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ABSTRACT 

Objectives: Horizon-scanning for innovative technologies that might be applied 

to medical products and require new assessment approaches/regulations will help 

to prepare regulators, allowing earlier access to the product for patients and 

an improved benefit/risk ratio. In this study, we focused on the field of 

AI-based medical image analysis as a retrospective example of medical devices, 

where many products have recently been developed and applied. We proposed and 

validated horizon-scanning using citation network analysis and text mining for 

bibliographic information analysis.  

Methods and analysis: Research papers for citation network analysis which 

contain "convolutional* " OR "machine-learning" OR "deep-learning" were 

obtained from Science Citation Index Expanded (SCI-expanded) in the Web of 

Science (WoS). The citation network among those papers was converted into an 

unweighted network with papers as nodes and citation relationships as links. 

The network was then divided into clusters using the topological clustering 

method and the characteristics of each cluster were confirmed by extracting 

a summary of frequently cited academic papers, and the characteristic keywords, 

in the cluster.  

Results: We classified 119,553 publications obtained from SCI and grouped them 

into 36 clusters. Hence, it was possible to understand the academic landscape 

of AI applications. The key articles on AI-based medical image analysis were 
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included in one or two clusters, suggesting that clusters specific to the 

technology were appropriately formed. Based on the average publication year 

of the constituent papers of each cluster, we tracked recent research trends. 

It was also suggested that significant research progress would be detected as 

a quick increase in constituent papers and the number of citations of hub papers 

in the cluster.  

Conclusion: We validated that citation network analysis applies to the 

horizon-scanning of innovative medical devices and demonstrated that AI-based 

electrocardiograms and electroencephalograms can lead to the development of 

innovative products.  

 

Article Summary 

Strengths and limitations of this study 

� Citation network analysis can provide an academic landscape in the 

investigated research field, based on the citation relationship of research 

papers and objective information, such as characteristic keywords and 

publication year. 

� It might be possible to detect possible significant research progress and 

the emergence of new research areas through analysis every several months. 

� It is important to confirm the opinions of experts in this area when 

evaluating the results of the analysis. 

� Information on patents and clinical trials for this analysis is currently 

unavailable. 
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INTRODUCTION 

 

The application of innovative technologies to the development of medical products 

is expected to be a potential new treatment or diagnostic tool for diseases currently 

lacking these. Conversely, there may be cases where the application of conventional 

development and evaluation concepts and/or regulatory frameworks to innovative 

technologies is inappropriate. Therefore, the early identification of innovative 

technologies with a potential application to medical products through 

horizon-scanning would encourage regulatory authorities to establish new approaches 

to assess their quality, efficacy, and safety to advise developers and revise their 

regulations if necessary. This will contribute to timely patient access and improve 

the benefit/risk ratio of product1. 

 The International Coalition of Medicines Regulatory Authorities (ICMRA), 

consisting of regulatory authorities from 30 countries and regions, has recognised 

the need to respond quickly to innovative technologies and shares the importance of 

'horizon-scanning' to identify such technologies2 among member authorities. The ICMRA 

Innovation concept note3 describes horizon-scanning as a broad-reaching 

information-gathering and monitoring activity to anticipate emerging products and 

technologies and potentially disruptive research avenues. Traditionally, 

horizon-scanning has been predominantly conducted in Europe for policy-making, 

scientific research funding, and health care budgeting purposes, by surveying a 

variety of sources — such as the Internet, government, international organisations 

and companies, databases, and journals — using the Delphi method, for example4 5. 

Recently, the European Commission(EC) has published some reports including “Weak 

signals in Science and Technologies 2019 Report based on Tools for Innovation 

Monitoring (TIM)6, which uses text mining and keywords in the scientific literature. 

The Japanese National Institute of Science and Technology Policy (NISTEP) also uses 

the Delphi method and a digital tool to analyse academic papers with the top 1 % of 

citations to contribute to science and innovation policy planning. 

