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ABSTRACT 

Structural variants (SVs), defined as any genomic rearrangements of 50 or more bp, are an important source of genetic 
diversity and have been linked to many diseases. However, their contribution to molecular traits in the brain and impact 
on neurodegenerative diseases remains unknown. Here, we report 170,996 SVs which were constructed using 1,760 
short-read whole genomes from aging and Alzheimer’s disease subjects. We quantified the impact of cis-acting SVs on 
several molecular traits including histone modification, gene expression, mRNA splicing, and protein abundance in post-
mortem brain tissues. More than 3,800 genes were associated with at least one molecular phenotype, and 712 (18%) 
with more than one phenotype, with a significant positive correlation in the direction of effect between RNA, histone 
peaks, and protein levels. SV associations with RNA and protein levels shared the same direction of effect in more than 
87% of SV-gene pairs. We found reproducibility of SV-eQTLs across three groups of samples and multiple brain regions 
ranging from 81 to 98%, including the innate immune system related genes ERAP2 and GBP3. Additionally, associations 
of SVs with progressive supranuclear palsy, an amyloid-independent primary tauopathy, identified previously known and 
novel SVs at the 17q.21.31 MAPT locus and several other novel suggestive associations. Our study provides a 
comprehensive view of the mechanisms linking structural variation to gene regulation and provides a valuable resource 
for understanding the functional impact of SVs in the aged human brain. 
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BACKGROUND 

Structural variants (SVs) are defined as genomic rearrangements ranging from fifty to thousands of base pairs1. These 
rearrangements can be classified as unbalanced (e.g., deletions, duplications, and insertions), balanced (e.g., inversions 
and translocations), or any complex combination of SV classes. SVs are widespread in the human genome and provide 
an important source of variation during evolution2,3. Current estimates suggest that a human genome may harbor up to 
27,000 SVs compared to the reference genome4. In contrast to single-nucleotide polymorphisms (SNPs) and small 
indels, SVs can affect a higher fraction of the human genome5, suggesting that they may have more significant, or at 
least similar, consequences for phenotypic variation and evolution2,3. 

The occurrence of an SV is commonly mediated by distal or proximal sequence homology around breakpoints, 
usually surrounded by mobile element insertions (MEIs), causing non-allelic homologous recombination (NAHR)6, or by 
DNA double-strand repair mechanisms such as non-homologous end-joining (NHEJ)7,8. Detecting these mutational 
signatures is challenging, and its correct classification depends on proper breakpoint resolution. Compared to low-
resolution microarray technologies, whole-genome sequencing (WGS) data improves SV discovery by detecting more 
classes of variation, achieving higher SV size coverage and single base pair breakpoint resolution. With the increasing 
number of short-read WGS data produced, the number of genome-wide studies of SVs have been escalating in the past 
few years, jumping from 2,504 human genomes analyzed in the 1000 Genome Project1 to 14,891 in GnomAD9 and 
17,795 in NHGRI Centers for Common Disease10. Nevertheless, we are still far from a complete and comprehensive 
population-scale human structural variation catalog. 

Most studies on the impact of SVs so far have been restricted to non-brain tissues or to mRNA expression level 
only11–13. Large cohort studies, like the GTEx consortium, have already started mapping the impact of common and rare 
SVs on RNA expression14. The contribution of SVs in brain-related disorders and traits such as schizophrenia15–17, autism 
spectrum disorder (ASD)18–20, and cognition21,22 is notable. Genes expressed in brain tissues have complex features, 
with one of the highest expression levels and transcriptome complexity23, the longest introns24, more alternatively spliced 
intron clusters12, along with complex regulatory architecture25, making them especially vulnerable to SVs of all types. 
The effects of genetic variants can be modulated at different levels of gene regulation11–13. Therefore, identifying the 
impact of SVs on different molecular phenotypes in the brain is crucial to understanding their functional outcome and 
role in diseases. Here, we discovered SVs in 1,760 donors and, by integrating multi-omics data sets consisted of histone 
acetylation (H3K9ac, ChIP-seq), RNA (RNA-seq), and proteomics (TMT-Mass Spectrometry) measured in brain tissues 
for subsets of the same donors, we mapped the impact of common SVs into multiple molecular phenotypes. We 
measured the main SVs features associated with each phenotype and the propagation of effects through the regulatory 
cascade (Figure 1). We also identified pathogenic SVs related to neurodegenerative diseases and the impact of rare 
SVs on RNA and protein levels. 

RESULTS 

Structural variation discovery and quality assessment 
We analyzed 1,881 human samples with WGS data generated from four cohorts (ROS/MAP, MSBB, and Mayo Clinic). 
To identify SVs in each group, we run a combination of seven different tools (see Methods) to capture the main classes 
of variation, including deletions (DEL), duplications (DUP), insertions (INS), inversions (INV), mobile element insertions 
(MEI), and complex rearrangements (CPX). These variants were further merged and genotyped at the group level 
(Supplementary Figure S1). After pre- and post-discovery quality control (QC. Supplementary Table S1, 
Supplementary Figure S2), a total of 170,966 'high-confidence' SVs were identified in 1,760 samples that were used 
for all subsequent downstream analyses (Figure 2a). As expected, more SVs were detected in the ROS/MAP cohorts 
due to the larger sample size (n=1,106). More SVs were detected in MSBB compared to Mayo, due to ancestry 
differences1,9 as the Mayo Clinic group is composed of European ancestry individuals only, while MSBB has more diverse 
populations, including individuals of African and Admixed American ancestry (Supplementary Figure S3). Most SVs 
were small (median size of 280 bp), comprised by mostly deletions and insertions, with a decreasing frequency as the 
variants increased in size and with a high number of Alu, SVA, and LINE1 mobile element insertions identified (Figure 
2b). 
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To assess the quality of SVs discovered, we first measured the reproducibility of our calls compared to other 
large datasets, including dbVar26, Centers for Common Disease Genomics (CCDG)10, Database of Genomic Variants 
(DGV)27, Deciphering Developmental Disorders (DDD)28, GnomAD-SV9, and 1000 Genomes Project1. We found about 
30% of novel SVs and, as expected, the highest proportion of these SVs were discovered as singletons (Figure 2c). 
Further, allele frequency comparisons to SVs in common with the 1000 Genomes Project and GnomAD-SV showed high 
overall reproducibility with R2 equal to 0.84 and 0.67, respectively (Supplementary Figure S4). We also observed that 
about 75% of SVs were in Hardy–Weinberg equilibrium depending on the study (Supplementary Figure S5). In addition, 
we generated long-read WGS with PacBio for two ROS/MAP samples. We performed in silico confirmation of 4,581 SVs 
identified with short-reads and accessed a confirmation of 84.3% of them (Figure 2d). Together, these analyses provided 
sufficient evidence for the quality of the SVs discovered across all samples. 

