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Abstract

We construct a spatially-compartmental individual-based model of the spread of Covid-19 in in-
door spaces. The model can be used to predict the infection rates in a variety of locations when
various non-pharmaceutical interventions (NPIs) are introduced. Tasked by the Welsh Government,
we apply the model to secondary schools and Further and Higher Education environments. Specifi-
cally, we consider student populations mixing in a classroom and in halls of residence. We focus on
assessing the potential efficacy of Lateral Flow Devices (LFDs) when used in broad-based screens for
asymptomatic infection or in ‘test-to-release’ scenarios in which individuals who have been exposed
to infection are released from isolation given a negative result. LFDs are also compared to other
NPIs; we find that, although LFD testing can be used to mitigate the spread of Covid-19, it is more
effective to invest in personal protective equipment, e.g. masks, and in increasing ventilation quality.
In addition, we provide an open-access and user-friendly online applet that simulates the individual-
based model, complete with user tutorials to encourage the use of the model to aid educational policy
decisions as input infection data evolves (https://bit.ly/CV19 INTER IBM).

1 Introduction

When the Covid-19 pandemic started sweeping across the globe [1, 2, 3], governments tried to stem spread
by imposing national lockdowns during which essential sectors, such as education, were shut down, or
moved online [4]. Following successive epidemic waves there have been extensive efforts to get students,
across all age ranges, back into schools, colleges and universities [5, 6, 7, 8]. Primarily, the arguments
for reopening education environments have focused on the benefits of education for the development of
skills and knowledge as well as for the maintenance of good mental health [9, 10, 11, 12].

There has been a vigorous debate about the role of schools and universities in disease transmission
and, as such, a range of non-pharmaceutical interventions (NPIs) have been proposed and implemented
in the education sector [13, 14, 15]. In the UK, the focus has been on using Lateral Flow Devices (LFDs)
as a means of detecting infected individuals to better manage infection [16, 17, 18]. It has been suggested
that a negative result from an LFD might be used to discontinue the self-isolation of people who are
a close contact of an infected individual [19, 20, 21], with trepidation caused by the fact that LFDs
have a high false negative rate [22]. We, thus, investigated how beneficial LFDs can be in comparison
to other NPIs, such as wearing masks or improving ventilation, particularly as recent literature has
reported that despite the success of the vaccination programme which led to a reduction in compliance
to contact and isolation policies [23]. Moreover, vaccinated individuals can still contract and transmit
the infection, specifically if the individual has underlying health conditions and/or is taking medications
that impair the immune system [24, 25]. The Centers for Disease Control and Prevention state such
an individual should “should continue to take all precautions recommended for unvaccinated people,
including wearing a well-fitted mask, until advised otherwise by their healthcare provider”[26]. Hence

1

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.03.08.21253122doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://bit.ly/CV19_INTER_IBM
https://doi.org/10.1101/2021.03.08.21253122


there is need for continuing to study NPIs to identify their optimal use, with emphasis on their roles in
educational environments.

There has been recent efforts to physically quantify the use of LFDs in a ‘test-to-release’ strategy
by means of a national experiment of 204 UK secondary schools over a six week period [27]. The study
compared the ‘test-to-test’ strategy against the existing alternative of close-contact isolation, measuring
the number of infections confirmed by a positive PCR test within each of the schools. The authors
conclude that the use of LFDs in a ‘test-to-release’ isolation policy did not significantly increase the
number infections within the selected cohorts and therefore suggested its viability to reduce absences
from education. However, the study was conducted when the disease was at its lowest prevalence and
least transmissive in England in 2021 [28, 29] and therefore does not indicate whether the results of the
study are viable in a highly infectious environment, particularly with the estimated false-negative rate of
self-administered LFDs [22]. In addition, the number of infections in both the control and intervention
groups where scaled against the local community cases, yet due to the high asymptomatic rate of cases
for people aged 12-18 [30], the effects of greater prevalence would not be observed within the schools but
in the households of the students, though, any student with a household member that was isolating from
covid-19 symptoms were excluded from the study. Although, the ‘test-to-release’ study of Young et al.
(2021) provided positive preliminary data on the effects of LFDs in classrooms, there is further analysis
required to understand their use in a variety of infectious environments before promoting ‘test-to-release’
as an effective strategy to prevent transmission.