Hines et al. reported that, in the medical and health care field, the majority of 

horizon-scanning methods used were manual or semiautomated, with relatively few 

automated aspects; this may be resolved in the not-too-distant future via the rapidly 

evolving fields of machine learning and artificial intelligence5. 

It is nearly impossible to understand the whole picture of the extremely large and 

fragmented results of research and technological development and the limitations of 

existing methods are now being pointed out in many fields. 
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To solve this challenge, a computer-based approach can be used to complement the 

expert-based approach as it fits the scale of the information (Börner et al. 2003; 

Boyack et al. 2005). In particular, the citation-based approach assumes that the cited 

papers and research topics of the cited papers are similar. Analysing this citation 

network allows us to understand the structure of the research areas constituting the 

large volume of papers we are able to read. These methods have been widely used as 

powerful tools to visualise and understand the structure of a research field and to 

identify new trends and research directions; they have been proven effective through 

various studies (Chen 19997; Chen, Cribbin & al., 20038; Small, 19999). 

For example, Kajikawa et al. (2007)10 used citation network analysis to effectively 

and efficiently track emerging research areas in the field of sustainable science. 

Similar approaches have been applied to a wide range of fields, including energy 

research (Kajikawa et al., 200811), regenerative medicine (Shibata et al., 201112), 

robotics, and gerontology (Ittipanuvat et al., 201413). Sakata et al. (2012)14 proposed 

a meta-structure of academic knowledge on patent and innovation research to effective 

assist policy discussions for intellectual property system reform. Using a 

citation-based approach, this study analyses the academic landscape of patent and 

innovation research to understand the current structure and trends of research and 

to detect major sub-research fields and core papers within it. They have shown that 

network analysis and machine learning methods are useful for understanding and 

predicting the development of technologies such as solar cells15 and nanocarbon16. 

Citation network analysis and text mining are useful tools for R&D strategists and 

policymakers in many fields to understand the broad scope of scientific and 

technological research and make decisions for worthwhile investments in promising 

technologies. 

This paper proposes and discusses a methodology for horizon-scanning to identify 

innovative technologies that may be applied to medical products by utilising citation 

network analysis methods and text mining. In this paper, we focus on AI-based medical 

image analysis as a retrospective example of AI-based medical devices that have been 

developed in recent years, applied in many fields, and selected for consideration 

in ICMRA1. By analysing research papers on the development of AI-based medical 

technologies, we explored the network-like characteristics of this field and proposed 

a prediction procedure for innovative technologies related to the medical field. 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.25.21252496doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252496
http://creativecommons.org/licenses/by-nc/4.0/


METHODS 

 

Extraction of paper data for analysis:  

To track the development history of AI-based medical image analysis and to select 

keywords for the extraction of the papers for citation network analysis, we selected 

13 key articles17-27 (presented in Table 1), including several papers cited in the review 

article28 on the application of deep learning in medical image analysis and a study29 

that lead to the clinical development of IDx-DR, a retinal imaging software approved 

as a medical device by the US FDA in 2018. 

In addition to the query setting “convolutional” OR “deep learning” in the review 

article of medical image analysis (G Litjens et al, 2017)12, we used "machine-learning" 

to include a wide range of conventional studies. As a result, we obtained 140,794 

papers that contain "convolutional* " OR "machine-learning" OR "deep-learning" from 

the Web of Science Core Collection (WoS, Thomson Reuters), between 1 January 1900 

and 31 December 2020. 

For analysis, data sets were created between 1 January 1900 and 31 December 2012 to 

2019 and the cluster that contains key articles for each year was identified. 