 

 
Figure 1. Study overview. The datasets used in this study have been made available to the research community through the 
Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) Knowledge Portal. Whole-genome sequencing and RNA-seq 
datasets are available from four aging and Alzheimer's disease cohorts: Religious Orders Study (ROS) and Memory and Aging Project 
(MAP), Mayo Clinic, and Mount Sinai Brain Bank (MSBB). RNA-seq data for ROS/MAP are from the dorsolateral prefrontal cortex 
(DLPFC). RNA-seq data from MSBB are from four brain regions: BM10 = Brodmann area 10 (part of the frontopolar prefrontal cortex), 
BM22 = Brodmann area 22 (part of the superior temporal gyrus), BM36 = Brodmann area 36 (part of the fusiform gyrus), and BM44 
= Brodmann area 44 (opercular part of the inferior frontal gyrus). RNA-seq from Mayo Clinic are from TCX = temporal cortex, CBE = 
cerebellum. The ChIP-seq (Histone 3 Lysine 9 acetylation, H3K9Ac) and proteomics data (Tandem mass tag, TMT) are from 
ROS/MAP cohorts. The post-QC sample sizes are shown next to each dataset. eQTL analyses were performed in all datasets; sQTL, 
haQTL, and pQTL were only performed with ROS/MAP data. 

 
 
In accordance with previous studies1,9,14,29,30, a substantial proportion of SVs detected were rare (71%, minor 

allele frequency (MAF) < 0.05). More than 30% of SVs were observed in only one individual (i.e., singletons) 
(Supplementary Figure S6a). Additionally, by overlapping SVs with genomic annotations, we observed that singletons 
were more likely to occur in coding and regulatory regions compared to all other SVs (Supplementary Figure S6b). 
Moreover, constrained genes, such as morbid genes, loss-of-function (LoF) intolerant, and haploinsufficient genes, were 
more likely to be disrupted by singletons and ultra-rare SVs, reflecting the effects of purifying selection (Supplementary 
Figure S6c-e). These analyses demonstrate that the structural variants found here conform with principles of population 
genetics and highlight the importance of large sample sizes to improve the characterization of rare and pathogenic 
variants. 
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Effects of SVs on gene expression 
We performed associations of common SVs with gene expression in cis for the available brain regions (Figure 3a). The 
number of associations was highly correlated with the sample size (Pearson's r 0.98, P-value 5 x 10-5). 98% of shared 
SV-eQTL showed the same direction of effect (β) (Supplementary Figure S7). The reproducibility of SV-eQTL across 
studies, as measured by Storey's π1, showed substantial sharing of effects on brain gene expression. The highest 
reproducibility was observed within regions from the same studies, as a consequence of repeated donors (77,1% and 
86.7% of donors from Mayo Clinic and MSBB, respectively, had RNA-seq for more than one brain region). However, 
regional effects were also observed when comparing different studies, for example, TCX and DLPFC shared more effects 
than DLPFC and CBE (0.93 and 0.81, respectively) (Figure 3b), suggesting some degree of regional specificity.  

More than 85% of the SVs associated with gene expression were within 500kb distance from the gene body 
(Figure 3c). The direction of effects (β) of SV-eQTLs was usually distributed in both directions (Figure 3d), except when 
the SVs were overlapping the exons (3.6%), in these cases, we observed differences likely caused by a disruption in the 
coding region; for instance, deletions or exon-disrupting MEIs causing decreased expression, while exon duplications 
would cause increased expression (Figure 3e). DELs and SVA transposons were more likely to be associated with 
changes in expression, while INS were less likely (Figure 3f). Pseudogenes, long non-coding RNAs (lncRNAs), and 
TEC (To be Experimentally Confirmed) were significantly more likely to be associated with SVs, while protein-coding 
and ncRNAs were less likely (Figure 3g). Additionally, the overall effect sizes of associations with pseudogenes were 
higher than protein-coding genes (Figure 3h). Such differences support evidence that less constrained genes (such as 
pseudogenes) are more likely to be eGenes in agreement with results previously observed for SV and SNV eQTLs30,31.  
 

 
Figure 2 - Summary of SV calls across cohorts. a, Total number of SVs identified within each cohort (ROS/MAP, Mayo Clinic, 
MSBB), colored by main SV types (DEL, DUP, INS+MEI, and INV+CPX). b, SV size distribution per SV type with x-axis and y-axis 
shown in log10 scale. c, Proportion of novel SVs found in each cohort stratified by minor allele frequency (MAF) spectrum. SVs were 
considered novel if not found in dbVar, Centers for Common Disease Genomics (CCDG), Database of Genomic Variants (DGV), 
Deciphering Developmental Disorders (DDD), GnomAD-SV, and the 1000 Genomes Project. d, Barplot showing samples sequenced 
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using PacBio's long-read WGS and number of SVs from short-reads evaluated for replication, plot below shows the confirmation rates 
for each sample (dots) measured using VaPoR and stratified by each SV class. Horizontal bars represent the median of both samples. 

 
 
Mapping of SVs that affect the gene-regulatory cascade 
We mapped associations of 25,421 SVs with MAF ≥ 0.01 in the ROS/MAP cohorts to four different molecular phenotypes 
in the DLPFC. These molecular phenotypes included gene expression for 15,582 genes (n=456), 110,092 splicing 
junctions proportions measured by “percent spliced in” values (PSI) (n=505), histone acetylation (H3K9ac) peaks 
(n=571), and proteomic data for 7,960 proteins (n=272). We refer to these analyses as SV-xQTL, in which we map 
differences in measurements of each molecular phenotype associated with specific SV's (Figure 1). Therefore, each 
SV-xQTL is an SV-phenotype pair (i.e., SV-eQTL, SV-sQTL, SV-haQTL, or SV-pQTL). All phenotype measurements 
were adjusted prior to associations to account for known (e.g., sex and ancestry principal components) and unknown 
covariates, determined either with PEER (probabilistic estimation of expression residuals) or PCA (principal component 
analysis) (see Methods). This, identified 3,191 SV-eQTL, 2,866 SV-sQTL, 399 SV-pQTL, and 1,454 SV-haQTL (FDR < 
0.05) (Figure 4a, Supplementary Figure S8). 
 Similarly, as observed with SV-eQTLs in the combined studies analysis (Figure 3c), the majority of SVs 
associated with one or more molecular traits were found near gene bodies. For instance, more than 87% of SVs 
associated with H3K9ac peaks (haSVs) had at least one breakpoint within 500 kb of the closest gene, while more than 
93% of splicing associated SVs (sSV) were found within 50 kb of the respective gene bodies (Supplementary Figure 
S9). Additionally, the direction of effect for the associations (β) were usually distributed in both directions for SV-xQTLs, 
independently of SV class, reflecting possibly complex enhancing and repressing regulatory effects or loci with SVs in 
linkage disequilibrium (LD) with the true causal variants. However, when the SVs overlapped the phenotypes (e.g., 
exonic region or histone peak) the effects of deletions and MEIs were mostly negative, while duplications were mostly 
positive (Supplementary Figure S10), suggesting a likely causal role for SVs at these conditions. 

By measuring associations for each SV class separately, we observed that specific classes were more likely to 
be associated than others in each phenotype. Deletions in particular showed enrichment of associations compared to 
all classes together, while insertions were depleted. Alu elements, despite being known to promote alternative 
splicing32,33, were enriched in eQTLs and pQTLs but not in the other two traits, while SVA elements were enriched in 
eQTL, pQTL and sQTLs (Figure 4b). SVAs are considerably less frequent than other transposable elements and their 
effects on splicing, expression, and protein could be due to SVAs acting as novel promoters34 or exon-trapping35. 