Mathematical modelling offers a wide variety of techniques to predict the impact of interventions on
infection spread without risking anyone’s health [31]. Notably, many different mathematical fields are
able to provide predictive results, for example, deterministic and stochastic differential equations [32],
machine learning [33], Monte Carlo simulations [34] and queuing theory [35]. For the small number of
individuals we are considering a deterministic approach would not be justified [36]. Further, machine
learning tools, or continuous time data techniques [37], are not currently viable due to a lack of data.
Though infection modelling and analysis has been conducted on the impact of school reopening on local
R numbers [38]. Hence, a novel, detailed methodology for tracking Covid-19 spread through multiple,
linked spatial compartments that is flexible enough to compare a variety of NPIs has been developed
and presented here.

We develop an individual-based model of infection spread that splits the susceptible population into
local and non-local groups. The algorithm can be used to predict the spread of an infection in many
situations, where individuals naturally form groups, or ‘cliques’. We focus on modelling an educational
setting; in particular, we seek to predict how testing, isolation and other interventions influence the
spread of infection in secondary schools, Further Education (FE) settings (e.g. colleges) and Higher
Education (HE) settings, (e.g. halls of residence in a university). Importantly, the local versus non-local
distinction can be used to differentiate between short-range airborne transmission due to large droplets
and longer-range airborne transmission (aerosol) transmission [39].

Our results are based on current UK data [40]. We also provide the reader access to an online applet
in addition to a maintained repository of open source MATLAB code (see Section 2.4) that not only
reproduces our results, but can also be easily adapted by the reader to include data which is more
accurate and/or specific to their location and needs.

Our results have been presented to the Technical Advisory Group (TAG) of the Welsh Government
informing policy on the Covid-19 response in Wales and to the Wales Further and Higher Education
Covid-19 Task Group. Our methodology is currently being used to inform policy in relation to the
future of students returning to educational environments. Furthermore, our findings have been shared
with the Environmental Science TAG Subgroup for use in advising how to open up more general social
spaces, such as places of worship. The results have been communicated across the governments of
England, Scotland and Northern Ireland, and have informed the wider development of policy planning
for the pandemic.

Section 2 presents the assumptions and processes that underlie the algorithm that controls the individ-
ual agents (aggregations of pupils, students, etc.) that we are interested in and simulating. Specifically,
we clarify how testing and isolation of individuals (agents) is enacted, in sections 2.2 and 2.3. The
algorithm is then applied in Section 3 for two settings: (i) a secondary school/FE environment, Section
3.1, and (ii) a hall of residence at a Higher Education establishment, Section 3.2. Critically, within each
of these broad applications we consider the effects of how and when LFD testing is applied. Finally, in
Section 4 we condense our findings down to simple observations which summarise our findings regarding
the applications of LFD testing versus other possible NPIs.
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2 Computational framework

We have constructed an individual-based stochastic algorithm for infection spread which can be applied
to, but not limited to, the Covid-19 pandemic. The code is comprised of independent modules that can
be turned on, or off, as appropriate, so that the simulations can explore a variety of realistic situations.
For example, we can vary the days and frequency in which testing is conducted. We provide a basic
description of the ideas behind the algorithm here with an overview illustrated in Figure 1. A descriptive
flowchart of the algorithm is provided in Appendix A.

Figure 1: A flowchart illustrating the general iterative process controlling the dynamics of the population
over a typical day after the initial simulation setup. Grey boxes represent actions that occur every day
whereas the coloured boxes can be independently active/inactive on any prescribed day. A single cycle
accounts for a single day. We start each day at the recovery box which returns any isolating agents that
have completed their isolation period. If testing is active, the individuals are tested using LFD, agents
with a positive test are removed from the population for tr days. If agents are allowed to mix, then
we estimate secondary infections using R with context specific scalings (e.g. NPIs). Next, if external
infection sources are being considered, we estimate the number of infections to the susceptible population
using the background prevalence. Finally, we remove any compliant symptomatic individuals that display
the infection at the end of every day. For a detailed flowchart of the infection algorithm, see Appendix
A.