 

Citation network analysis 

In this study, the citation network was converted into an unweighted network with 

papers as nodes and citation relationships as links. Papers with no citations as the 

largest component were considered digressional and were ignored in this study (Step 

2 in Fig 1). The core paper with the highest number of citations is located at the 

centre of the citation relations. Papers with no citation relationship with other 

papers were considered deviant and ignored in this study. The network is then divided 

into several clusters using the topological clustering method. Topological clustering 

is a clustering method based on the graph structure of a network; here, we use 

modularity maximisation. A cluster is a module in a citation network and is a group 

of papers in which the citation relations are divided using a modularity (Q value) 

maximisation method and are densely aggregated (Louvain method)16 30. The modularity 

maximisation method appreciates network partitioning such that the intracluster is 

dense and the intercluster is sparse. The modularity maximisation method determines 

an optimal partitioning pattern by extracting the partitioning pattern that maximises 

the modularity using a greedy algorithm. Q is an evaluation function of the degree 

of coupling within a cluster and between clusters, as follows:  
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where ���represents the weight of the edge between � and �, �� � ∑ ����  is the sum of 

the weights of the edges attached to vertex i, ci is the community to which vertex 

i is assigned, δ-function δ(u, v) is 1 if � � � and 0 otherwise, and 	 �
�

�
∑ ����� . 

 

The clusters are assigned labels corresponding to the size of the number of papers 

included. The characteristics of each cluster were confirmed by extracting a summary 

of frequently cited academic papers in the cluster and the characteristic keywords 

in the cluster.  

In addition, we computed the term frequency-inverse cluster frequency (TF-ICF) to 

extract the characteristic keywords of each cluster. The term frequency TF gives a 

measure of the importance of a term in a particular sentence. The inverse cluster 

frequency ICF provides a measure of the general importance of a term. The TFICF of 

a given term i in a given cluster j is given by: 

���	� 
 ���,� · ���� 
 ���,� · log ��/���� 

where N is the total number of sentences. Each cluster was labelled based on the 

resulting keywords and sentences. 

To confirm the trends in the research field, we extracted the mean or median year 

of publication of papers in each cluster, as well as information on journals, authors, 

and affiliated institutions. 

 

After clustering the network, visualisation is converted to intuitively infer a 

relation among these clusters. We use a large graph layout (LGL) based on a 

force-direct layout algorithm (Adai et al., 2004)31 32. This layout can display the 

largest connected component of the network to generate coordinates for nodes in 

two dimensions. We visualise the citation network by expressing inter-cluster links 

with the same colour (Step 4 in Fig 1). However, the position of the clusters and 

the distance between clusters do not indicate an approximation of the content. An 

overview of this is shown in Fig 1. 

 

Fig 1 Steps of clustering and making Academic Landscape based on citation network31 

32 

This Figure has been published in reference 11. The procedure of the citation network is as follows: 

extraction dataset of academic papers for analysis (Step 1).  
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For the extracted dataset, the citation network was converted into an unweighted 

network with papers as nodes and citation relationships as links (Step 2). The network 

was then divided into several clusters using the topological clustering method (Step 

3). In addition, a large graph layout (LGL) — based on a force-direct layout algorithm 

— displayed the largest connected component of the network to generate coordinates 

for the nodes in two dimensions, visualising the citation network by expressing 

inter-cluster links with the same colour (Step 4). 

 

 

RESULTS 

 

� Results of citation network analysis 

Table 1 Key articles and the clusters in which they are contained 

The key articles that have contributed to the development of AI-based medical image 

analysis were selected based on a review article on AI-based medical image analysis 

28. The clusters obtained from the citation network analysis of these articles are 

indicated. The clusters are numbered in descending order of the number of constituent 

papers included. The cells for papers not included in the analysis were shadowed. 

 

Label Paper Title 
published 

year 

Web of Science 

Cluster 
No. 

Times cited 
within each 

cluster 

A Gradient-based learning applied to document recognition.17 1998 1 1590 

B Learning hierarchical features for scene labeling.18 2012 1 304 

C Imagenet classification with deep convolutional neural networks.19  2012 1 1742 