SV-xQTLs were enriched in relevant functional annotations similarly across all molecular phenotypes (Figure 
4c). SVs overlapping topological associated domains (TADs), exons, introns, and promoters were enriched for 
associations, while intergenic SVs were depleted. However, some specific phenotypes showed stronger enrichment than 
others. For instance, haSVs were strongly enriched in regulatory regions, such as promoters, enhancers, and CTCF 
sites relative to other phenotypes, highlighting the direct effect of SVs on the phenotype. 

We identified 667 SV-gene pairs associated with at least two phenotypes with highly concordant effects. The 
correlation of effect sizes between eQTLs and pQTLs was 0.71 (Pearson correlation) and between pQTLs and haQTLs 
0.77 (Supplementary Figure S11), while eQTLs and haQTLs showed slightly weaker correlation (Pearson correlation 
= 0.57) (Figure 4d, Supplementary Figure S11). In addition, 241 SVs were found affecting at least three phenotypes, 
and 28 SVs affecting all four measured phenotypes in several loci such as HLA, GSTM, GSTT, RBM, BPHL, VARS2, 
CAB39L, RLBP1, GCSH, DECR2, and PHYHD1. Moreover, more than 62% of SVs associated with proteins (pSVs) 
were also associated with differential RNA expression (Figure 4e). While the majority (87%) of the SV-pQTLs and SV-
eQTLs were concordant (Figure 4d), few had discordant effects; for example, in the gene UROS, a 411 bp duplication 
located in the promoter region of the gene was associated with lower RNA expression, but higher protein expression, 
suggesting some complex regulatory mechanism (Figure 4f). Additionally, 25.5% and 23.7% of pSVs were also 
associated with histone markers and splicing, respectively, suggesting distinct mechanisms for gene regulation, while 
7% of pSVs were associated with the four phenotypes, and 28% were found associated with proteins only (Figure 4e). 
By contrast, 50% and 47% of splicing and histone associated SVs were also SV-eQTLs, respectively (Supplementary 
Figure S12).  
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Figure 3 - Properties of SV-eQTLs. a, Total number of significant SV-eQTLs (FDR < 0.05) identified within each cohort (ROS/MAP, 
Mayo Clinic, MSBB) in each brain region. b, SV-eQTL sharing across different groups and regions measured by π1 from qvalue R 
package. Columns represent the discovery sets while rows represent the replication set. c, Proportion of significant SVs by distance 
to the gene affected. More than 85% of significant associations across all SV types were within 500 kb distance of the gene. d, 
Distribution of effect sizes for each SV type. e, Distribution of effect sizes for SVs that overlap exonic regions of the associated gene. 
f, Log odds ratio of SV being associated with gene expression changes (i.e., being an SV-eQTL). Lines indicate 95% Wald confidence 
intervals. g, Log odds ratio of a gene being significantly associated stratified by gene biotype, lines indicate 95% Wald confidence 
intervals. h, Average absolute effect sizes of each eGene stratified by gene biotype, lines represent 95% confidence intervals (n = 
1000 bootstraps).  
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Figure 4 - Impact of SVs on the gene-regulatory cascade. a, Total number of SV-xQTLs (FDR < 0.05) identified in ROS/MAP. Red 
bars show the number of lead per phenotype associations measured for each SV class separately, while gray bars show the total 
number of unique genes associated independently of SV classes. Percentages shown in the gene bars refer to the total number of 
genes tested for each phenotype. b, Heatmap showing the odds ratio of each SV class being associated with changes in each 
phenotype (i.e., being an SV-xQTL). Odds are measured against all lead SVs per phenotype, including non-significant. Numbers in 
bold represent P-value < 5% (Wald's test). c, Enrichment of xSVs (i.e., SVs significantly associated to some phenotype) by functional 
annotation. Values are given as the log odds ratio of an xSV being overlapping a given genomic feature compared to all SVs tested 
for each molecular phenotype separately. Lines indicate 95% Wald confidence intervals. d, Slope correlation of SV-haQTL and SV-
pQTL effect sizes (y-axis) compared to SV-eQTL effect sizes (x-axis). Pearson correlations and respective P-values are shown for 
each pair. e, SVs associated with proteins (380 pSVs, first bar) that are also associated with different molecular phenotypes (indicated 
at respective columns). Each color represents pSVs where the same SV-gene pair is significantly associated with a different number 
of phenotypes, from 1 (only at protein level) to 4 (all molecular phenotypes). f, Example of discordant effect between RNA and protein 
caused by a 411 bp duplication overlapping an H3K9ac peak upstream of the UROS. In the locus plot, genes and histone peaks 
colored in red had significant associations (FDR < 0.05) with the duplication. 
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Effects of rare SVs 
In contrast to common variants which are widespread in a population and have been subjected to a long process of 
natural selection, rare variants are usually much more recent and their impact on phenotypes more deleterious14,36. Due 
to their low frequencies, the impact of rare variants is usually measured indirectly by looking for enrichments within 
outliers, instead of performing standard association tests36,37. To assess the impact of rare SVs in gene expression and 
gene regulation, we first mapped gene-sample expression outliers using OUTRIDER38, for RNA and protein levels 
measured for the ROS/MAP. Then, we assessed the enrichment of rare variant carriers nearby those genes. 

We identified 1,551 and 1,747 gene-sample outlier pairs for RNA expression and protein levels, respectively 
(see Methods). A higher proportion of outliers was observed in proteins compared to RNA when considering samples 
and genes measured in common (112 samples and 7,546 genes) (Figure 5a). Additionally, only 43 (5%) gene-sample 
pairs were replicated between both phenotypes, reflecting the modest correlation (Spearman's ⍴ = 0.38) observed 
between average RNA expression and protein levels (Supplementary Figure S19). 

Next, we measured the enrichment of rare SVs (MAF < 1%) overlapping gene bodies of outliers (for RNAs and 
proteins, separately). We found significant enrichment of SV classes in these conditions, especially deletions and 
duplications, with stronger enrichments in RNA compared to proteins (Figure 5b). This could be due to smaller sample 
sizes and the smaller number of genes tested. The direction of differential expression correlated with the expected effect 
caused by a given SV type (i.e., dosage alteration) (Figure 5c), but we still observed many cases in opposite directions 
suggesting more complex regulatory effects (Figure 5d). Six gene-sample outliers with overlapping rare SVs were found 
with effects on RNA and protein levels, including a homozygous rare 103 kb duplication causing overexpression of 
C19orf12 and a homozygous 136 bp deletion causing underexpression of TLN2 in the respective variant carriers (Figure 
5e). 
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Figure 5 - Impact of rare SVs on gene expression outliers. a, Quantile-quantile (QQ)-plot showing the observed distribution of P-
values of outliers for RNA and protein and its deviation from the expected uniform distribution (showing only for gene-sample pairs 
measured in common). b, Enrichment of rare SVs overlapping outliers (any SV breakpoint within the gene body) stratified by SV type 
showed as a log odds ratio with 95% Wald confidence intervals. c, Fraction of overexpressed and underexpressed outlier genes that 
are potentially explained by each rare SV compared to non-outliers. d, Distribution of gene outlier z-scores that are overlapped by 
rare SVs. e, Examples of gene-sample pairs outlier with a rare SV overlapping their respective gene bodies. Showing on top an 
overexpression outlier for C19orf12 caused by a 103 kb duplication and at bottom an underexpression outlier for the gene TLN2 
caused by a rare 136 bp deletion. Each dot represents a sample. Y-axis represents the raw counts + 1, while the x-axis represents 
the expected counts + 1, given by OUTRIDER' autoencoder model. Red dots represent an outlier sample.  