We consider a population of N susceptible individuals split into uniform groups of size Ng. The
parameter Ng is the number of local contacts an individual has and represents the number of individuals
that would be instructed to isolated should a member of a group become identified as infectious. If
Ng = 1 only an infected individual is isolated upon (i) becoming symptomatic, or (ii) receiving a positive
LFD test. Whereas, if Ng = N the entire simulated population is isolated upon the identification of an
infected individual. Finally, if Ng is any other divisor of N then only a subgroup of the population is
isolated upon the identification of an infected individual.

As we consider different educational settings we will ascribe different definitions to Ng. Namely, in a
primary/ junior/ secondary/ FE school setting Ng will represent a ‘table group’. These are individuals
who are socially distanced according to current regulations, but are sat on the same table. This is in
contrast to the HE case where we consider Ng to be the size of a ‘kitchen group’ (dormitory). These are
individuals in shared accommodation in a hall of residence that share the same facilities.

The effectiveness of isolation is modulated by a ‘compliance parameter’, C. In the secondary school
setting we assume that the school is keeping records of positive tests and has a final say on who is
allowed to enter the classroom. Thus, we assume that C = 100% and, any student that is symptomatic,
or receives a positive test result, is isolated completely for a set amount of time in which they cannot
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pass on further infections to the simulated population.
However, for the FE and HE cases, information supplied by the Welsh Government’s Head of Policy

HE Covid-19 (B. Cradock, 4th Feb 2021, pers. comm.) suggests that students in the HE environment
are only 81% likely to comply with an isolation order. Hence, in such cases, after receiving a positive
test result, or becoming symptomatic, a HE student is only isolated with a probability specified by the
parameter C. It is also assumed that a FE student isolates with probability C when given cause, due to
the open-community approach to education and age range of those studying and FE intuitions.

As discussed above the our decision-making framework accounts for both symptomatic and asymp-
tomatic individuals. Specifically, the percentage of symptomatic individuals is defined as Ps. At the
point of infection each individual is either given a symptomatic, or an asymptomatic flag based on this
percentage. Asymptomatic individuals are able to infect other susceptible individuals but will not isolate
unless tested, whereas symptomatic individuals are assumed to follow public health guidance and follow
self-isolation guidance at a rate determined by the compliance parameter. Symptomatic individuals who
choose not to be tested are treated as asymptomatic. A non-exhaustive list of real-world infection events
and model interpretation is supplied in Table 3 in Appendix A.

The timescale of the algorithm is one day. For every day we specify whether individuals are to be
tested and whether they are able to mix. These scenarios are independent and, thus, we control whether
neither, one, or both scenarios occur. For example, because we are modelling a school, or college location,
we currently specify that secondary and FE students do not mix on a weekend and, equally, no testing
happens on a weekend. Whereas in the halls of residence related to the HE simulations mixing and
testing can occur every day.

As seen at the beginning of the flowchat in Figure 1, during any day that testing is applied all
individuals that are not isolating are tested. The testing phase occurs before the mixing phase. Thus,
any individual triggering a positive result is isolated before they can infect others. Critically, we currently
do not include infection transmission once individuals are isolating as we suspend any isolating agent
from the simulation for td days. Specifically, in a secondary school, if the whole class is isolating no
further infections appear. This assumption is reasonable in the secondary and FE cases as the students
are physically isolated from one another. However, in the HE case, further infections may occur within
isolated flats. Thus, when we compare the isolating individuals across those that are infected and those
that are not we only quote this ratio to be correct at the point of isolation, because, as mentioned,
further infections within an isolating subgroup are not tracked but are likely to occur, see Section 4.2.