D 
Automated analysis of retinal images for detection of referable 

diabetic retinopathy.20 
2013     

E 
Deep feature learning for knee cartilage segmentation using a 

triplanar convolutional neural network.21 
2013     

F 
U-net: Convolutional networks for biomedical image 

segmentation.22 
2015     

G Deep learning.23 2015 3 1825 

H Deep residual learning for image recognition.24 2016     

I 
Pulmonary nodule detection in CT images: false positive reduction 

using multi-view convolutional networks.25 
2016 3 239 

J 
Improved automated detection of diabetic retinopathy on a publicly 

available dataset through integration of deep learning.26 
2016 3 151 

K 
Dermatologist-level classification of skin cancer with deep neural 

networks.27 
2017 3 1015 

L A survey on deep learning in medical image analysis.28 2017 3 1127 

M 
Validation of automated screening for referable diabetic retinopathy 

with the IDx‐DR device in the Hoorn Diabetes Care System.29 
2018     
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We analysed the citation network of 140,794 papers and found that 119,553 (85 %) formed 

a citation network; this was divided into 36 clusters by extracting the largest linkage 

component from all linkage components via direct citation of papers (excluding the 

grey linkage not involved in cluster formation shown in Fig 1 and 2). The contents 

of the top 10 clusters, which contain approximately 75 % of the papers in a citation 

network, were estimated from the characteristic keywords appearing in each cluster 

and the titles and abstracts of the papers with the highest number of citations. The 

cluster numbers (number of papers) and their contents are listed below. 

Cluster 1 (11,711): basic studies on deep learning and convolutional neural 

networks (CNNs), including geographic information system (GIS) image analysis 

using remote sensing. 

Cluster 2 (7,597): drug discovery technologies related to proteins, peptides, 

etc., using machine learning. 

Cluster 3 (5,323): applied research in medical image analysis. 

Cluster 4 (4,340): feature classification using ensemble methods to increase 

accuracy by combination. 

Cluster 5 (3,665): natural language processing of clinical records. 

Cluster 6 (2,691): application of deep learning to fault diagnosis, for example, 

motor condition monitoring for machines running on electric motors. 

Cluster 7 (2,497): machine learning (ML) and data mining (DM) methods for cyber 

analysis. 

Cluster 8 (2,311): application to traffic flow information analysis for the 

implementation of intelligent transport systems. 

Cluster 9 (2,281): single-image super-resolution (SR) to reconstruct 

high-quality data.  

Cluster 10 (2,232): classification of individuals based on the analysis of text 

information from social media, such as emotions and behaviour. 

 

Table 1 presents the clusters in which the key articles were included. Three papers 

(A, B, C) based on image recognition are found in cluster 1 and five on image diagnosis 

in cluster 3, including the review article "Deep Learning”23, which is often cited 

in medical field papers. This indicates that clusters related to medical imaging were 

appropriately formed in cluster 3. 
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Tracking the time series of key articles 

We analysed papers published each year and identified the cluster containing the key 

papers in Table 1 and the number of citations within the cluster to assess the position 

of the research on medical imaging in the past. As shown in Fig. 2, all the papers 

were included in the same cluster until 2015 and the rank of cluster number increased 

by one until 2014. In 2015, the number of papers in this field increased rapidly and 

the rank of cluster number rose from 13th in 2014 to 6th, suggesting that great 

scientific attention has increased. In 2016, a key paper on the imaging diagnosis 

of diabetic retinopathy (J in Table 1) was in cluster 7, which comprised papers on 

medical image analysis, and the other seven key articles were in cluster 3. 

Subsequently, in 2017, cluster 1 contained all of the key articles but, from 2018 

onwards, a new separate cluster containing papers on image analysis using deep 

learning was formed; it can be seen that the number of citations of the key articles 

also increased. 

Thus, most of the key articles were in one or two clusters, suggesting that the clusters 

related to the targeted AI-based medical image analysis were properly formed. The 

research status of the clusters can also be confirmed by the cluster numbers, which 

reflect the number of papers comprising the cluster and the number of citations of 

the key articles. 

 

 

Fig 2 Tracking clusters containing key articles 

Papers obtained from WoS published up to the indicated year were analysed. The cluster numbers 

that contained the eight key articles shown in Table1 were plotted and the size of the circles 

represents the approximate number of citations in the cluster for each paper. 