 
 
Characterizing pathogenic SVs in neurodegenerative diseases 
Since SVs are not usually included in GWAS, their association with neurodegenerative diseases and complex traits has 
been overlooked. Here we performed one of the first genome-wide SV associations with Alzheimer's disease (AD) and 
progressive supranuclear palsy (PSP). By combining all SVs, we generated a combined call set with 29,177 SVs (22,007 
with MAF > 1%) in 1,757 samples. In AD (539 cases, and 368 controls) no SVs were associated with the disease, 
however, some suggestive hits were observed (Supplementary Figure S13), including a 199 bp deletion downstream 
of the gene CHRD (nominal P-value 4.88 x 10-5), a locus previously reported associated in familial late-onset AD39. By 
contrast, for PSP (83 cases, 368 controls), identified four SVs after Bonferroni correction (Figure 6a). These variant 
alleles were highly correlated with each other and tagged known distinct haplotypes at the 17q21.31 locus defined by an 
almost 1 Mb inversion (Figure 6b). These haplotypes were previously reported to be associated with PSP and 
Parkinson's disease, with the inverted haplotype being protective in both diseases (Odds ratio of 0.2 and 0.8 
respectively)40–43. In addition, many of these SVs showed associations with changes in gene expression and other 
molecular phenotypes (Figure 6c). Of the associations replicated in at least one brain region across studies, we found 
higher expression of DND1P1, KANSL1, ARL17A, LRRC37A in the inverted haplotypes (Figure 6c) and differences in 
MAPT splicing junctions and several histone acetylation markers could be detected in ROS/MAP (Figure 6c). Recently 
a mechanism involving neuron-specific changes in chromatin accessibility and 3D interaction has been proposed44. 
However, additional studies are needed to demonstrate these effects on regulatory interactions. 

DISCUSSION 

Detecting SVs accurately is a challenging task and limitations due to sample size and sequencing read length are the 
main challenges to the field45. Here we performed SV discovery integrating seven different algorithms designed to detect 
multiple classes of SVs using distinct sequencing features. Integration of tools was assisted using the Genome in a 
Bottle benchmark set46 and in addition, we generated long-read WGS for two brains and performed in silico confirmation 
of SVs predicted using short-read data. Our results showed improved sensitivity of SV detection compared to single 
algorithmic approaches as well as high orthogonal discovery confirmation on selected samples. Given the limitations of 
short-read data, SV discovery sensitivity is still underestimated for some SV classes, such as large insertions and 
complex configurations. However, we not only observed high reproducibility of SVs compared to independent large SV 
cohort studies and databases, but we also identified novel variants emphasizing the improvement of discovering SVs 
from novel samples and diverse populations. Importantly, we are making these resources publicly available. 

Most studies on the impact of SVs have been restricted to the level of mRNA expression1,14,30,47. However, 
mRNA is not the only determinant of cellular functions48. Previous studies involving small variants found that QTL effects 
can be modulated at different levels of gene regulation11–13. Therefore, understanding the links between genetic and 
phenotypic variation is essential to understand how genetic variation, including SVs, impacts the regulation of gene 
expression. Here, we expanded such catalogs by measuring the impact of SVs through a regulatory cascade by 
integrating multiple 'omics' generated from histone acetylation markers up to gene expression and protein levels. We 
identified properties of SVs affecting different molecular phenotypes, identified regions and genes more susceptible to 
associations, and correlated their effects on phenotypes in terms of both common and rare SVs. Our SV-xQTLs results 
recapitulated similar trends from SNVs. For example, the majority of SVs associated with proteins were also SV-eQTLs, 
similar to what has been observed with SNV QTLs11. Although sQTLs and eQTLs tend to have independent lead variants 
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in SNVs12, for SVs we observed that half of splicing SVs were also expression SVs, with a modest negative correlation 
between effect sizes. Additionally, many effects seemed to be specific to a phenotype with about 28% in SVs associated 
at protein level only which is 3-fold more than SNVs11. These data suggest that distinct mechanisms are involved in 
translating genotype to phenotype. 
 
 

 
Figure 6 - SVs associated with PSP and their effects on molecular phenotypes. a, Manhattan plot showing SVs associated with 
PSP cases (n=83) versus controls (n=368). Estimates were measured using Bayesian logistic regression (bayesglm) accounting for 
sex, study, and the first three ancestry PCs. Y-axis shows the -log10(P-value) of each SV association. X-axis represents SV sequential 
position by chromosome (not real scale). Labels with names of the nearest gene upstream of each SV breakpoint are shown for SVs 
with Bonferroni adjusted P-values lower than 5% (dashed line). Label colors represent different SV classes. b, Pairwise linkage 
disequilibrium (LD) matrix of SV genotypes identified between chr17:43M-46M (hg19) measured as R2 (LDheatmap R package). 
Labels are shown for the SVs significantly associated with PSP status (from letter a). c, Locus plot of 17q21.31 locus (chr17:43M-
46M (hg19)). Genes bodies are shown at the top track, SVs with MAF ≥ 1% identified in ROS/MAP are shown at the second track 
(colors represent SV class), and effect sizes for H1-H2 inversion haplotypes (using the top PSP associated SVs - DEL_11943 - as a 
proxy) are shown in the remaining tracks. Effect sizes are shown only for significant associations (FDR < 0.05). Positive effect sizes 
indicate increased levels of each phenotype in individuals with H2 (inverted) haplotype. 
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Interestingly, distinct SV classes seem to have different functional impacts on gene regulation. Transposable 
elements were shown to contribute to almost half of open chromatin regions49 and affect more than three fourths of 
promoter regions, with particular enrichment of short interspersed nuclear elements (SINE) (e.g., Alu elements)50. Here 
we found that Alu and SVA (composed of SINE-VNTR-Alu) elements are more likely to affect gene and protein 
expression compared to other SV classes. SVA elements in particular are more evolutionarily recent than other TEs and 
many are human-specific34,51–53. Their importance for gene expression were described both in vitro and in vivo54–57. Our 
results support an important role for SVA in gene regulation, with more than 2-fold greater chance of being associated 
with either gene expression, splicing, and protein levels (Figure 4b). 