Due to the algorithm being able to contend with subgroups within a population we have effectively
added two compartment spatial complexity to the infection model. Namely those within a group are
considered ‘local’ contacts and those outside of a group are considered ‘nonlocal’ contacts. Because of
this addition of spatial complexity, the basic reproduction number, R is split into two R numbers:

1. a local number, Rl, that measures the expected number of secondary infections within a subgroup
that has an infected person; and

2. a non-local number, Rn, that measures the expected number of secondary infections that occur
due to infectious people in other subgroups.

Critically, the basic reproduction number, R, can be estimated from data and Rl and Rn are defined
such that R = Rl +Rn. Specifically, we define a ratio of local to non-local infections, cl : cn, and, thus,
Rl = clR/(cl + cn) and Rn = cnR/(cl + cn).

Defining the local to nonlocal infection ratio, cl : cn, depends on how we assume the virus spreads.
For example, in a secondary school environment, if there is a lot of movement, talking, and intergroup
mixing then we might expect there to be no difference between the number of infections within groups
to infections between groups, in which case cl = cn. However, if a good social distancing policy is
implemented, we would expect the number of nonlocal infections to be lower than the number of local
infections, i.e. cn < cl.

Explicitly, for the secondary school simulations, we are choosing to inform Rl and Rn through the
steady state level of spread of airborne particles [41]. In [41], the concentration of airborne particles in
a classroom is determined by solving an advection–diffusion–reaction equation (see Section 2.1). Apply-
ing the same methodology here, we evaluate the local contagion concentration, cl, at 2 metres directly
downwind from an infected individual in the centre of the room. This represents the worst-case scenario
for the amount of contagion that a susceptible person would receive if there was an infected individual in
their subgroup and social distancing was strictly observed. Further, we evaluate the nonlocal contagion
concentration, cn at 4 metres distance in the direction orthogonal to the airflow from an infected indi-
vidual. This represents the mean average scenario for the amount of contagion that a susceptible person
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would receive if there was an infected individual in another subgroup. Note that here the ratio cl : cn is
fixed, with the values taken from the airborne simulations at 5 hours, which is consistent with the day
time scale, on which we are working. However, this ratio should actually be evolving as predicted by
[41].

In the HE case, where we consider the infection spreading through a Halls of Residence we choose to
define this ratio based on the compliance of the individuals to social distancing policy. Specifically, we
consider two cases. The first is the ‘poor social distancing’ where residents from all flats mix, i.e. , the
local and nonlocal infection numbers are equal (cl : cn is 1:1, or Rl = Rn). The second case considers
‘enhanced social distancing’, where on average, 5 out of 6 flat residents are only socialising with members
of their same flat, whilst 1 in every 6 people still mix with other flats even when strict social distancing
measures have been advised. Thus, in the enhanced social distancing case, the ratio of local to nonlocal
infections is 5 : 1. This value was estimated to agree approximately with the isolation compliance
probability of C = 81%. However, we did not simply choose a ratio of 4 : 1, which would match this
compliance, because the ratio of 5 : 1 is more interpretable when the flat occupancies are of size 6, or
12, which are prototypical HE dormitory capacities in the UK. Namely, on average, there is one, or two,
poorly compliant individuals in the flats, respectively.

Alternatively, instead of splitting R into local and nonlocal contributions there is the future possibility
of using research focused on simulating airborne particle spread to specify Rl and Rn directly [41],
thus providing a mechanistic way of understanding R. This could be encompassed into our simulation,
although we would need to reduce the resolution of time within the model from hours to day and therefore
inducing greater computational costs.

We now consider the blue and red sections of Figure 1, which are the infection stages. The blue section
controls external infections, namely infections that occur outside of a school, or Hall of Residence, as
appropriate. In the secondary school scenario, we assume that these happen at the end of the day due to
socialising after school, which is why the red section feeds into the blue section. These infections occur
at the local prevalence rate, I [42] can be turned on, or off, depending how well we believe our system
is isolated from the outside world. Equally, isolating the system allows us to consider how the system
influences itself under any intervention.

