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Abstract 

Background: There is considerable variability in COVID-19 outcomes amongst younger 

adults—and some of this variation may be due to genetic predisposition. We characterized the 

clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent 

effect, using individual-level data in a large international multi-centre consortium. 

 

Method: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by 

the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive 

patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this 

genetic marker with mortality, COVID-19-related complications and laboratory values. We next 

examined if the magnitude of these associations varied by age and were independent from 

known clinical COVID-19 risk factors. 

 

Findings: We found that rs10490770 risk allele carriers experienced an increased risk of 

all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2–1·6) and COVID-19 

related mortality (HR 1·5, 95%CI 1·3–1·8). Risk allele carriers had increased odds of several 

COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6), 

venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI 

1·2-2·0). Risk allele carriers ≤ 60 years had higher odds of death or severe respiratory failure 

(OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction 

p-value=0·04). Amongst individuals ≤ 60 years who died or experienced severe respiratory 

COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers, 

compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes.  

Prediction of death or severe respiratory failure among those ≤ 60 years improved when 

including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770 

risk allele was similar to, or better than, most established clinical risk factors.  

 

Interpretation: The major common COVID-19 risk locus on chromosome 3 is associated with 

increased risks of morbidity and mortality—and these are more pronounced amongst individuals 

≤ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk 

factors, suggesting potential implications for clinical risk management. 

 

Funding: Funding was obtained by each of the participating cohorts individually. 
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Introduction 

The COVID-19 pandemic has led to the death of millions of individuals and the largest economic 

contraction since the Great Depression1. The clinical outcomes of COVID-19 are remarkably 

variable, such that some individuals remain asymptomatic2, while others develop severe 

COVID-19 with systemic inflammation, respiratory failure or death. This variability in outcome 

creates difficulties in clinical management when estimating who is at risk of severe disease and 

may develop a need for intensive care. Furthermore, recent guidelines suggest risk stratification 

should be considered when deciding upon prophylactic treatment algorithm and priority for 

vaccination3.  

 

Some of this variation in COVID-19 behavior has been attributed to risk factors such as age4, 

sex4, comorbidities5, socioeconomic factors6 and genetic variants in the SARS-CoV-2 genome.7 

While the main risk factor for severe outcomes is age, which increases exponentially after age 

605, some younger individuals experience severe COVID-19 outcomes and death. The early 

onset of several common diseases such as breast cancers and myocardial infarction, is 

disproportionally influenced by human genetic factors8–10 and this may also be the case for 

COVID-19. Several studies have identified and replicated a major genetic risk locus for severe 

COVID-1911–13 in the human genome. This genetic risk locus harbors a cluster of genes on 

chromosome 3, in which the true causal variant is still unknown. The single nucleotide 

polymorphism (SNP) rs10490770 serves as a marker for this genetic risk (as well as other SNPs 
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in linkage disequilibrium14) and approximately 15% of individuals of European ancestry carry the 

C risk allele15. However, the clinical relevance of this locus, and its potential age-dependent 

impact, is unknown.  

 

We therefore assembled individual-level COVID-19 clinical and human genomic data in a large 

international consortium of 17 cohorts in nine countries (Belgium, Brazil, Canada, Germany, Italy, 

Norway, Spain, Sweden, and UK) to assess the relationship between the chromosome 3 genetic 

risk with COVID-19 severity, complications and mortality. We next tested the age-dependent 

effects of this locus on COVID-19 outcomes. Last, in order to assess the relative importance of 

this locus, we compared its ability to predict COVID-19 outcomes to that of other established 

clinical risk factors.  

 

Methods 

Study participants 

We gathered clinical and genomic data from 13,424 COVID-19 cases (6,689 of whom were 

hospitalized) with genetic information available, harmonizing individual-level data from 17 studies. 

COVID-19 cases were defined as individuals having at least one confirmed SARS-CoV-2 viral 

nucleic acid amplification test from relevant biologic fluids, or whose SARS-CoV-2 status was 

confirmed by ICD-10 codes, using codes U071 and/or U072. We combined data from 
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hospital-based studies which recruited participants after COVID-19 outbreak, and a 

population-based biobank in which recruitment was not dependent upon COVID-19 status. 

Detailed information for each individual study is described in the online supplement.  

 

Statistical analysis 

In order to tag the chromosome 3 locus, we selected the SNP rs10490770, which was most 

significantly associated with hospitalization in the COVID-19 genome-wide association study 

(GWAS) from the COVID-19 Host Genetics Initiative, since this is the largest genome-wide 

association study meta-analysis of COVID-19 severity13 (cases / controls = 12,888 / 