While most of the common SV-xQTL associations can be confounded by LD with actual causal SNVs14, rare 
SVs impacting expression outliers at RNA and protein levels can provide a better sense of SV causality37. Here we 
mapped genes with deviations from expected expression level distributions at mRNA and protein levels and then 
identified samples carrying rare SVs near those genes. We found more than 10% of mRNA outliers being overlapped 
by a rare SV, with clear causal resulting effect (e.g., deletions causing reduced expression while duplications causing 
increased expression). Interestingly, rare and common Alu elements seemed to have opposite effects on mRNA 
expression. Rare Alu insertions were found only in overexpression outliers (Figure 5d), while common Alu carriers were 
mostly associated with decreased expression (Figure 3e). Additionally, effects of rare SVs seem to be attenuated at 
protein levels, given a lower proportion of outliers explained by nearby SVs and an even lower proportion of effects 
shared between RNA and proteins, reflecting low correlation observed in the expression levels (Supplementary Figure 
S19). 

In summary, our study expands the catalog of high-quality SVs by measuring their impact through a gene 
regulatory cascade. Our multiple 'omics' integration demonstrates an important role of SVs, showing that the effects of 
SVs differ in terms of SV classes, genomic locations, genes biotypes, and phenotypes affected. Our comprehensive SV-
xQTL catalog allowed us to examine the contribution of cis-acting structural variants on number of molecular traits and 
provide a powerful resource for understanding mechanisms underlying neurological diseases. 
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METHODS 

Study cohorts 
In our analysis, we included samples from four cohorts (ROS, MAP, MSBB, and Mayo Clinic) from the Accelerating 
Medicines Partnership in Alzheimer's Disease (AMP-AD) consortium. These aging cohorts provide an extensive 
collection of multi-omics data, that includes deep whole-genome sequencing (WGS) from 1,860 subjects, and allow us 
to identify SVs and characterize their functional impact. Each cohort is briefly described below. 
 
ROS/MAP 
The Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) are clinical-pathological cohort studies 
of aging and dementia based at the Rush Alzheimer's Disease Center. ROS subjects live in communities distributed 
throughout the U.S., while MAP subjects live in communities in the Chicago metropolitan area. Both studies recruit older 
persons without known dementia who agree to annual clinical evaluation and organ donation at death. Both studies were 
approved by an Institutional Review Board of Rush University Medical Center. All participants signed an informed 
consent, Anatomic Gift Act, and repository consent to allow their data to be shared. Much of the ROS/MAP data are 
harmonized at the item level, including all omics generated from the same pipelines and QC'd together allowing efficient 
merging of datasets. ROS/MAP data can be requested at online (see URL at Data Availability section). 
 
Mayo Clinic 
Also referred as 'Mayo RNAseq', the Mayo Clinic cohort is an independent study from those described under the Mayo 
Clinic Alzheimer's Disease Genetics Studies (MCADGS) and consists of 349 human subject DNA samples from Mayo 
Clinic in "Project_SCH_11923".  
 
MSBB 
The Mount Sinai Brain Bank (MSBB) cohort consists of 349 samples assembled after applying stringent 
inclusion/exclusion criteria and represents the full spectrum of disease severity. Subject samples were collected and 
sequenced in Mount Sinai Project_SCH_11923. DNA was isolated from 50 mg of frozen, never-thawed grey matter 
dissected from the frontal cortex (BM10) or superior temporal gyrus (BM22). Specimens were homogenized in a 300 μl 
of elution buffer, and DNA was isolated using a Promega Maxwell 16 semi-automated system using the Promega 
Maxwell 16 Tissue DNA Purification Kit according to the manufacturer's instructions. DNA quality and yield were 
assessed using an Agilent 4200 TapeStation. 
 
Whole-genome sequencing 
Human postmortem tissues were acquired under proper Institutional Review Board (IRB) protocols at each respective 
institution. For all cohorts, whole-genome sequencing (WGS) libraries were prepared using the KAPA Hyper Library 
Preparation Kit in accordance with the manufacturer's instructions. Briefly, 650ng of DNA was sheared using a Covaris 
LE220 sonicator (adaptive focused acoustics). DNA fragments underwent bead-based size selection and were 
subsequently end-repaired, adenylated, and ligated to Illumina sequencing adapters. Final libraries were evaluated using 
fluorescent-based assays including qPCR with the Universal KAPA Library Quantification Kit and Fragment Analyzer 
(Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries were sequenced on an Illumina HiSeq X sequencer (v2.5 
chemistry) using 2 x 150 bp cycles. Whole Genome data were processed with an NYGC automated pipeline. Paired-
end 150 bp reads were aligned to the GRCh37 human reference using the Burrows-Wheeler Aligner (BWA-MEM v0.7.8) 
and processed using the GATK best-practices workflow that includes marking of duplicate reads by the use of Picard 
tools v1.83, local realignment around indels, and base quality score recalibration (BQSR) via Genome Analysis Toolkit 
(GATK v3.4.0). 
 
SV discovery pipeline 
SV discovery was performed on each cohort using a custom pipeline integrating seven SV discovery tools. This pipeline 
is composed of several independent modules designed to run in a sequential manner. When possible, within each 
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module, jobs can be run in parallel to speed up the analysis of large numbers of samples. Each module is described 
below. 
 

● Module 01: Sample QC 
This module is based on the first module from the HOLMES pipeline58 and is designed to collect QC metrics 
from BAM files. For each sample, we estimate library complexity (Picard EstimateLibraryComplexity), collect 
alignment metrics (Picard CollectWgsMetrics, Samtools flagstat, and Bamtools stats), collect insert size metrics 
(Picard CollectMultipleMetrics), conduct sex inference, and check for aneuploidy.  
 

● Module 02: SV discovery 
Including a comprehensive set of tools is crucial to extract the maximum possible information from sequencing 
data. Seven tools were included into the pipeline for SV discovery: Delly v0.7.959, LUMPY v0.2.1360, Manta 
v1.5.061, BreakDancer v1.4.562, CNVnator v0.3.363, BreakSeq v2.264, and MELT v2.1.565. Each tool comprises 
at least one of the three main approaches to detect SVs (i.e., read pairs (RP), split-read (SR), and read depth 
(RD). Manta, Delly, LUMPY, and MELT are based on RP and SR information, while BreakDancer uses RP only. 
CNVnator is based on RD information, and BreakSeq2 uses a breakpoint library mapping approach. In our 
pipeline, BreakDancer, CNVnator, and BreakSeq are run through the SVE pipeline v0.1.066, while for the other 
ones the standalone tool is used.  
 

● Module 03: Consensus call set per sample 
In order to integrate the results of different tools, we first tested several merging strategies and combinations 
and evaluated the quality of each with the Genome in a Bottle HG002 SV call set v0.667 (details in Methods - 
Structural variation performance benchmarking). Based on all strategies evaluated, we choose the following 
merging rules for each SV type. 
 

● Deletion = Manta + (LUMPY + Delly + BreakSeq + BreakDancer + CNVnator – at least 2 callers support) 
– (75% recall and 92% precision) 

● Insertions = Manta + BreakSeq – (22% recall and 95% precision) 
● Duplications = Delly + LUMPY + Manta + BreakDancer + CNVnator (at least 2 callers support) 
● Inversions = Delly + LUMPY + Manta + BreakDancer (at least 2 callers support) 
● Translocations = Delly + LUMPY + Manta + BreakDancer (at least 2 callers support) 

 
To merge each tool we use SURVIVOR68 requiring 1000 bp maximum distance between breakpoints to 

merge SVs of the same type and on the same strand.  
 