The red sections of Figure 1 control how secondary infections are generated due to mixing between
individuals. During any day where the students can mix then any individual that is:

• infected;

• infectious; and

• not isolated

can infect other people. Once a person becomes infected three delay clocks are attached to each of them.
The three delays [43], ti, td and tr, represent:

• the time between becoming infected to becoming infectious, ti = 3 days;

• the time between becoming infected to becoming detectable by a LFD test, td = 5 days; and

• the time between becoming infected to recovery, tr = 10 days.

Any recovered person is assumed to be non-infectious and immune to further infections. Currently, these
delays are fixed, but these could easily be made variable. Note that the recovery and isolation timescales
are independent. Thus, once an individual is discovered to be infected they are isolated for 10 further
days, no matter where they are within the infection timeline. For example, if an individual is found on
the 9th day of their infection they have to isolate for another 10 days, even though they would recover
the next day.

Finally, we assume that the tests being used are Lateral Flow Devices, LFD, which are assigned to
have a false positive probability, Pfp and a false negative probability of Pfn. Throughout the simulations,
we will vary Pfn but keep the false positive probability fixed to Pfp = 0.003, in agreement with existing
LFD studies [19, 22, 44].

2.1 Interventions

In order to quantify the effects of environment activity, masks and ventilation on transmission, we employ
a previously developed advection-diffusion-reaction equation to estimate the concentration of infectious
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particles within a bounded 3D space [41]. The contagion density model extends the Wells-Riley model
of airborne infectious diseases and is of the form

∂A

∂t
+∇ · (~vA)−∇ · (K∇A) = Sinf − Svent − Sdeact − Sset, (1)

where A is the concentration of airborne infectious particles (particles/m3), t is the time (s). In addition,
Sinf represents the source of infectious particles (i.e. the infectious people); Svent, Sdeact, Sset are sink
terms representing the removal of particles by three factors: the ventilation system, biological deacti-
vation, and gravitational settling. Specifically, equation 1 models viral particles advected by airflow,
diffused due to turbulence, emitted by infected people and removed due to the room ventilation. The
equation also includes terms that model the biological inactivation of the virus and gravitational settling.
One asymptomatic or presymptomatic infectious person who breathes or talks was considered, who may
wear a mask. Equation 1 has a semi-analytic solutions that allows for the swift quantification of the
effect of NPIs on infection transmission.

Additionally, we estimate the infection risk (probability of infection), IA, using the dose-response
formula

IA(x, y, z, t) = 1− exp

(
−k
∫ t

0

ρA(x, y, z, τ)dτ

)
, (2)

at any location within the 3D space, where k is an constant that depends on the infectiousness of the
virus, and ρ is the average breathing rate. Hence, the integral calculates the number of infectious particles
inhaled by the susceptible person. Further details on airborne infection estimation can be found in [41].

The epidemiological R value can be modified by additional interventions mitigating this transmission,
for example, masks [45], ventilation [46] and portable air purifiers [47]. Based on realistic scenarios and
recommended ventilation settings by ASHRAE (the American Society of Heating, Refrigeration and
Air-Conditioning Engineers) [48], we considered four ventilation settings:‘very poor ventilation’ (ACH=
0.12), ‘poor ventilation’ (ACH= 0.72), ASHRAE pre-pandemic ventilation (ACH= 3.00) and ASHRAE
pandemic-updated ventilaton (ACH= 6.00). Using equations 1 and 2, we estimate the ratio of particle
concentrations and infection probabilities between local and nonlocal individuals using a prototypical
classroom environment for each of these ventilation scenarios (see Appendix C). Specifically, we assume
that masks halve the emission rate of particles [49] and consequently reduces the R value by the same
amount [41]. In addition, we also assume a good ventilation setting with ACH equal to 6.0 which yields a
3.5-fold decrease in R. The combined influence of masks and ventilation is assumed to be multiplicative,
in which case R is reduced 7-fold [41].