1,295,966). Each participating study performed genotyping and imputation separately 

following a recommended quality control pipeline16. Detailed methods describing genotyping 

and imputation are available in the online supplement. Ancestry was inferred by performing 

projection onto the principal component analysis (PCA) space from the 1000G17 Phase 3 

population using HapMap3 SNPs18 with minor allele frequency > 1% (detailed methods are in 

the online supplement) (Supplementary Table 1, Supplementary Figure 1). To test the 

association between rs10490770 and all phenotypes above, we applied a dominant model by 

grouping participants into two groups according to their genotype at rs10490770 – C is the 

allele associated with COVID-19 severity; those with TC genotype or CC genotype were 

labeled as carriers and those with TT genotype were labeled as non-carriers. We chose this 
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model because it had the lowest Akaike Information Criterion (AIC), compared to additive and 

recessive models (see the online supplement for detail, Supplementary Table 2), in a logistic 

regression for death or severe respiratory failure outcome (defined below). All analyses were 

performed separately for each ancestry group. Because the sample size in non-Europeans 

was limited, we reported the results from European descent as main analyses, but also 

reported the results from non-European ancestry individuals are in the supplement. All 

analyses were based on mixed-effects model adjusted for age, sex and the first five genetic 

principal components (PCs) as fixed effects and study groups were also included as random 

effects to account for the study variability. Five study groups, mostly reflecting the country of 

origin of the study, were created by combining small participating studies with few cases and 

controls to reduce the risk of collinearity (detail is described in the online supplement). We 

further estimated the frequency of rs10490770 risk allele carrier status from the population 

frequencies reported in external database (the Genome Aggregation Database v 3·1 

[gnomAD15]), assuming this variant follows Hardy-Weinberg equilibrium.  

 

Association with mortality 

The hazard ratio (HR) for all-cause mortality was estimated by Cox proportional hazard models 

using the “coxme v2·2-16” R package. Individuals entered the follow-up when diagnosed with 

COVID-19 or if a diagnosis date was missing, the date when they were hospitalized or when 
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their symptoms started. They were considered as an event at the date of death and censored 

at the last date of follow-up (details are described in the online supplement). We additionally 

performed competing risk analyses to estimate the sub-distribution hazard ratio for COVID-19 

related mortality using the “cmprsk v2·2-10” R package, which accounts for the competing risk 

of non-COVID-19 related death: i.e. individuals who did not die of COVID-19 but died due to 

other causes (e.g. cancer). In the competing risk model, study groups were considered as 

fixed effects. Survival analyses were restricted to study participants with available follow-up 

and cause of death information (N=9,248). Cause of death was defined by doctor-diagnoses, 

medical chart reviews or ICD-10 codes (details are described in the online supplement).  

 

Association with COVID-19 severity and complications 

To understand the clinical implications of the chromosome 3 locus, we fit mixed-effects 

regression models to assess the association of rs10490770 risk allele [C] carrier status with 

three types of COVID-19 outcomes: COVID-19 severity, COVID-19 complications and 

laboratory values. To do so, we defined three COVID-19 severity outcomes, with appropriate 

control definitions amongst SARS-CoV-2 positive individuals. 1) hospitalization; 2) intensive 

care unit (ICU) admission and 3) death or severe respiratory failure. Hospitalization cases 

were COVID-19 cases admitted to the hospital, whereas controls were individuals who did not 

experience hospitalization. ICU cases were those COVID-19 cases admitted to the ICU and 
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controls were individuals who did not experience hospitalization. To assess potential selection 

bias, we also repeated the analyses using only individuals who were hospitalized. In these 

analyses, controls were defined as those who were hospitalized, but not admitted to the ICU. 

Death or severe respiratory failure cases were defined as individuals who died or required 

respiratory support (intubation, continuous positive airway pressure, Bilevel Positive Airway 

Pressure, or continuous external negative pressure, Optiflow/high flow Positive End Expiratory 

Pressure Oxygen), had ICD-10 codes for acute respiratory distress syndrome (ARDS) or acute 

respiratory failure ("J80", "J9600","J9609","Z991"), or OPCS codes of the use of ventilator 

("E851","E852"). Controls for the death or severe respiratory failure cases were defined as 

those requiring no oxygen therapy and who were alive.  

We next defined five COVID-19 related complications, which were diagnosed at hospital. 

These included: 1) Severe respiratory failure, which was defined by the use of respiratory 

support or individuals with administrative codes for ARDS, respiratory failure or ventilatory 

support as described above; 2) Hepatic injury was defined as individuals with at least one of 

the following: doctor-diagnosed hepatic complications, highest alanine aminotransferase > 3 

times upper limit of normal (ULN), or ICD-10 codes for acute hepatic failure (“K720”); 3) 

Cardiovascular complications were defined by at least one of the following: doctor-diagnosed 

acute myocardial infarction (AMI) or stroke, highest troponin T or troponin I > ULN, or ICD-10 

codes for AMI or stroke (“I21*”,“I61”, “I62”, “I63”, “I64”, “I65” ,”I66*”).; 4) Kidney injury was 
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defined by at least one of the following: doctor-diagnosed acute kidney injury (AKI), highest 

creatinine > 1·5 times ULN, or ICD-10 codes for AKI (“N17*”); 5) Venous thromboembolism 

(VTE) was defined by at least one of the following: doctor-diagnosed pulmonary embolism 

(PE) or deep venous thrombosis (DVT), or ICD-10 codes for PE or DVT (“I26*” ,“I81”, “I82*”). 

Controls for severe respiratory failure were defined as those requiring no oxygen therapy and 

who were alive, whereas controls for other complications were defined as those who did not 

meet the corresponding case criteria and were alive.  