● Module 04: Merge samples 
SVs defined in the tool consensus step for each sample are merged into a population call set using SURVIVOR68 
considering 1000 bp distance between breakpoints, and taking into account SV classes and strands. 
 

● Module 05: Genotyping SVs in each cohort 
After defining a joint populational call set in the cohort. The genotyping is performed separately for each sample 
and  SV class (deletions, duplications, and inversions) using smoove "genotype" function 
(https://github.com/brentp/smoove) (a wrap function for SVTyper69). This step forces genotyping on all SVs for 
each sample by looking for evidence support from its respective alignment ".bam" files. Later, each genotyped 
sample is merged again into a single populational call set using smoove "paste". Mobile Element Insertions 
(MEI) are identified, merged, and genotyped separately using MELT functions, and its results are harmonized 
with insertions found by the other tools after merging samples. For harmonization, we used a 70% reciprocal 
overlap criteria (considering their breakpoint positions and lengths) to convert insertions into MEIs.  
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● Module 06: Post-discovery QC 
After the genotyping step, outlier samples are identified and removed if they have SV counts higher than three 
times the interquartile range (IQR) for each SV class with more than 50 SVs on the average per genome. 
Samples blacklisted in previous steps due to sex mismatches or with missing metadata are also removed (details 
in Sample QC prior SV discovery and Sample QC after SV discovery sections). Next, SVs with more than 10% 
of missing genotype information or no ALT variants genotyped are filtered out. And finally, deletions and 
duplications with low read depth support indicated using duphold70 are removed (details in Methods - Variant 
QC). 
 

● Module 07: SV annotation 
The final SV call set is annotated using AnnotSV v2.271, which compiles functionally, regulatory, and clinically 
relevant information. For downstream analysis, we select only the "full" annotation, that reports all elements 
overlapping a given SV. Additional annotations such as DNase hypersensitive sites, three-dimensional 
chromatin architecture and CTCF binding sites obtained from RuderferLab/CNV_FunctionalAnnotation 
(github.com)47 are also integrated (details in Methods - Functional genomic annotation sources).  

 
Sample QC prior to SV discovery 
Sample quality check was performed during different phases of the analysis. Prior to the SV discovery phase, we 
assessed the consistency between the WGS raw files and the metadata, and several sequencing and alignment metrics. 
From a total of 1,904 WGS raw ".bam" files, we found 43 samples with missing metadata information or some kind of 
duplication. We also collected WGS metrics for each sample, including library complexity (Picard 
EstimateLibraryComplexity), alignment metrics (Picard CollectWgsMetrics, Samtools flagstat, and Bamtools stats), insert 
size metrics (Picard CollectMultipleMetrics), sex inference, and aneuploidy check. Most of these analyses were based 
on the first module from the HOLMES pipeline58. We defined seven features to be used as sample filtering criteria, as 
follows: 
 

● Discordance between reported and inferred sex: remove samples where the reported sex differed from inferred 
based on the fraction of reads aligned to chromosomes X and Y. 

● Pairwise alignment rate: keep only samples where the fraction of read pairs successfully aligned were > 0.95. 
● Chimera rate: keep samples with average chimeric rate < 0.04. 
● Adapter rate: keep samples with average adapter rate < 0.07. 
● Read length: keep samples with mean read length > 125 bp. 
● Coverage: keep samples with mean sequencing coverage > 20%.  
● Autosomal ploidy spread: keep samples where the absolute difference between the highest and lowest ploidy 

estimates from any two autosomal chromosomes were < 1. 
 
As these cohorts have been somewhat previously QCed, the majority of the samples showed no discrepancies 

using these metrics, with the exception of some sex mismatches (30 samples for ROS/MAP and 5 samples for MSBB), 
and some abnormal ploidy and chimeric rate (22 samples in ROS/MAP). These samples were flagged and then removed 
in the downstream analysis (Supplementary Table S5).  
 
Sample QC after SV discovery 
After the SV discovery phase, we applied additional sample filtering steps to exclude outlier samples. For each sample, 
we counted the total number of non-reference autosomal biallelic SVs for each SV class (DEL, DUP, INV, INS). Samples 
were labeled as outliers and removed from the downstream analysis if they had an SV count more than three times the 
interquartile range (IQR) beyond the third quartile, or less than six times the IQR below the first quartile for each SV 
class. Samples were also removed if the genotype missingness was higher than 10% (Supplementary Table S1, 
Supplementary Figure S15).  
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Variant QC 
Following the SV genotyping step, SVs with more than 10% of missing genotype information or no ALT variants 
genotyped in all samples were removed. Additionally, unbalanced SVs (i.e., deletions and duplications) were filtered by 
the relative fold-change of depth, given by duphold70. Two measures are calculated based on the guanine-cytosine (GC) 
content: 
 

● DupHold Bin Fold-Change (DHBFC): fold-change for the variant depth relative to bins in the genome with similar 
GC-content. 

● DupHold Flank Fold-Change (DHFFC): fold-change for the variant depth relative to flanking regions. 
 
According to duphold evaluations on the Genome in a Bottle benchmark, DHFFC works best for deletions and 

DHBFC works slightly better for duplications70. Therefore, we applied the recommended thresholds of DHFFC < 0.7 for 
deletions and DHBFC > 1.3 for duplications. We evaluated these metrics after merging samples and removed any SV 
in which less than 70% of samples failed the given thresholds. 
 
Functional genomic annotation sources 
In addition to the default annotations provided in the AnnotSV tool, we also integrated brain relevant annotations following 
previous studies47. Using scripts from RuderferLab/CNV_FunctionalAnnotation (github.com), we downloaded and 
annotated our SVs in each cohort. Briefly, gene structure information was obtained from Ensembl v75. Open chromatin 
regions measured by DNase hypersensitive sites were downloaded from Roadmap Epigenomics72. Three-dimensional 
chromatin architecture using TAD domains identified using Hi–C from the prefrontal cortex were obtained from 
PsychENCODE73. CTCF binding sites from ChIP-seq from brain-relevant cell types were downloaded from ENCODE74 
and overlapping peaks from each tissue were merged into a single consensus region (n = 100,894). Additionally, we also 
integrated ROS/MAP H3K9ac peaks into the annotation of each SV. 
 
Population ancestry assignments 
We estimated ancestries of all individuals with somalier (https://github.com/brentp/somalier), using the raw ".bam" files 
as input. In short, somalier extracts a list of known polymorphic sites by accessing the exact base information from 
alignment files and classifies each sample ancestry using a neural network trained from a set of labeled samples. 
Individuals from our cohorts were assigned to one of the five super population labels obtained from 1000 Genomes 
Project high coverage data (African [AFR], Ad Mixed American [AMR], East Asian [EAS], European [EUR], South Asian 
[SAS]) and were projected using principal component analysis (PCA). 
 