Improving ventilation also decreases the local to nonlocal infection ratio, as better ventilation pro-
motes better mixing of the air in the room with a reduced contagion density [50]. The usage of masks
has the opposite localisation effect by preventing contagion from propagating significant distances [51].
The combination of these effects in classroom environments can be found in Appendix C. Throughout all
simulations conducted here in this study, we assume that the individuals will have low activity (intermit-
tent talking) within the classroom environments and apply the best and worst-case ventilation scenarios.
Therefore we have the resultant local to nonlocal infection ratios by from 1 and 2 in Table 1.

Environment scenario Effective R Local to nonlocal infection ratio (cl : cn)
Very poor ventilation + no masks R 3.98:1
Very poor ventilation + masks R/2 5.20:1
Good ventilation + no masks 2R/7 1.47:1
Good ventilation + masks R/7 1.51:1

Table 1: A summary of infection parameters generated by equations 1 and 2 for individuals under low
activity in a classroom environment. For details on parameter estimations, see Appendix C.

In the Halls of Residence scenarios ventilation capabilities cannot be easily changed without significant
cost - solutions like portable air purifiers could be considered [52]. Further, masks are usually not
worn whilst individuals are in their own flats. Thus, we assume that the enacted interventions are
reducing the number of non-local contacts an individual has, following guidance from the university and
the government. Specifically, for the HE scenarios we do not change R directly as interventions are
introduced, we change the ratio of the number of local to non-local infections. In the so-called ‘poor
social distancing’ scenario residents from all flats mix and, thus, the local and non-local infection numbers
are equal, that is cl : cn is 1:1. In the ‘enhanced social distancing’ scenario individuals are encouraged to
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isolate as much as possible, and they, more likely, socialise only within their flat group (‘kitchen group’).
This reduces the number of non-local infections, compared to the local infections; we thus, take the ratio
cl : cn to be 5:1/5, for reasons stated above, in Section 2.

At the time of conducting this study, vaccination of people aged 12-16 had not been implemented
in the UK [53]. Therefore, we do not consider vaccinations as a method of transmission mitigation in
both the secondary schools and HE simulations, particularly to characterise the infection landscape of
the worst-case scenario and to isolate the use of NPIs in educational environments. We acknowledge
that vaccination policy may change in the future and so immunity via vaccination or recent infection
has been implemented into the online simulator of the model (https://bit.ly/CV19 INTER IBM) to allow
for up to date simulation results (see Appendix B). Moreover, by including the immunisation into the
applet, the model may be applied to regions where youth vaccination is occurring.

2.2 Testing regimes

Alongside varying the false negative probability of the LFD we consider a variety of different testing and
isolation scenarios. The base case against which we compare all other cases is the no testing and no
isolation of contacts case. Namely, the disease is simply allowed to spread through a class, or Halls of
Residence without impedance.

Noting that in the cases modelled, only non-isolating individuals use LFD devices we can alter the
testing regime for the population from weekly to daily. Further, we can alter the event that causes
testing to occur. Either testing occurs on a fixed regime, or alternatively, no testing is applied until a
first symptomatic person is found, that is, there exists an agent showing symptoms that day. Once a
symptomatic individual is found, testing is applied through a weekly, or daily regime.

Other “reactive” testing regimes can be included (e.g. , you always test after a symptomatic is found,
rather than just moving to a fixed regime), but the “no testing” to “daily testing” range provides the
extreme limits in which all other possible testing scenarios must fall. In Section 3 we will see that
these extreme testing scenarios provide limits over a small range of results and, thus, all other proposed
testing regimes must fit within these limits. Hence, understanding only the limiting cases provides us
with enough knowledge to understand all cases.

As a specific example, in the secondary school case, we are particularly interested in the case of “test-
to-release”. Namely, it was previously the case that if an infected individual was found then their close
contacts would be isolated too, in this case this would be their table group (see Figure 2(c)). However,
current guidance [5, 6, 7] is that a negative LFD result could release individuals in the table group that
test negatively. Under our simulation this would conform to the individual isolation case. Namely, only
the individual is forced to isolate, whilst everyone else is tested before they are then allowed to mix (see
Figure 2(b)).

