS score for cases in European, 
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South Asian and East Asian ancestry males (OR Top10%: 4.00 [95% CI: 3.78, 4.23]; 4.41 

[95% CI: 2.43, 8.04] and 6.53 [95% CI: 1.71, 25.0], respectively; Table 2). 

 

Table 2. Case enrichment in breast and prostate cancer PRS top 10% versus 
bottom 90%. 
 

GWAS Trait 
 / Outcome 

Ancestry 
Group 

GWAS Hits PRS PRS-CS PRS 

OR Top 10% 
(95% CI) 

P 
OR Top 10% 

(95% CI) 
P 

Overall 
Breast 
Cancer 

EUR 
2.36 

(2.26, 2.47) 
1.0x10-328 

2.81 
(2.69, 2.93) 

2.5x10-499 

SAS 
2.54 

(1.70, 3.79) 
5.98x10-6 

2.33 
(1.55, 3.51) 

5.01x10-5 

AFR 
2.18 

(1.36, 3.49) 
0.00116 

2.88 
(1.85, 4.48) 

2.75x10-6 

EAS 
3.52 

(1.79, 6.9) 
0.000254 

2.60 
(1.25, 5.40) 

0.0106 

Prostate 
Cancer 

EUR 
3.32 

(3.13, 3.52) 
1.26x10-346 

4.00 
(3.78, 4.23) 

3.77x10-495 

SAS 
3.11 

(1.66, 5.84) 
0.000409 

4.41 
(2.43, 8.04) 

1.18x10-6 

AFR 
1.41 

(0.85, 2.34) 
0.179 

1.78 
(1.09, 2.92) 

0.0223 

EAS 
4.89 

(1.26, 19.0) 
0.0219 

6.53 
(1.71, 25.0) 

0.00614 

Abbreviations: PRS, polygenic risk score; AFR, African; EAS, East Asian; EUR, 
European, SAS, South Asian 
 

Discussion 

Overall, our findings in the UKB data are encouraging and suggest that cancer PRS 

derived from large EA-based GWAS can, to a certain degree, be useful for risk 

stratification within EA or within non-EA individuals even though their distributions are 

dissimilar. However, there are limitations in regard to the generalizability of this approach. 

First, a matching ancestry group with sufficiently large control sample sizes is needed to 

adequately place a person’s PRS within its reference PRS distributions. In this study, we 

obtained more homogenous groups by combining self-reported ethnic groups with 
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genetically inferred ancestry groups. However, even within such groups an adjustment 

for any remaining population stratification, e.g., by including the first ten principal 

components, should be considered. 

Secondly, overall breast and prostate cancer were selected because they offered several 

advantages compared to other traits: their estimated heritability is relatively high [17, 19, 

20], they are common across all ancestry groups (breast cancer 3.1 – 6.2%; prostate 

cancer 1.2 – 5.1%; S1 Table) and each had summary statistics publicly available from 

large EA-based GWAS meta-analyses.  

Thirdly, the UKB study individuals were recruited from the same country, the UK, where 

healthcare coverage and non-genetic risk factors might be more similar compared to 

diverse ancestries from geographically separate populations. Though we recognize that 

lifestyle, health disparities and socioeconomic factors (e.g., education and income, S1 

Table) might vary between ethnic groups of the UKB study. 

While a fraction of risk variants is likely population-specific, our observation of a decent 

predictive PRS performance across ancestry groups indicated that, for the two analyzed 

cancers, a fraction of the cancer risk variants obtained from an EA-based GWAS is shared 

with non-EA groups. So, while PRS that rely on EA-based GWAS were reported to be not 

ideal for non-EA groups, they can be useful for risk stratification also in non-EA groups. 

In our examples, the proportion of cases by PRS risk decile was informative within the 

studies ancestry group, i.e., an increasing PRS was associated with increased proportion 

of cases also among non-EA groups. However, we noted that the EA-based prostate 

cancer PRS performed particularly poor in AFR males indicating ancestry-specific 

diversity for prostate cancer as previously reported [21]. This also suggested that 
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transferability of PRS across ancestries needs to be carefully evaluated by cancer and by 

ancestry group. 