Reproducibility of SVs in other large cohort studies 
SVs discovered in the AMP-AD cohorts were compared with other large cohort studies and datasets in order to identify 
novel variants. SV annotations were obtained from AnnotSV v2.171 and included dbVar26, the National Human Genome 
Research Institute (NHGRI) Centers for Common Disease Genomics (CCDG)10, Database of Genomic Variants (DGV)27, 
Deciphering Developmental Disorders (DDD)28, GnomAD-SV9, and 1000 Genomes Project SVs1. SVs were considered 
replicated in other datasets if their coordinates had a reciprocal overlap of 0.7 irrespectively of the SV class. 
 
Structural variation performance benchmarking 
In order to measure the performance of individual SV detection tools and merging strategies, we applied the SVs 
benchmarking dataset from GiaB v0.6 of Tier 1 (isolated, sequence-resolved SVs)67. This dataset contains SVs for the 
AshkenazimTrio son HG002 (NA24385) defined using several sequencing strategies and SV detection tools as well as 
a manual curation. For measuring the precision and recall for each method, we used the tool truvari 
(spiralgenetics/truvari: Structural variant toolkit for VCFs (github.com)).  

Results for each tool were pre-filtered before comparisons by keeping only SVs from canonical chromosomes 
(1-22 plus X and Y), removing SVs <= 50 bp, and keeping only PASS filters only (Supplementary Table S2).  Next, 
precision and recall for deletion and insertion discovery were evaluated for each tool. This initial comparison showed 
how discordant and inefficient the SV discovery using short-reads can be (Supplementary Figure S14a).  
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To improve the results of individual tools, we tested different combinations for each SV type. We applied 5 
merging strategies: 1) union of all tools; 2) intersection of all tools; 3) merging calls detected by at least 'n' tools; 4) union 
of a combination of specific tools plus calls detected by at least 'n' other tools; and 5) intersection of tools plus calls 
detected by at least 'n' other tools. The best merging strategy was then selected after measuring all possible 
combinations for each strategy separately for DEL and INS and selecting the best results based on the F1-score 
measure. Thus, for deletions, the best performance was found by adopting all deletions from Manta plus all other 
deletions found by at least two other tools (Supplementary Table S3). While for insertions, the best F1-score was 
obtained using a union of calls from Manta and BreakSeq only (Supplementary Table S3). Using these combinations 
we were able to improve the overall recall from 41% (Manta-only) to 45% while keeping the precision at 88% 
(Supplementary Figure S14a). Since there are no benchmarking calls established yet on GiAB for other SV types (e.g., 
inversions and translocations), we took a more conservative approach and decided to keep only calls that were found 
by at least two different tools in the final merged set. After applying this strategy to all individuals in the AMP-AD cohorts, 
we measured their performance against the HG002 sample (Supplementary Figure S14b). This analysis showed 
similar performances across all individuals, with expected reduced precision since variants between different individuals 
were being compared. The complete report of all analysis tests is available at RajLabMSSM/StructuralVariation 
(github.com). 
 
Allele frequency comparison with 1000 Genomes Project and gnomAD-SV 
Correlation of allele frequencies (AFs) between SVs discovered in gnomAD-SV and 1000 Genomes Project phase III 
were compared to ROS/MAP AFs. Only European (EUR) AFs from gnomAD and 1000 Genomes were used for 
comparison. SVs in common were first identified using bedtools "intersect" requiring at least 50% reciprocal overlap with 
no requirement of matching SV classes. Then, coefficients of determination (R2) were assessed with a linear regression 
between log10 of AFs for SVs with AF > 1% in both studies being compared (Supplementary Figure S4). 
 
Hardy-Weinberg equilibrium comparison 
SV genotype distributions were evaluated under the null expectations set by the Hardy-Weinberg equilibrium (HWE; 1 = 
p2 + 2pq + q2). Using tabulated genotype distributions per cohort as input, we measured deviations from HWE using a 
chi-square goodness-of-fit test with one degree of freedom and their P-values using the "HardyWeinberg" package in 
R75. SVs were considered in violation of HWE if its P-value was significant after Bonferroni correction for the number of 
SVs tested per population (Supplementary Figure S5). 
 
SV long-read validation 
Selection of samples for long-read validation was performed using SVCollector76. Samples were initially ranked using 
both, the "topN" (i.e., sample with the largest number of SVs, irrespectively of other samples) and the "greedy" (i.e., 
samples that collectively contain the largest number of distinct SVs) approaches. Two samples from ROS/MAP cohorts 
were selected considering the best overall ranking in both approaches and the existence of additional omics data for 
those samples (e.g., RNA, protein, and histone markers) (Supplementary Table S4).  

DNA samples extracted from DLPFC tissues were then used for continuous long-read (CLR) sequencing using 
PacBio Sequel II platform. Both samples were multiplexed sequenced in a single SMRT Cell 8M Tray, resulting in an 
average 10x coverage per sample and average 14 kb read length (Supplementary Table S5). Raw PacBio BAM files 
were then aligned to the GRCh37 reference genome using minimap277 and were used to validate SVs found using the 
orthogonal short-read data using VaPoR, a software that performs comparative local realignments of long-reads to a 
synthetically modified reference sequence78.  

Therefore, SVs identified in the main SV discovery step with short-reads and positively genotyped in each 
sample were selected and filtered to maximize VaPoR sensitivity. We restricted the analysis for SVs with no overlapping 
breakpoints to simple repeats, segmental duplications, centromeres, regions subject to somatic V(D)J recombinations, 
and regions with low mappability in the PacBio data (<10x coverage). SV classes were evaluated separately by deletions, 
duplications, and insertions. For inversions, since our calls were not completely resolved and could represent also other 
sorts of complex conformations, we measured their support either as simple inversions (INV) or any combination of 
deletions, duplications, and inversions (e.g DEL_INV, DUP_INV, DEL_DUP_INV). SVs with a proportion of reads 
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supporting the predicted structure versus all reads assessed higher than zero (i.e., VaPoR_gs > 0) or SVs with genotype 
proposed by VaPoR other than homozygous to the reference (i.e., 0/0) were considered supported in the long-read data. 
Supporting rates for each sample were then measured as the number of supported SVs divided by the total number of 
tested SVs (Figure 2d). 
 
RNA-seq processing and SV-eQTL mapping 
Given that originally each cohort had different RNA-seq processing pipelines, we took advantage of the RNA-seq 
Harmonization Study (rnaSeqReprocessing) data (Synapse:syn9702085), which reprocessed all the data in a 
harmonized workflow. The reprocessing was done using a consensus set of tools with only library type-specific 
parameters varying between pipelines. Briefly, in this study, FASTQ files were obtained from aligned BAM files converted 
into raw FASTQs using Picard SamToFastq. Then, sequences were aligned to the GENCODE25 (GRCh38) reference 
genome using STAR and gene counting was computed using STAR option quantMode set as GeneCounts. Later, in 
order to match the WGS reference (GRCh37) used for SV discovery in the present study, gene coordinates were lifted-
over using the Gencode annotations ("gencode.v24lift37.annotation.gtf"). For SV-eQTL analysis, we used previously 
processed residuals values obtained after adjusting for clinical, technical, and hidden (via SVA79) confounders following 
conditional quantile normalization (CQN) normalization to account for variations in gene length and GC content and 
outlier detection and removal. We mapped SV-eQTL to scan for significant associations between common structural 
variants and gene expression. We tested SVs with MAF ≥ 0.01 using a modified version from FastQTL14,80 to address 
the span of breakpoints within a 1 Mb window from each gene TSS. A permutation test was applied to select the lead 
SV per gene and P-values were adjusted for multiple testing using Benjamini-Hochberg (FDR). Associations were 
performed separately for each SV class, meaning that multiple lead-SVs (from different classes) could be associated 
with each phenotype. 
 