 

 

Recent research trends in AI-based medical products 

To detect the latest research trends in AI-based medical products, we focused on 

‘younger’ clusters with an average publication year later than 2017 as research 

progress could be observed over three years for AI-based medical image analysis (Fig 

3). We re-analysed clusters 3, 15, 12, 5, 13, and 2, which were considered to be closely 

related to AI-based medical technologies. Clusters 3, 15, 12, 5, 13, and 2 were listed 

in order of average publication year. Table 2 lists the sub-clusters formed by 

re-analysis of the most cited article23 33-64 (hub-paper) in each subcluster, suggesting 

recent research trends in this field as follows. Cluster 3: applied research in medical 
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image analysis. Cluster 15: electrocardiogram, electroencephalogram, and other 

electrical biosignals of human activity. Cluster 12: human activity recognition. 

Cluster 5: natural language processing of clinical records. Cluster 13: neuroimaging 

analysis. Cluster 2: drug discovery with machine learning related to proteins, 

peptides, etc.  

 

 

Table 2 Sub-clustering results for clusters of AI-based medical technologies 

The clusters of AI-medical technologies were re-analysed and the characteristics of the top five 

sub-clusters, that is, the number and average of publications of constituent papers, specific 

keywords, and the title of hub-paper are shown. 

Cluster name 
Average 
year 

The 
number 
of 
papers  

Top keywords Hub papers 

Cluster3 2018.8 10992 segmentation, cancer, radiomics Deep learning23 

  Sub3-1 2018.3 1179 
glaucoma, optical coherence tomography, 
retinal 

Development and Validation of a Deep Learning 
Algorithm for Detection of Diabetic Retinopathy 
in Retinal Fundus Photographs33 

  Sub3-2 2019.1 1017 brain tumour segmentation, MRI, lesion 
Efficient multi-scale 3D CNN with fully 
connected CRF for accurate brain lesion 
segmentation34 

  Sub3-3 2018.9 1011 whole slide, cancer, pathology 
Diagnostic Assessment of Deep Learning 
Algorithms for Detection of Lymph Node 
Metastases in Women With Breast Cancer35 

  Sub3-4 2019.1 1004 radiograph, bone age, aneurysm 

Deep Learning at Chest Radiography: 
Automated Classification of Pulmonary 
Tuberculosis by Using Convolutional Neural 
Networks36 

  Sub3-5 2018.8 980 radiomics, glioma, MRI 
Machine Learning methods for Quantitative 
Radiomic Biomarkers37 

Cluster15 2018.3 3202 
EEG (electroencephalogram), ECG 
(electrocardiogram), seizure 

Real-Time Patient-Specific ECG Classification 
by 1-D Convolutional Neural Networks38 

  Sub15-1 2019.0 606 ECG, arrhythmia, heartbeat 
Real-Time Patient-Specific ECG Classification 
by 1-D Convolutional Neural Networks38 

  Sub15-2 2017.4 560 
EEG, brain-computer interface, motor 
imagery 

A novel deep learning approach for classification 
of EEG motor imagery signals39 

  Sub15-3 2018.5 394 seizure, EEG, epilepsy 
Deep convolutional neural network for the 
automated detection and diagnosis of seizure 
using EEG signals40 

  Sub15-4 2018.3 379 emotion, EEG, physiological signal 
EEG-Based Emotion Recognition in Music 
Listening41 

  Sub15-5 2018.3 239 
surface electromyography, myoelectric, 
prosthesis 

Electromyography data for non-invasive 
naturally-controlled robotic hand prostheses42 

Cluster12 2018.3 4101 gait, activity recognition, video 
3D Convolutional Neural Networks for Human 
Action Recognition43 

  Sub12-1 2018.8 694 
action recognition, video, convolutional 
neural network 

3D Convolutional Neural Networks for Human 
Action Recognition43 

  Sub12-2 2018.6 530 
human activity recognition, wearable 
sensor, accelerometer 

Deep Convolutional and LSTM Recurrent Neural 
Networks for Multimodal Wearable Activity 
Recognition44 