 

Last we considered the laboratory values of complete blood count and biochemistry tests 

available at hospital (Supplementary Table 3). To test the association with the chromosome 3 

locus we used the highest or lowest value recorded per individual19–23. We selected the lowest 

value for lymphocyte counts and otherwise highest value. This is because we were interested 

in using these laboratory values as a proxy of COVID-19 severity. Definitions and quality 

control of laboratory values and specific codes are described in the online supplement 

(Supplementary Figure 2).  

 

Age-dependent associations with COVID-19 severity 

We evaluated the age-dependent effects of the risk allele carrier status on COVID-19 three 

severity phenotypes by performing two sets of analyses: 1) linear regressions between age at 
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diagnosis and risk allele carrier status amongst severe cases, adjusting for the same 

covariates as the main analyses, and 2) adding a carrier status by age interaction term in the 

main regression models. Age was not dichotomized in these analyses. We also stratified 

participants by age ≤60 or >60 years and repeated the same logistic regressions, as well as we 

estimated the frequency of the risk allele carriers in the two age groups. We used 60 years as 

a cut-point for age-stratified analyses, because COVID-19 case fatality rates increased 

markedly after this age24,25.  

 

Associations with COVID-19 severity stratified by established clinical risk factors 

In order to compare the association of rs10490770 risk allele carrier status with other risk 

factors, we similarly stratified participants by BMI ≥30 kg/m2 (a definition of obesity26), smoking 

(ever-smoker vs never-smoker), cancer, chronic kidney disease, chronic obstructive 

pulmonary disease (COPD), chronic heart failure, transplantation, and diabetes mellitus (DM), 

all of which were curated as established clinical risk factors for severe illness of COVID-19 

according to the Centre for Disease Control website26. All of the eight risk factors were defined 

by doctor-diagnoses, medical chart reviews or ICD-10 codes (details are described in the 

online supplement). We then tested the difference of the magnitude of the associations of the 

risk allele carrier status compared to the eight clinical risk factors. Clinical risk factors stratified 

analysis and prediction assessment (described below) were restricted to individuals with 
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complete information for demographics, clinical risk factors and rs10490770 genotype 

information (N=7,919). The majority of this subset were from UK Biobank (N=7,461), and only 

50 individuals were included from the first discovery GWAS11.  

 

Risk prediction compared to established clinical risk factors  

To better understand the prediction improvement by adding of the chromosome 3 genetic risk 

in addition to the eight clinical risk factors, we performed multivariate regressions in individuals 

with complete information as described above (N=7,919). We evaluated whether the 

rs10490770 risk allele improved the risk prediction discrimination for severe COVID-19 

outcomes by calculating the area under receiver operation curve (AUC) and the continuous net 

reclassification improvement (NRI) using “pROC v1·16·2” and “PredictABEL v1·2-4” R 

packages.  

 

Meta-analyses 

As secondary analyses, we meta-analyzed the results with non-European ancestries and two 

external cohorts for which we did not have access to individual-level data; FinnGen and 

Columbia University COVID-19 Biobank (CUB). This resulted in a total study population of 

14,620 individuals with COVID-19. An inverse-variance weighted meta-analyses were 

performed under a fixed effect and random effects models using the “meta v4·16-1” R package 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.07.21252875doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.07.21252875
http://creativecommons.org/licenses/by/4.0/


 14

when the appropriate phenotypes were available and case counts, control counts, and the 

rs10490770 risk allele carrier counts were larger than ten in each cohort.  

 

Sensitivity analysis 

Adjusting for participating studies may lead to reduced statistical power, given that some studies 

had only severe cases or had disproportional case-control ratio. To alleviate the collinearity issue, 

we grouped some small studies to account for study variability. This may not fully account for 

between study variability. Thus we performed two sets of sensitivity analyses where we included, 

1) only five genetic PCs without including the study of origin as random or fixed effects, and 2) 

including all participating studies either as fixed or random effects. Next, we performed the same 

analyses using UK Biobank (UKB) to provide estimates which are more representative of general 

population, since this is not a COVID-19 specific cohort. We also tried binning by different cut-offs 

for age-stratified analyses. In order to understand if results could have been influenced by related 

individuals within the samples, we selected one individual from a pair of relatives with PI-HAT 

(proportion of identity by descent calculated by PLINK27) >0·1875 (meaning between second and 

third-degree relatives) and repeated the main analyses.  

 

Role of the funding source 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.07.21252875doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.07.21252875
http://creativecommons.org/licenses/by/4.0/


 15

The funding sources had no role in study design; in the collection, analysis, and interpretation of 

data; in the writing of the report; and in the decision to submit the paper for publication. 

 

 

Results 

Study participants 

We collected and harmonized individual-level data from 13,424 COVID-19 patients diagnosed 

with COVID-19 from February 5th, 2020 to January 2nd, 2021. Table 1 illustrates the 

participants’ demographic and clinical characteristics. The majority of participants were of 

European descent (11,658; 86·8%). However, important numbers of non-European descent 

individuals were also included in meta-analyses: 388 (2·9%) were South Asian ancestry and 

574 (4·3%) were Admixed-American ancestry. 6,689 were hospitalized, amongst whom 1,622 

(25·0%) were admitted to the ICU. 1,223 (21·6%) died following COVID-19 diagnosis and 

1,644 (31·9%) met the criteria for severe respiratory failure. Clinical information was obtained 

with different degrees of completeness across studies. A detailed description of study-specific 

demographic, clinical characteristics and their missingness rates is provided in Supplementary 

Table 4.  