SV-haQTL mapping 
ChIP-seq experiments and data processing for H3K9ac acetylation markers were previously performed on 712 samples 
(699 after QC) Epigenetics (ChIP Seq) - syn4896408 (synapse.org)81. Briefly, short single-end reads were aligned 
against the GRCh37 using the BWA. Peaks were detected for each sample individually by MACS2 using the broad peak 
option, a stringent q-value cutoff of 0.001, and pooled genomic DNA as a negative control library. Subsequently, H3K9ac 
domains were defined as genomic regions that were detected as a peak in at least 100 (15%) of our 669 samples. 
Regions neighboring within 100 bp were merged and very small regions of less than 100 bp were removed, resulting in 
26,384 H3K9ac domains. H3K9ac levels were quantified for each sample and domain by counting the number of reads 
in the domains after extending reads towards the 3’-end by the estimated DNA fragment length. For SV-haQTL analysis, 
we used residualized values obtained from 571 samples with WGS after regressing out "Sex", "gel_batch", "AgeAtDeath" 
and the first 3 principal components of the genotype matrix to account for the effect of ancestry plus the first 10 principal 
components of the phenotype matrix to account for the effect of known and hidden factors (Supplementary Figure 
S16). We tested SVs with MAF ≥ 0.01 and within 1 Mb of each peak. A permutation test was applied to select the lead 
SV per peak. Finally, P-values were adjusted for multiple testing using Benjamini-Hochberg (FDR). Associations were 
performed separately for each SV class, meaning that multiple lead-SVs (from different classes) could be associated 
with each phenotype. 
 
SV-pQTL mapping 
Tandem Mass Tag (TMT) isobaric labeling data were previously generated for 292 individuals82,83. For SV-pQTL 
analysis, we used residualized values for 7,960 protein obtained from 272 samples with WGS after regressing "PMI", 
"Sex", "AgeAtDeath", three first ancestry PCs, and the first 10 principal components of the phenotype matrix 
(Supplementary Figure S17). We tested SVs with MAF ≥ 0.01 and within 1 Mb of each protein. A permutation test was 
applied to select the lead SV per protein. Finally, P-values were adjusted for multiple testing using Benjamini-Hochberg 
(FDR). Associations were performed separately for each SV class, meaning that multiple lead-SVs (from different 
classes) could be associated with each phenotype. 
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SV-sQTL mapping 
Splicing junction proportions, measured as percent spliced in (PSI), were measured previously84. Briefly, 110,092 
junctions in 549 samples from ROS/MAP cohorts were obtained using Leafcutter85. Values were then standardized 
across individuals and quantile normalized across introns. For SV-sQTL analysis, we regress out the effects of known 
and hidden factors as performed in the sQTL manuscript84. We accounted for the effect of ancestry given by the first 
three principal components of the genotype matrix plus the first 15 principal components of the phenotype matrix (PSI) 
(Supplementary Figure S18). A total of 505 samples with WGS data were used in the association analysis using a 
modified version from FastQTL14,80 to address when the span or breakpoint of deletions, duplications, inversions, or 
insertions felt within the cis window a gene TSS. Genotyping information of SVs with MAF ≥ 0.01 and within 100 kb of 
each intron junction were tested, and a permutation test was applied to select the top SV per junction. Finally, P-values 
were adjusted for multiple testing using Benjamini-Hochberg (FDR). Associations were performed separately for each 
SV class, meaning that multiple lead-SVs (from different classes) could be associated with each phenotype. 
 
Expression outliers assessment 
To identify expression outliers, either at RNA and protein levels, we used the OUTRIDER R package38. Briefly, data 
normalization was first performed using its inbuilt autoencoder method to control for variation linked to unknown factors. 
Then outlier detection was performed assuming a significant deviation of gene expression distributions from a negative 
binomial distribution. For the RNA, read counts for 15,004 genes expressed in 456 samples were used as input. While 
for proteins, we used the rounded batch adjusted abundances for 8,179 proteins and 272 samples. Samples with missing 
protein abundance values were imputed as the mean values of each protein. The significance threshold for outlier 
detection was set at FDR adjusted P-values of 0.05 and 0.001 for RNA and protein respectively and absolute z-scores 
higher than 2 for both data. A total of 1,551 gene-sample pairs outliers were identified in RNA, and 1,747 in proteins at 
the given thresholds. 
 
Enrichment analysis 
All enrichments of SV features were accessed via logistic regression and adjusted by SV size. Briefly, data were 
converted to a binary matrix with lines representing each SV and columns representing related features (e.g., association 
to specific phenotype, overlapping genomic annotation, etc). Logistic regression was performed fitting a generalized 
linear model (glm R function) and log odds ratio estimates and P-values were extracted from each comparison.  
 
Disease status associations 
SV calls from ROS/MAP, Mayo Clinic and MSBB were merged into a combined call set using SURVIVOR68 while 
requiring 1000 bp maximum distance between breakpoints to merge SVs of the same type. A total of 22,007 SVs 
identified and all three study groups and with MAF ≥ 0.01 were selected for the association test. Alzheimer's disease 
status was harmonized across cohorts as previously described86. Briefly, for the ROSMAP study, late-onset AD (LOAD) 
cases was defined as individuals with a Braak neurofibrillary tangle (NFT) score ≥ 4, CERAD score ≤ 2, and a cognitive 
diagnosis of probable AD with no other causes, while individuals with Braak less ≤ 3, CERAD score ≥ 3, and cognitive 
diagnosis of "no cognitive impairment" were considered as controls. For MSBB, individuals CDR score ≥ 1, Braak score 
≥ 4, and CERAD neuritic and cortical plaque score ≥ 2 were considered LOAD cases, while CDR scores ≤ 0.5, Braak ≤ 
3, and CERAD ≤ 1 were considered controls (note that CERAD definitions differ between ROSMAP and MSBB studies). 
For the Mayo Clinic study, cases were defined based on neuropathology, with LOAD cases being individuals with Braak 
score ≥ 4 and CERAD neuritic and cortical plaque score > 1 while controls were defined as Braak ≤ 3, and CERAD < 2. 
A logistic regression was fitted using 539 AD cases and 368 controls and adjusting for sex, study, and the first three 
ancestry principal components. For PSP associations, Mayo Clinic study had 83 cases87 with pathological diagnosis at 
autopsy were compared against the same 368 controls using the same model. 

METHODS & SUPPLEMENTAL INFORMATION 

Detailed methods and supplemental information for this manuscript has been provided online. 
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nominal and permuted SV-xQTL summary statistics, and disease status association summary statistics are available at 
on GitHub (https://github.com/RajLabMSSM/AMP_AD_StructuralVariation). 
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