  Sub12-3 2018.2 463 facial expression, emotion, ck+ 
Facial expression recognition based on Local 
Binary Patterns: A comprehensive study45 

  Sub12-4 2017.4 379 gait, parkinson, walking 
A machine learning approach for automated 
recognition of movement patterns using basic, 
kinetic and kinematic gait data46 

  Sub12-5 2018.8 251 hand pose, sign language, human pose 
Real-Time Continuous Pose Recovery of 
Human Hands Using Convolutional Networks47 

Cluster5 2017.4 7829 
clinical text, disease, electronic health 
record 

Predicting the Future - Big Data, Machine 
Learning, and Clinical Medicine48 
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  Sub5-1 2016.7 828 
clinical text, radiology report, electronic 
health record 

2010 i2b2/VA challenge on concepts, 
assertions, and relations in clinical text49 

  Sub5-2 2018.3 759 recidivism, treatment effect, uplift modelling 
Machine Learning: An Applied Econometric 
Approach50 

  Sub5-3 2019.0 753 
readmission, patient, electronic health 
record 

Scalable and accurate deep learning with 
electronic health records51 

  Sub5-4 2018.1 731 sepsis, acute kidney injury, ICU 
An Interpretable Machine Learning Model for 
Accurate Prediction of Sepsis in the ICU52 

  Sub5-5 2018.9 710 coronary artery, cardiac, angiography 

A combined deep-learning and 
deformable-model approach to fully automatic 

segmentation of the left ventricle in cardiac 
MRI53 

Cluster13 2017.6 3800 disorder, brain, schizophrenia 
Single subject prediction of brain disorders in 
neuroimaging: Promises and pitfalls54 

  Sub13-1 2017.2 546 schizophrenia, psychosis, bipolar disorder 
Using Support Vector Machine to identify 
imaging biomarkers of neurological and 
psychiatric disease: A critical review55 

  Sub13-2 2018.6 441 
Alzheimer, MCI (mild cognitive impairment), 
disease 

Hierarchical feature representation and 
multimodal fusion with deep learning for AD/MCI 
diagnosis56 

  Sub13-3 2017.1 433 
MCI, Alzheimer, mild cognitive impairment, 
impairment 

A review on neuroimaging-based classification 
studies and associated feature extraction 
methods for Alzheimer's disease and its 
prodromal stages57 

  Sub13-4 2018.3 350 suicide risk, depression, mental health 
Predicting Risk of Suicide Attempts Over Time 
Through Machine Learning58 

  Sub13-5 2018.1 315 autism spectrum disorder, child, ADHD 
Identification of autism spectrum disorder using 
deep learning and the ABIDE dataset59 

Cluster2 2016.4 13309 protein, drug discovery, peptide Random forests60 

  Sub2-1 2016.4 2056 ligand, drug, virtual screening 
Deep Neural Nets as a Method for Quantitative 
Structure-Activity Relationships61 

  Sub2-2 2017.3 1873 gene, random forest, cancer Random forests60 

  Sub2-3 2018.0 1546 enhancer, gene, RNA 
Predicting the sequence specificities of DNA- 
and RNA-binding proteins by deep learning62 

  Sub2-4 2018.6 1158 
Ligand, patient, NGC (NIDA Genetics 
Consortium) 

Scikit-learn: Machine Learning in Python63 

  Sub2-5 2016.5 1027 
DNA binding protein, peptide, amino acid 
composition 

Predicting protein structural classes for 
low-similarity sequences by evaluating different 
features64 

 

Among these AI-based medical technologies, EEG analysis was identified for 

applications in epileptic seizure prediction, emotional analysis, and brain-computer 

interfaces, for which the FDA issued draft guidance on non-clinical and clinical 

trials in 2019. 

Electrocardiograms (ECGs) and electroencephalograms (EEGs) in cluster 15 are most 

likely to be applied to new medical devices; therefore, we tried to follow the cluster 

containing a key paper on the application of deep learning to EEG analysis by Cecotti 

& Graser(2010)65, which was one of the triggers for the development of this field. 