Table 1. Patients’ characteristics 

 Hospitalized Total 
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Age*: Mean (SD), % was calculated amongst those with complete information. The missing rates per each study are listed in 

Supplementary Table 4. 

 

Risk allele frequency 

According to the population frequencies in gnomAD15, we estimate that 15·6% of individuals of 

European descent carry at least one rs10490770 C allele, as well as 10·0% of 

Latinx/Admixed-American, 2·4% of African/African-American, 62·0% of South Asians and 

(N=6,689) (N=13,424) 

Female 2,650 (39·6%) 6,344 (47·3%) 

Age (years)* 64·9 (14·7) 63·8 (12·7) 

Ancestry   

European 5,601 (83·7%) 11,658 (86·8%) 

South Asian 109 (1·6%) 388 (2·9%) 

African 233 (3·5%) 421 (3·1%) 

Others 185 (2·8%) 275 (2·0%) 

East Asian 59 (0·9%) 108 (0·8%) 

Admixed American 502 (7·5%) 574 (4·3%) 

ICU admission 1,622 (25·0%) 1,622 (12·4%) 

Death Status   

Survived 4,437 (78·4%) 10,951 (90·0%) 

Deceased 1,223 (21·6%) 1,223 (10·0%) 

Respiratory failure   

Severe respiratory failure 1,644 (32·0%) 1,644 (14·7%) 

Oxygen supplementation 1,641 (32·0%) 1,641 (14·6%) 

Hepatic injury 447 (10·0%) 447 (4·1%) 

Cardiovascular complications 799 (17·1%) 804 (7·5%) 

Kidney injury 1,095 (22·5%) 1,097 (9·6%) 

Venous thromboembolism 286 (6·9%) 287 (2·7%) 
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0·4% of East Asians. In our study the carrier frequency was 16·2% amongst individuals of 

European descent in our cohort. 

 

Association with mortality 

Risk allele carriers at rs10490770 had a higher HR for all-cause mortality compared to 

non-carriers (HR 1·4, 95%CI 1·2–1·6, p=1·1x10-4, dead / alive = 832 / 8,416) over a median 

follow-up duration of 45 days (interquartile range [IQR] 21-70 days) (Figure 1A). A competing 

risk model to estimate the HR for COVID-19-related death while accounting for 

non-COVID-19-related deaths estimated a similar HR for COVID-19 related mortality (HR 1·5, 

95%CI 1·3-1·8, p=2·7x10-6, dead / alive = 720 / 8,416) (Figure 1B). The association with 

mortality was reduced when the analysis was restricted to hospitalized individuals (HR for 

all-cause mortality 1·2, 95%CI 1·0–1·4, p=0·061, dead / alive = 832 / 2,796, and HR for 

COVID-19 related mortality 1·3, 95%CI 1·1-1·5, p=4·2x10-3, dead / alive = 720 / 2,796). 

 

Associations with COVID-19 severity 

We confirmed that risk allele carrier status at rs10490770 was significantly associated with 

hospitalization (OR 1·5, 95%CI 1·3-1·7, p=9·1x10-10, cases / controls = 5,601 / 5,997). A 

stronger effect was observed for ICU admission (OR 2·5, 95%CI 1·9-3·2, p=1·9x10-12, cases / 

controls = 1,173 / 6,004) and death or severe respiratory failure (OR 1·7, 95%CI 1·5-2·1, 
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p=7·7x10-10, cases / controls = 1,925 / 7,055) (Figure 2, Supplementary Table 5). Restricting 

analyses to hospitalized individuals, we observed consistent results, some of which were with 

diminished effect sizes (Figure 2, Supplementary Table 5). For instance, a significant reduction 

in effect size was observed in OR for ICU admission (OR 1·5, 95%CI 1·3-1·8, p=1·4x10-6, 

cases / controls = 1,173 / 4,428) 

 

We next explored the association of the rs10490770 risk allele with laboratory values, which 

are known to be associated with the severity of COVID-1919–23. rs10490770 risk allele carrier 

status was associated with the worst value for each of these laboratory values at hospital (e.g. 

lactate dehydrogenase: 0·24 SD increase, p=2·8x10-6, D-dimer: 0·15 SD increase, p=3·6x10-3 

and interleukin-6: 0·18 SD increase, p=6·3x10-3; Supplementary Figure 3, Supplementary 

Table 3). 

 

Associations with COVID-19 complications 

Risk allele carrier status at rs10490770 was associated with multiple COVID-19-related severe 

complications (Figure 2). These included severe respiratory failure (OR 2·0, 95%CI 1·6-2·6, 

p=4·3x10-10, Cases / Controls = 1,234 / 7,055), VTE (OR 1·7, 95%CI 1·3-2·4, p=5·7x10-3, 

Cases / Controls = 205 / 8,914) and hepatic injury (OR 1·5, 95%CI 1·2-2·0, p=1·9x10-3, Cases 

/ Controls = 309 / 9,190). No significant effect was observed for cardiovascular complications 
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(OR 1·2, 95%CI 1·0-1·5, p=0·075, Cases / Controls = 697 / 8,611), although this might be due 

to lack of statistical power to detect such effects. Similar results were observed when 

restricting to hospitalized patients (Figure 2; Supplementary Table 5), indicating that the effect 

of rs10490770 on severe COVID-19 complications was not simply explained by the higher 

hospitalization rate among the carriers. 