In the HE setting we compare the efficacy of the various testing strategies at two time points during
a term. In the first scenario, called the ‘start of term’ scenario, the first simulated week occurs prior to
students returning to the Halls of Residence. In this initial week students do not mix, but any infected
student will incubate their infection. The next three weeks are simulated under the assumption that the
students are back in their halls and able to mix daily. The second scenario, called the ‘middle of term’
scenario, considers a period post student arrival, where the individuals are mixing each day (including
weekends) for four weeks.

2.3 Isolation regimes

As mentioned in Section 2.2 we initially consider the case in which no isolation occurs. This situation
can then be compared against:

• isolating individuals due to the individual being symptomatic, or receiving a positive test result;

• isolating subgroups due to at least one individual in the subgroup being symptomatic, or receiving
a positive test result;

• isolating an entire population due to at least one individual being symptomatic, or receiving a
positive test result;

Note that the positive test results leading to an isolation can be either true or false positives.
Throughout the simulation we keep track of the number of people who are isolating. Further, the

scatter points illustrated in Section 3 are all pie charts that represent the ratio of infected people who
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are isolating (white part of the pie chart) versus the number of people who are isolating, but healthy
(colour part of the pie chart).

2.4 Scenario parameters

To elucidate the robustness of the LFD testing strategies in various infectious environments, we simulate
the mathematical model across a variety of parameter values. A best-case scenario would be when there
is: a low background prevalence; a low R number, and a low probability of false negatives, Pfn. In
contrast, the situation becomes worse when any of these parameters are increased. For each parameter
we choose two extreme values (see Table 2) and simulate over all combinations of these values. In
addition to these global parameters, we provide a summary of context specific parameter values and
parameter definitions in tables 4 and 5 in Appendix A. Note that the R number, as referenced in tables 2
and 5, is the local background R number, that is parameterised using the National R number estimates
for our best- and worst-case scenarios [54]. The actual numbers that apply in School or University
environments are anticipated to lie between these extremes and may depend on whether transmission
between children, adolescents and young adults differ substantially from aggregate National R numbers
[55]. Clearly local strategies such as increasing ventilation or mandating mask use may already contribute
to the lower estimate of the National R number. Nonetheless, we anticipate that the modelled NPIs will
apply between the two R numbers suggested.

Parameter Definition Best-case
parameter
values

Worst-case
parameter
values

Probability of false nega-
tives, Pfn

Likelihood that a Covid-19 test does
not identify an infectious individual.

0.2 0.5

R number, R The average number of secondary cases
we would expect an infected student to
generate prior to locality affects.

0.8 1.7

Background prevalence, I
(%)

Additional probability that more than
one person is infected.

0.5 2.0

Table 2: Table of parameter values used in all education environments simulations.

2.5 Code availability

Our intention is to illustrate our code in a number of educational settings, but our algorithm can be used
to predict infection numbers across variety of other locations. Equally, we provide one interpretation
of how interventions influence the outcome. The actions and interpretations of the interventions are
completely arbitrary and, thus, the algorithm can be exploited to provide predictive results including
a new variety of interventions, so long as the user has a clear idea how the interventions influence the
input parameters.

Moreover, our interest is to investigate a wide space of reasonable parameter values to illustrate how
diverse our results can be. As parameter estimates become better over time, due to more data being
collected, we may want to return to our simulations and run the computation under specific parameter
values that represent our current knowledge of a system. Alternatively, in line with the above comments
about extending the interpretation of our code, the parameters will also have to be reinterpreted within
the new scenarios.

To account for this diversity of use we provide open access to an online simulator of the model
presented here which is dedicated to secondary school and FE environments (https://bit.ly/CV19 I

NTER IBM). The online applet allows the user to both reproduce the results of this study and to design
new infection scenarios with current infection data without the requirement of coding ability or software.
Appendix B contains information on the online COVID-19 Intervention Simulator, usage and features.
In addition, all source code for the model and online applet is stored and maintained at https://github

.com/joshwillmoore1/COVID-19 Intervention IBM. The results shown in this study were run and tested
on MATLAB 2020b and the online applet was developed using R v4.0.3. We hope that by developing
a user-friendly simulator of our model and making the source code openly available allows others to
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expedite their response to the pandemic through predicting which of their intervention options is the
best.