During 2015 – 2016, the article was included in the same cluster as other neuroimaging 

techniques, such as MRI (MEG, fNIRS, etc.). In 2017, the key article was found in 

a separate cluster numbered 20 from other neuroimaging techniques, suggesting a new 

cluster specific to the application of deep learning to EEG was formed. Then, in 2018, 

the article was included in cluster 1 of the applications of deep learning in various 

fields but was included in a specific cluster re-formed, numbered 14 and 15 in 2019 
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and 2020, respectively, and the number of citations of the article increased. This 

suggests that research in this field has developed rapidly since 2017. 

 

 

Fig 3 Tracking clusters related to ECG and EEG 

Papers obtained from WoS published up to the indicated year were analysed. Clusters on ECG and EEG 

were first detected in 2015. The cluster on the ECG and EEG is indicated as a cluster number. The 

size of the circles indicates the approximate citation frequency of key article 60 and the number 

in each circle represents the number of citations in the cluster.   
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DISCUSSION  

The development of medical products based on innovative technologies may sometimes 

not be amenable to current development and evaluation approaches or regulatory 

frameworks. Horizon-scanning for such technologies will contribute to earlier access 

to the product for patients and a better benefit/risk ratio for the product by 

encouraging regulatory authorities to develop new guidance/regulations. Experts who 

have a deep understanding of innovative technologies would be able to predict the 

development of medical products based on the technology but experts on all evolving 

innovative technologies may not be available to regulatory authorities. However, it 

might sometimes be inappropriate to narrow the scope of consideration based solely 

on expert’s opinions, as information from experts is subjective and the outcome 

depends upon the choice of the expert66. Therefore, it is more efficient and appropriate 

to use a method based on objective information as a primary screening tool for 

horizon-scanning to identify candidate technologies that may require new guidance 

or regulation. In this study, we have shown that citation network analysis and text 

mining are suitable for this purpose. We used these methods to classify a large number 

of papers in the field by research topic and identified the topics of the clusters 

based on the characteristic keywords of the clusters and the titles of the most cited 

papers. We also objectively evaluated the attention and novelty of the topic based 

on the number of papers and the median year of publication. 

 

In this study, we examined the possibility of using this analysis method for 

horizon-scanning targeting AI-based medical image analysis as a typical example that 

requires new regulatory frameworks and evaluation approaches67. IDx-DR, an image 

analysis software for the automatic diagnosis of diabetic retinopathy, received US 

FDA certification in 2018. The AI characteristics are self-learning, the algorithm 

for learning data during the development of a medical product is in a black box, and 

performance changes as the product continues learning during clinical use. This has 

become an interesting dilemma for regulators67. 

We assessed the feasibility of using citation network analysis and text mining to 

identify trend history in AI-based medical image analysis research and development, 

which is as follows: Research on convolutional neural networks (CNNs), the currently 

leading technology in deep learning arose in the 1970s, renewed interest in neural 

networks was Werbos's multi-layer networks (1975)68 and LeNet (1998)17 — a CNN-based 

handwritten number recognition system — was developed and succeeded by a CNN called 

AlexNet (2012)19, which was a key trigger for renewed interest in neural networks. 
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Later, the U-net22 architecture was proposed, which consists of an upsampling section 

that uses "up" convolution to increase the image size. Furthermore, the combination 

of CNNs and recurrent neural networks (RNNs), represented by long short-term memory 

(LSTM), has been applied to analysis involving time-series data28 44. We evaluated 13 

key articles, including these milestones in the development of AI-based medical image 

analysis, to determine how key articles could be captured by citation network analysis 

and found that eight were identified in one or two clusters (Table 1), with a 

concentration of the characteristic keywords of the clusters, and the titles and 

abstracts of the articles with the highest number of citations confirmed that the 

clusters were related to AI-based medical image analysis and that it was possible 

to identify actual research trends. In addition, we analysed the papers reported each 

year and found that the number of constituent papers of the cluster containing the 

key articles increased dramatically after 2014, with the rank rising from 13th to 

6th, suggesting that the technology related to diagnostic imaging has progressed 

dramatically. This might have led to a major clinical trial of IDx-DR in 2017. Since 

then, there has been a further increase in research activity in this field, as can 

be seen from the rank of cluster number and number of citations in the key articles. 