 

Age-dependent associations with COVID-19 severity 

We explored the age-dependent effects of rs10490770 risk allele carrier status on severe 

COVID-19 outcomes in individuals of European descent. Amongst severe patients who died or 

had severe respiratory failure, rs10490770 risk allele carriers were on average 2·3 (95%CI 

1·1-3·5) years younger than non-carriers (p=2·4x10-4, N=1,925, Figure 3A; Supplementary 

Table 5). Stratifying by age, we found that amongst those who were ≤ 60 years, risk allele 

carrier status had markedly increased odds of death or severe respiratory failure (OR 2·6 

95%CI 1·8-3·8), whereas risk allele carrier status had more modest effects amongst those >60 

years with an OR of 1·5 (95%CI 1·3-1·9, p-value interaction=0·043, Figure 3B, Supplementary 

Table 5-6). Amongst all participants ≤ 60 years who died or experienced a severe respiratory 

COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2%) were rs10490770 risk variant 

carriers, compared to 13·9% (95%CI 12·6-15·2%) of those who did not experience severe 

disease (Table 2). When considering other severity phenotypes, such as hospitalization and 
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ICU admission, we observed that risk allele carriers tend to be younger than non-carriers. 

However, we did not detect a different effect in the association between rs10490770 risk allele 

carriers and these additional severity phenotypes amongst those who were ≤60 vs >60 years 

old. This could be attributed to the heterogeneity of the criteria of hospitalization or ICU 

admission, or case-control imbalance in some participating studies.    

 

Table 2 Age and risk allele carrier status by COVID-19 severity outcomes 

 Death or severe respiratory failure COVID positive but no oxygen supplementation 

  Hospitalized only All 

All       

 carrier 25·1% [23·2; 27·1] (483)  16·2% [14·4; 18] (258) 13·8% [13; 14·6] (974) 

 non-carrier 74·9% [72·9; 76·8] (1442) 83·8% [82; 85·6] (1,339) 86·2% [85·4; 87] (6,081) 

Total 100% (1,925) 100% (1,597) 100% (7,055) 

Age ≤ 60 years old       

 carrier 31·8% [27·6; 36·2] (143) 14·5% [11·2; 18·5] (51) 13·9% [12·6; 15·2] (366) 

 non-carrier 68·2% [63·8; 72·4] (307) 85·5% [81·5; 88·8] (301) 86·1% [84·8; 87·4] (2,273) 

Total 100% (450) 100% (352) 100% (2,639) 

Age > 60 years old       

 carrier 23·1% [21; 25·3] (340)  16·6% [14·7; 18·8] (207) 13·8% [12·8; 14·8] (608) 

 non-carrier 76·9% [74·7; 79] (1,135) 83·4% [81·2; 85·3] (1,038) 86·2% [85·2; 87·2] (3,808) 

Total 100% (1,475) 100% (1,245) 100% (4,416) 

Frequency of rs10490770 risk variant carriers in individuals of European descent stratified by age and COVID-19 severe 

outcomes. [95%CI] (Sample size) 

 

Associations with COVID-19 severity stratified by established clinical risk factors 

We studied how the effects of rs10490770 risk allele carrier status on COVID-19 severity 

varied by other established clinical risk factors. Amongst individuals with no risk factors (BMI ≥ 
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30, smoking, cancer, chronic kidney disease, chronic obstructive pulmonary disease, heart 

failure, transplantation, and DM) prior to COVID-19, risk allele carriers had an OR of 1·9 for 

death or severe respiratory failure (95%CI 1·1-3·6), whereas risk allele carrier status had more 

modest effects amongst those with one medical condition (OR 1·6, 95%CI 1·0-2·4) and more 

than one medical conditions (OR 1·4, 95%CI 1·0-1·8) (p-value for interaction=0·087; Figure 3B, 

Supplementary Table 7). 

 

Risk prediction compared to established clinical risk factors  

We compared the risk discrimination conferred by the rs10490770 risk allele on COVID-19 

severity with that observed for other established COVID-19 risk factors. To do so, we used 

multivariate regression in individuals of European ancestry with complete ascertainment of 

clinical risk factors. rs10490770 risk allele carrier status was independent of other risk factors 

(Figure 4A, Supplementary Table 8) when examining the association with death or severe 

respiratory failure (OR 2·0, 95%CI 1·7-2·4, p=4·7x10-13, frequency of risk allele carriers 14·6%, 

Cases / Controls = 834 / 6,454). The effect sizes were comparable, or larger, than those of 

other known risk factors such as DM (OR 1·9, 95%CI 1·6-2·4, p=6·2x10-12, frequency of DM 

12·3%). Stronger effects were observed amongst individuals ≤60 years (risk allele carrier 

status: OR 4·0, 95%CI 2·6-6·2, p=1·3x10-10, Cases / Controls = 128 / 2,348) relative to DM (OR 

2·3, 95%CI 1·3-4·2, p=5·7x10-3, frequency of DM: 5·5%) (Figure 4A, Supplementary Table 8). 
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Consistent with the results from multivariate regression, adding rs10490770 genotype to 

non-genetic risk factors improved discrimination for death or severe respiratory failure 

amongst ≤ 60 years (AUC: 0·82 vs 0·84, p=0·016 and NRI 0·45, p=6·5x10-8, Table 3), and the 

performance of risk discrimination was similar to, or better than, most of established risk 

factors included in the study (Figure 4B, Supplementary Table 9).  