 

We recommend that PRS be constructed using GWAS based on the same ancestry 

group, if large diverse GWAS and their summary statistics are available. In the absence 

of large-scale GWAS for non-EA groups, several groups are developing methods to 

improve PRS performance in non-EA groups. These methods may leverage evidence 

that SNP selection based on EA-based GWAS is generally appropriate while the use of 

EA-based GWAS effect sizes in ethnically mismatched groups might not [22]. Duncan et 

al. [5] highlight the need for improved understanding and consideration of LD and variant 

frequencies when applying European ancestry based GWAS to non-EA groups, while at 

the same time calling for large-scale GWAS in diverse populations [5]. Modelling ancestry 

into polygenic risk predictors or focusing on global risk variants might allow the retention 

of comparable predictive power across ancestries [8] and allow risk stratification also in 

understudies populations as shown for Hispanics/Latinos [10]. However, a restriction to 

global risk variants, e.g., defined by similar frequencies across all ancestry groups, might 

lead to the exclusion of true causal risk variants. When we applied such a global risk 

variant approach to the current dataset through simple frequency filtering, we made PRS 

distributions more similar across ancestry groups but also observed markedly reduced 

predictive power (Figs S2-5). While efforts are underway to contribute more diverse 

samples to genetic studies, their sample sizes will trail behind sample sizes of European 

ancestry GWAS for a long time [6]. Multiethnic PRS that combine larger EA-based GWAS 
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with smaller GWAS of the target ancestry group were recently proposed and might 

alleviate the discrepancies in sample sizes for the time being [23]. 

Taken together, our findings suggest that cross-ancestry cancer PRS can be useful for 

risk stratification, especially when there is a lack of well-powered diverse cancer GWAS. 

However, caution needs to be applied to the interpretation and application of such genetic 

risk predictors as they can be prone to multiple sources of bias [8]. 
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Materials and Methods 

Subjects / Genotypes 

The UK Biobank (UKB) is a population-based cohort collected from multiple sites across 

the United Kingdom and includes over 500,000 participants aged between 40 and 69 

years when recruited in 2006–2010 [15]. The open-access UK Biobank data used in this 

study included questionnaire data, electronic health record data, and genotype and 

genotyped derived data. UK Biobank received ethical approval from the NHS National 

Research Ethics Service North West (11/NW/0382). The present analyses were 

conducted under UK Biobank data application number 24460. 

We excluded 2,338 samples which were flagged by the UK Biobank quality control 

documentation as (1) het.missing.outliers, (2) putative.sex.chromosome.aneuploidy, (3) 

excess.relatives, (4) excluded.from.kinship.inference, (5) the reported gender did not 

match the inferred sex, (6) withdrew from the UKB study and (7) were not included in the 

phased and imputed genotype data of chromosomes 1-22, and X 

(in.Phasing.Input.chr1_22 and in.Phasing.Input.chrX) [24]. 485,434 individuals remained 

after sample QC filtering. We used the UK BioBank Imputed Dataset (v3, 

https://www.ebi.ac.uk/ega/datasets/EGAD00010001474) and limited analyses to variants 

with imputation information score >= 0.3 and MAF >= 0.01%. 

Phenotype and covariate data 

For the current study we included self-reported ethnic group (field: 21000), sex (fields: 31, 

22001), income (field: 738), education (field: 6138), diet (fields: 1309, 1319, 1329, 1339, 

1349, 1359, 1369, 1379, 1389), year of birth (field: 34).  
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We used ICD9 (fields: 40013, 41203, and 41205) and ICD10 code data (fields: 40001, 

40002, 40006, 41201, 41202, and 41204) to define breast and prostate cancer case 

control studies using PheWAS codes `174.1` and `185` [25]. Underlying ICD codes for 

cases were as follows: breast cancer: ICD9: 233.0; ICD10: C50.*, D05.1, D05.7, D05.9, 

and Z85.3; and prostate cancer: ICD9: 185, 233.4; ICD10: C61, D07.5. 