Five of the 13 selected articles were not included in the analysis: three papers were 

not included in the Web of Science Core Collection and the other two (MD Abràmoff 

et al. (2013)20, AA van der Heijden et al. (2018)29) on clinical evaluation were not 

found with the set query; this is because there was no mention of the underlying 

technology in the abstract or title, and the methods were mainly described as product 

names or computer detection in both papers. 

Next, we explored recent trends in the development of new medical products using AI 

by re-analysing ‘young’ clusters with a late average of the publication year of 

constituent papers to identify more specific topics by sub-clustering (Table 2). We 

focused on EEG and ECG, which have the potential to lead to the development of new 

medical devices, and followed the cluster containing the key article on this topic. 

As shown in Fig 3, the increase in constituent papers and the number of citations 

of the key article suggested that this topic has made significant progress during 

2017 – 2018, which might be related to the US FDA issuing draft guidance on 

brain-computer interfaces in 201969. 

This study also showed that analysis every several months might allow us to identify 

the candidate topics to further investigate through the rapid rise of the rank of 

cluster number, i.e., a sharp increase in constituent papers (2014 – 2015 in Fig. 

2 and 2017 – 1018 in Fig 3), or the emergence of a new cluster spun out of the original 
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one (2017 – 2018 in Fig. 2 and 2016 – 2017 in Fig 3), which may be a signal of significant 

research progress.  

However, this analysis method has the following limitations: papers in major 

journals are included in WoS relatively quickly after publication but there might 

be a delay of approximately six months for almost all journals and some research areas 

may not be reflected in WoS quickly enough, which may delay the identification of 

research trends. Although data are not shown in this paper, we also analysed the papers 

obtained from PubMed; however, approximately 30 % of the papers formed a citation 

network and only 5 of the 13 key articles were included. One of the possible reasons 

for not being able to extract appropriate research papers from PubMed was that many 

of the papers did not use terminology related to AI-based technologies. This suggests 

that the choice of the literature database according to the target technology is also 

critical. Furthermore, research results in the field of machine learning, which covers 

basic technologies in the field of AI, are sometimes published in venues such as 

arXiv.com, where researchers can directly exchange papers with each other via the 

Internet; therefore, the latest results cannot be covered by databases of academic 

papers, such as WoS or PubMed. 

Another possible bias, as mentioned by Takano et al. (2017)70, is that researchers 

mainly check and cite papers written in their native language or journals they 

contribute to, or that they tend to search and cite papers using the same terminology 

and not others — even when the technological meaning is the same. 

It is important to hear the opinions of experts in the field regarding the candidate 

topics to be investigated, which will result in overcoming the limitations described 

above.  

It is expected that this citation network analysis will be established as a primary 

horizon-scanning method by continuing the study in other fields and organising the 

analysis conditions and points to be noted according to the characteristics of the 

target technology. 
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Step3: Clustering

Step4: Visualization

Those groups of papers (Clusters) are 
mapped into an Academic Landscape, 
which helps visualize the relationship 
of technologies.

Fig1  Steps of clustering and making Academic Landscape

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.25.21252496doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252496
http://creativecommons.org/licenses/by-nc/4.0/


-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

C
lu

st
e

r 
N

o
.

Year

A B C G

I J K L

L

S

Times cited 
within each cluster

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.25.21252496doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252496
http://creativecommons.org/licenses/by-nc/4.0/


96
70

41

19

11
9

-5

0

5

10

15

20

25

2014 2015 2016 2017 2018 2019 2020 2021
C

lu
s
te

r 
N

o
.

Year

Fig3: Time series plot of Hub-paper published early stage
Article Title: Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces(2010)60
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