 

Table 3: Risk prediction performance for death or severe respiratory failure 

Age range Model AUC† AUC p-value* NRI† NRI p-value* 

All 

Cases = 834 

Controls = 6,454 

Baseline 0·77 [0·75; 0·78] - - - 

Baseline and rs10490770 0·78 [0·76; 0·79] 1·8x10-4 0·19 [0·13; 0·25] 2·0x10-10 

Age≤60 

Cases = 128 

Controls = 2,348 

Baseline 0·82 [0·78; 0·86] - - - 

Baseline and rs10490770 0·84 [0·81; 0·88] 1·6x10-2 0·45 [0·29; 0·62] 6·5x10-8 

Only individuals with complete information of clinical risk factors and genotype were included. Baseline model includes age, sex, 

BMI, smoking status (ever-smoker vs never-smoker), cancer, chronic kidney disease, chronic obstructive pulmonary disease 

(COPD), chronic heart failure, transplantation, and diabetes mellitus. *p-values were calculated by comparing baseline model and 

baseline and rs10490770 model. †: [95%CI] 

 

Meta-analyses 

We meta-analyzed the European ancestry results presented above with those of 

non-European ancestry participants and two external cohorts. We confirmed similar effects in 

the associations with mortality (Supplementary Figure 4), COVID-19 severity (Supplementary 

Figure 5), COVID-19 complications (Supplementary Figure 6) and age-dependent effects 

(Supplementary Figure 7). Given the small sample size of non-European participants, we 
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lacked sufficient statistical power to investigate whether the association between rs10490770 

risk allele carriers and COVID-19 outcomes was different when comparing individuals of 

non-European and European ancestry. 

 

Sensitivity analysis 

Last, we performed several sensitivities analyses to evaluate the robustness of our results. First, 

we removed the study variables from the covariates and instead included the top five PCs 

(Supplementary Table 10-11). Second, we included participating studies themselves either as 

fixed or random effects (Supplementary Table 10-11). Third, we restricted to individuals of 

European descent from UKB, a cohort which was not developed to study COVID-19 and thus is 

less prone to selection bias. These UKB analyses generated similar results (Supplementary 

Table 12). Fourth, we explored different cut-offs for age-stratified analyses (Supplementary 

Table 13). Last, we excluded related individuals (Supplementary Table 14). All sensitivity 

analyses were consistent with the results from the main analyses. 

 

 

Discussion 

Combining individual-level data from 13,424 individuals ascertained for COVID-19 outcomes 

from 17 cohorts in nine countries, we found that the major genetic risk factor for severe 

COVID-19 on chromosome 3 was strongly associated with COVID-19 related mortality and 
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clinical complications such as respiratory failure and venous thromboembolism. Effect sizes were 

considerably larger in individuals ≤60 years and this genetic risk factor was similar in magnitude, 

and often more common, than most established clinical risk factors. These findings suggest that 

this genetic variant should be considered in risk stratification for COVID-19 outcomes.  

 

The risk allele is common. We estimated that 15·6% of individuals of European ancestry are risk 

allele carriers at rs10490770. Further, 10·0% of Latinx/Admixed Americans, 2·4% of 

African/African-American, 62·0% of South Asians and 0·4% of East Asians are risk allele 

carriers15. Consequently, a large proportion of individuals carry this risk factor.  

 

The effect of carrying the risk allele on COVID-19 severity was stronger in younger individuals. 

First, amongst those ≤60 years, the odds of death or severe respiratory failure increased 2·6-fold 

for risk allele carriers. We found that 32% of individuals ≤60 years who died, or experienced 

severe respiratory failure, were risk allele carriers, compared to 14% of individuals not requiring 

supplemental oxygen. Second amongst individuals who died, or experienced severe respiratory 

failure, risk allele carriers were on average 2·3 years younger than non-carriers. Last, the risk 

discrimination for death and severe respiratory COVID-19 provided by the risk allele was similar 

to, or larger than, established clinical risk factors in individuals ≤60 years. Other common 

diseases have also demonstrated larger effects of genetic risk factors at younger age8,9. Genetic 
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risk factors are often clinically valuable for risk stratification in younger age groups because the 

frequency of other established risk factors for COVID-19 are often reduced, while the frequency 

of the genetic variant remains high. Moreover, this specific variant is not associated with any 

known COVID-19 risk factor and therefore provide orthogonal information compared to existing 

risk assessment tools. 

 

Our findings suggest potential implications for clinical risk assessments in three situations. 