 

We used both principal component-based ancestry prediction and self-reported ethnic 

information to define ancestry groups. For the ancestry prediction, we applied online 

augmentation, decomposition and Procrustes (OADP) method to the genotype data of 

488,366 UK Biobank samples with 2492 samples from the 1000 Genomes Project data 

as the reference (FRAPOSA; see Web Resources)[26] to infer the super populations 

membership (AFR: African, AMR: Ad Mixed American, EAS: East Asian, EUR: European, 

and SAS: South Asian ancestry). We combined the self-reported ethnic group and the 

inferred super population membership to define the following four ancestry groups for 

downstream analyses: African (self-reported “Black or Black British” and inferred AFR), 

East Asian (self-reported “Asian or Asian British” or East Asian and inferred EAS), 

European (self-reported European and inferred EUR), and South Asian individuals (self-

reported “Asian or Asian British” and inferred SAS). By doing so we excluded individuals 

with admixed and/or unknown ancestry as well as individuals where self-reported ethnic 

group did not match their inferred ancestry. 

For each cancer trait and each ancestry group, we extracted a maximal set of unrelated 

individuals (defined as kinship coefficient < 0.0884) [27] by first selecting a maximal set 
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of unrelated cases before selecting a set of unrelated controls that was not related to any 

of the selected cases. [28]  

 

PRS Construction 

PRS combine information across a defined set of genetic loci, incorporating each locus’s 

association with the target trait. The PRS for person j takes the form PRSj=∑ 𝛽𝑖𝐺𝑖𝑗𝑖  where 

i indexes the included loci for that trait, weight 𝛽𝑖 is the log odds ratios retrieved from the 

external GWAS summary statistics for locus i, and 𝐺𝑖𝑗 is a continuous version of the 

measured dosage data for the risk allele on locus i in subject j. 

We downloaded full GWAS summary statistics made available by the “Breast 

Cancer Association Consortium” (BCAC) [20], and the “Prostate Cancer Association 

Group to Investigate Cancer Associated Alterations in the Genome” (PRACTICAL) [17] 

(also see Web Resources) both based on European ancestry samples. For each set of 

GWAS summary statistics, we create two PRS. For the first PRS construction method, 

we performed linkage disequilibrium (LD) clumping of variants with p-values below 5x10-

8 by using the imputed allele dosages of 10,000 randomly selected samples and a 

pairwise correlation cut-off at r2 < 0.1 within 1Mb window. Using the resulting loci 

(“independent GWAS hits”), we calculated the weighted PRS (see above) denoted as 

“GWAS hits PRS”. For the second PRS construction method, we used the software 

package “PRS-CS” [18] to define a PRS based on the continuous shrinkage (CS) priors. 

PRS-CS uses a precomputed LD reference panel based on external European samples 

of the 1000 Genomes Project (“EUR reference”). We applied a MAF filter of 1 % and, in 

contrast to the GWAS Hits PRS only included autosomal variants that overlap between 
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summary statistics, LD reference panel, and target panel. Full list of weights can be 

downloaded from our web site (see Web Resources). 

We obtained deep sequenced data on the 2504 samples in the 1000 Genomes Project's 

phase three panel that were generated by the New York Genome Center (see Web 

Resources). Sequencing data was filtered to have a minimum depth of 10, to be 

polymorphic and located on chromosomes 1 – 22, X. We stratified the data according to 

their super populations (AFR, African; AMR, Ad Mixed American; EAS, East Asian; EUR, 

European; SAS, South Asian) and calculated their population specific allele frequencies 

using PLINK 1.9 (see Web Resources). We created five sets of variants whose MAF was 

>1 % in AFR, EAS, EUR, SAS and whose maximal allele frequency difference between 

any of the four populations was below 5, 10, 15, 20 or 25%. The resulting sets were used 

to filter the GWAS summary statistics before running PRS-CS. 

Using the R package “Rprs” (see Web Resources) and the weights from the two 

PRS methods, the dosage-based value of each PRS was then calculated for each UKB 

individual. For comparability of association effect sizes corresponding to the continuous 

PRS across cancer traits and PRS construction methods, we centered PRS values to 

their mean and scaled them to have a standard deviation of 1. 