Currently, risk factors such as DM are clinically used in triage to decide if COVID-19 patients 

require further follow-up. Amongst individuals less than 60 years old, this genetic risk factor has 

considerably larger effect size and is more common than DM. This suggests that genotyping 

could help to identify individuals who are at risk for COVID-19 severe outcomes and death, 

allowing for more tailored treatment and clinical observation. Second, amongst very ill individuals 

less than 60 years, the genetic risk factor is quite common and may help to explain to patients 

and families why this individual has become severely ill, while others with the same clinical risk 

factor profile remain healthy. Last, since SARS-CoV-2 will become endemic in the human 

population, future public health strategies, including vaccines against novel variants of 

SARS-CoV-2, could be targeted to individuals at higher risk of severe outcomes. The major 

common genetic risk factor for severe COVID-19 could help to ensure individuals at highest risk 

are prioritized for vaccine programs, thus reducing the overall burden of the disease. 
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The biology of how this chromosome 3 genetic risk has an effect on COVID-19 severity is still 

unknown. This locus on chromosome 3p21 includes the putative SARS-COV-2 coreceptors; 

SCL6A2028,29, LZTFL1, FYCO130, and the chemokine receptors; CCR929, CXCR631, XCR1. 

There are other flanking genes; CCR1, CCR2 and CCR332–34, whose involvement in 

SARS-CoV-2 infection had been suggested and could explain the biology of the striking effect 

of this genetic risk. Many studies12,29 had been trying to pinpoint a or a set of causal genes but 

the consensus had not been built to date. 

 

This study has important limitations. Each cohort has its own selection bias and ascertainment 

bias. Several studies were enriched for severe patients, whereas UKB is a non-COVID-19 

cohort, with evidence of healthy volunteer bias35. Nevertheless, it may be less prone to 

selection bias than the COVID-19 cohorts. Selection bias is inherent to most COVID-19 

observational studies36 and this influences the generalizability of the results outside the study 

populations. To mitigate against these potential issues, we combined data from observational 

studies with different ascertainment strategies, including national healthcare systems, studies 

that were established prior to the COVID-19 pandemic and thus recruitment was not 

dependent upon COVID-19 status and hospital-based studies. This allowed for an increased 

representation of individuals with severe COVID-19 outcomes. We also provide analyses 
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restricted to hospitalized patients, which is an ascertained, but clinically-relevant population. 

While we included information from participants who were of non-European ancestry, on-going 

efforts should enable larger sample sizes in these ancestries to better define the importance of 

the chromosome 3 risk locus in these contexts. This further emphasizes the importance of 

developing genomics-enabled studies in individuals of non-European ancestry. 

 

In summary, the major genetic COVID-19 risk locus is common and has large effects on 

COVID-19 outcomes including mortality. These effects are age-dependent, such that the 

magnitude of risk increases in younger individuals. These findings suggest potential 

implications of genetic information in clinical risk management. 
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Figure 1: Associations with mortality 

 
The results described here were restricted to 9,248 COVID-19 patients of European ancestry with available follow-up and cause of death 

information. 

(A) Kaplan-Meier curves stratified by rs10490770 risk allele carrier status. (Carriers: N=1,400 vs non-carriers: N=7,848). Hazard ratios (HR) were 

calculated by adjusting for age, sex, genetic PCs 1 to 5 as fixed effects, and groups indicating participating studies as random effects. 

(B) Cumulative incidence curves for COVID-19 related death and COVID-19 unrelated death amongst the same individuals as (A). 
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Figure 2: Associations between rs10490770 risk allele carrier status and COVID-19 severity and complications. 

 

The results described here were restricted to COVID-19 patients of European ancestry. Logistic regressions were fit to assess the associations of 

rs10490770 risk allele carrier status with COVID-19 severity and complications, adjusting for age, sex, genetic PCs 1 to 5 as fixed effects, and 

groups indicating participating studies as random effects. Red: All participants (N=11,658) Blue: Hospitalized participants only (N=5,601) The case 

counts demonstrated here are from the data in all individuals.  

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted M
arch 12, 2021. 

; 
https://doi.org/10.1101/2021.03.07.21252875

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2021.03.07.21252875
http://creativecommons.org/licenses/by/4.0/


 30

Figure 3: Influence of age and clinical risk factors for the effect of rs10490770 risk allele carrier status on death or severe respiratory 

failure.   

 

(A) Age distribution in COVID-19 patients of European ancestry who died or experienced severe respiratory failure (N=1,925). Median (IQR) 

age was 67 (63-78) years in carriers (N=438) and 72 (59-76) years in non-carriers (N=1,442). 

(B) Logistic regressions between rs10490770 risk allele carrier status and death or severe respiratory failure. Regressions were performed 

within subgroups stratified by age (age ≤ 60 years and age > 60 years) (Cases / Controls = 1,925 / 7,055) or by the number of established risk 

factors (0, 1, or ≥2); BMI≥30, smoking, cancer, chronic kidney disease, chronic obstructive pulmonary disease (COPD), chronic heart failure, 

transplantation, and diabetes mellitus (Cases / Controls = 834 / 6,454). 

(B) Odds ratios of rs10490770 risk allele carrier status 
for death or severe respiratory failure

(A)Distribution of age in COVID-19 patients who died or        
experienced severe respiratory failure
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Figure 4:  Multivariate regression models and risk prediction estimates of COVID19 death or severe respiratory failure 

 
Multivariate regression analyses for death or severe respiratory failure were restricted to European-ancestry individuals with complete information 

of demographic variables (green), comorbidities (blue) and rs10490770 risk allele status (red). (N=7,288 for all and N = 2,476 for Age ≤ 60), CKD: 

chronic kidney disease, COPD: chronic obstructive pulmonary disease, CHF: chronic heart failure, DM: diabetes mellitus. 

(A) Forest plots comparing odds ratios from multivariate regression models. The size of each dot represents the frequency of the risk factors. 

(B) Comparison of AUCs of predictions for COVID-19 outcomes. rs10490770 risk allele and non-genetic clinical risk factors were included 

separately in addition to age and sex in multivariate regression models 

(A) (B)
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Valladolid Ethics Committee (PI-201716) and the Granada Ethics Committee (no number 

given) on March 24th, 2020 and April 13th, 2020, respectively. SweCovid was approved by the 

National Ethical Review Agency (EPM; 2020-01623). UK Biobank was approved by the 

Northwest Multi-Centre Research Ethics Committee and informed consent was obtained from 

all participants prior to participation. This study was conducted under project ID 27449. 

FinnGen was approved by HUS coordinating Ethics committee. The Columbia University 

Biobank was approved by the Columbia University IRB. 

 

Data sharing 

The harmonized individual-level data of some participating cohorts from Belgium 

(BeLCovid_2), Brazil (BRACOVID), Italy (COVID19-Host(a)ge_4, GEN-COVID), Spain 

(COVID19-Host(a)ge_1,2,3, INMUNGEN-CoV2, SPGRX), and Sweden (SweCovid) is under 

preparation to be deposited at the European Genome-phenome Archive (EGA). 

Regarding the data from genetic modifiers for COVID-19 related illness (BelCovid_1), 
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individual level data were acquired and shared with FIMM during the sanitary crisis under an 

emergency consent and an ethical approval which were specific to this particular project and 

do not cover deposition to public repositories. Upon contact with Françoise Wilkin 

(Françoise.Wilkin@erasme.ulb.ac.be), Isabelle Migeotte 

(Isabelle.Migeotte@erasme.ulb.ac.be), or Guillaume Smits 

(Guillaume.Smits@erasme.ulb.ac.be), an institutional data transfer agreement can be 

established and data shared if the aims of data use are  covered by ethical approval and 

patient consent. The procedure will involve an update to the ethical approval, as well as review 

by legal departments at both institutions and the process will typically take 2-4 months from 

initial contact. 

Regarding the BoSCO study, individual-level genotype and clinical data for purpose of this 

study were shared with FIMM under a legal, bilateral agreement and were specific to this 

particular project. Current participant consents and privacy regulations prohibit deposition of 

individual level data to public repositories. Upon contact with Kerstin Ludwig 

(kerstin.ludwig@uni-bonn.de) or Markus M. Nöthen (markus.noethen@uni-bonn.de), an 

institutional data transfer agreement can be established and data shared if the aims of data 

use is covered by ethical approvals and patient consent. The procedure will involve review by 

legal departments at both institutions and the process will typically take about 2 months from 

initial contact. 

The BQC19 is an Open Science biobank. Instructions on how to access data for individuals 

from the BQC19 at the Jewish General Hospital site are available here: 

https://www.mcgill.ca/genepi/mcg-covid-19-biobank. Instructions on how to access data from 

other sites of the BQC19 are available here: https://www.bqc19.ca/en/access-data-samples. 

For the COMRI cohort, data protection legislation does not allow for deposition of individual 

level data in public repositories. Upon direct contact with Prof Ulrike Protzer (protzer@tum.de, 

genetic data) and Dr Christoph Spinner (christoph.spinner@tum.de), an institutional data 

transfer agreement can be established and data will be shared if the aims of data use are 

covered by ethical approvals and patient consent. The procedure will involve an update to the 

ethical approval as well as review by legal departments at both institutions and the process will 

typically take 2-3 months from initial contact. 

Regarding the Fondazione IRCCS Milan data (FOGS study), institutional data privacy 

regulations prohibit deposition of individual level data to public repositories without a specific 

consent. Participant written consent also does not cover public sharing of data for use for 

unknown purposes. Upon contact with professor Luca Valenti (luca.valenti@unimi.it) an 

institutional data transfer agreement can be established and data shared if the aims of data 

use are covered by ethical approvals and patient consent. The procedure will involve the 

request for an amendment to the ethical approvals, as well as review by legal departments at 

both institutions and the process will typically take 1-2 months from initial contact. 
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Regarding Norwegian data (NorCoV2), institutional data privacy regulations prohibit 

deposition of individual level data to public repositories. Participant written consent also does 

not cover public sharing of data for use for unknown purposes. Upon contact with professor 

Tom H Karlsen (t.h.karlsen@medisin.uio.no) or professor Johannes R. Hov 

(j.e.r.hov@medisin.uio.no) an institutional data transfer agreement can be established and 

data shared if the aims of data use is covered by ethical approvals and patient consent. The 

procedure will involve an update to the ethical approvals, as well as review by legal 

departments at both institutions and the process will typically take 1-2 months from initial 

contact. 

The genetic and phenotype datasets from UK Biobank are available via the UK Biobank data 

access process (see http://www.ukbiobank.ac.uk/register-apply/).  

 

Code availability 

All code for data management and analysis is archived online at 

https://github.com/tomoconaka/COVID19-chr3 for review and reuse. 
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