 

Statistical Tests 

For the PRS evaluations, we fit the following model for each PRS and cancer phenotype 

adjusting for covariates Birthyear, genotyping Array, and the first ten principal 

components (PC) using a complete case analysis: 
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logit (P(Phenotype is present | PRS, Birthyear, Array, PC)) =𝛽0 + 𝛽𝑃𝑅𝑆PRS +

𝛽𝐵𝑖𝑟𝑡ℎ𝑦𝑒𝑎𝑟Birthyear + 𝛽𝐴𝑟𝑟𝑎𝑦Array + 𝜷 PC,     (1) 

where the PCs were the first ten principal components obtained from the principal 

component analysis provided by the UK Biobank study and where “Array” represents the 

genotyping array. 

For each PRS derived for each GWAS source/method combination, we also assessed 

the following PRS performance measures relative to observed binary disease status: 

overall association and the ability to discriminate between cases and controls as 

measured by the area under the covariate-adjusted receiver operating characteristic 

(AROC; semiparametric frequentist inference [29]) curve (denoted AAUC) using R 

package “ROCnReg” [30]. Firth's bias reduction method was used to resolve the problem 

of separation in logistic regression (R package “brglm2”)[31, 32]. 

For each ancestry group (African, East Asian, European, and South Asian), we 

also stratified the UKB control dataset (i.e., the corresponding gender subset depending 

on cancer type) into ten groups of equal size by PRS deciles and determined the number 

of observed case subjects that were observed in the range of each risk decile. To assess 

for the presence of an association between cancer and increasing PRS risk deciles, we 

performed a Cochran Armitage Test for Trend implemented in the R package “DescTools” 

[33]. To study the ability of the PRS to identify high risk patients, we fit the above model 

(equation 1) by replacing the PRS with an indicator for whether the PRS value was in the 

top decile or not.  

To test if the PRS means between the ancestry groups are equal we used ANOVA 

adjusting for genotyping array, birthyear and the first 10 principal components. 
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We used the STREGA checklist when writing our report [34]
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Web Resources 

UK Biobank dataset,  https://www.ebi.ac.uk/ega/datasets/EGAD00010001474  

PubMed, https://www.ncbi.nlm.nih.gov/pubmed 

FRAPOSA, https://github.com/daviddaiweizhang/fraposa 

The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in 

the Genome (PRACTICAL), http://practical.icr.ac.uk/blog/?page_id=8164  
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The Breast Cancer Association Consortium, 

http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-

summary-result/gwas-summary-results-breast-cancer-risk-2017/  

PRS-CS, https://github.com/getian107/PRScs 

Weights for constructed PRS, 

https://www.dropbox.com/sh/mwo23qhhlq42odw/AACCRQBsaNORBmnngN1U-wkwa  

Deep sequenced 1000 Genomes Project data, 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/

working/ 

PLINK 1.9, https://www.cog-genomics.org/plink/ 

R package “Rprs”, https://github.com/statgen/Rprs 
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Figure captions 

Fig 1. Violin plots of the breast and prostate cancer PRS distributions. Breast cancer 

(left) and prostate cancer (right) GWAS hit-based PRS (top) and PRS-CS-based PRS 

(bottom) stratified by ancestry group are shown. Black vertical lines indicate 25, 50, and 

75% quantiles within the ancestry-specific case (orange) and control (green) distributions. 

Red lines indicate 10% quantiles of the corresponding UKB PRS distribution in all 

controls. Sample sizes for each sub-set can be found in Table 1. 

 

Fig 2. Observed case proportion across PRS-CS-based cancer PRS risk deciles. 

Proportions of breast cancer cases (A) and prostate cancer cases (B) stratified by 

ancestry groups are shown. Total case counts per ancestry group are given in 

parentheses. Underlying sample counts and corresponding Cochran-Armitage Test for 

Trend P-values are reported in S3 and S4 Tables. 
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