3 Results

The algorithm is able to output an immense amount of data. Specifically, we track the infection, isolation
and symptomatic status of every individual with a day-time resolution. Further, due to the stochastic
nature of the algorithm, the code is run 1000 times for each scenario, which provides us with an under-
standing of the sensitivity of our estimates. Thus, although many daily statistics are available as outputs
from the code, we visualise only the average total number of infections versus the average number of
days isolating per individual.

Note that the speed of the simulations is mainly determined by the size of N , since we fix the number
of repetitions. Thus, for the FE classes, which are of size N = 10, 1000 simulations takes approximately
9.9 seconds to complete. However, in the case of the Halls of Residence, where N = 204 the results take
approximately 40.3 seconds1. Sweeping over the 5-dimensional parameter space required to analyse the
best and worst-case scenarios, simulation times scale linearly, achieving a maximum simulation time of
approximately 4 hours to complete in the HE settings.

As mentioned in Section 2.3 we present a number of Figures that use pie charts to track numbers
of infected or healthy individuals isolating at points that are scattered in the space of average ‘infec-
tions’ versus ‘days of isolation per individual’. Each pie chart represents a different intervention. The
intervention is encoded in the colour and transparency of the pie chart. The coloured part of each
pie chart represents the proportion of ‘correct’ isolations, i.e. isolations of infected people, whereas the
white section represents the proportion of incorrect isolations, i.e. isolations of healthy people. Thus,
when seeking to optimise NPIs, we may independently assess overall infection rates and approaches that
minimise the isolation of uninfected individuals.

Overall, we assume policy makers are primarily interested in minimizing the total number of infections
and the number of days spent in isolation. Thus, we look to strategies that produce points near to the
origin, (0,0) with the lowest proportion of uninfected individuals isolating (coloured section of pie charts).
When these two goals are in conflict, it would be assumed that minimising the total number of infections
would have priority.

3.1 Secondary school environments

In this case we set the class size to be N = 30 and consider Ng = 1, 5 and 30. Thus, apart from the case
where no isolation occurs, we will either be isolating: only an infected individual, an infected and their
table group, or the entire class, respectively (see Table 3 for our interpretation of real-world events in
the modelling framework).

As a base case for investigating the efficacy of testing we, first, run the model without testing included.
Thus, the parameter Pfn is irrelevant. Thus we focus on varying the level of symptomatic prevalence, Ps

between 20% and 50%. Having a large population of asymptomatics, potentially causes problems when
we run a reactive testing strategy, rather than a fixed testing strategy (see Section 3.1.2) [56, 57]. When
testing is considered, we fix Ps = 20%, which provides the worst-case scenario of 80% of the infected
population not presenting symptoms.

Equally, from simulating all combinations of the best- and worst-case parameters as discussed in Table
2 we note that reducing R reduces the average total number of infected people and the average number
of days isolation better than reducing the false negative probability, Pfn. Noting that this observation
remains true over all simulations we suppress the data from mixed simulation for clarity of discussion
and only present the best- and worst-case parameter values.

The simulations are run over 28 days and we assume that the simulation starts on a Sunday, see
Figure 6 for an explicit description of simulation initialisation. Defining the starting day is important as
we assume that testing and mixing can only occur during weekdays, not weekends.

In the context of a secondary school, the Head Teacher has the authority to remove any student
displaying symptoms from the classroom. In addition, as the school will oversee testing and recording of
results, we set the percentage of student compliance to 100%. From data not shown, we note that varying
compliance and background infection rates, within realistic limits, (i.e. , 60 ≤ C ≤ 100 and 0.5 ≤ I ≤ 2)
does not significantly influence the forthcoming insights, thus, we have suppressed this output. Reducing

1Simulations were run on a 2.6 GHz 6-Core Intel Core i7 with 16 GB 2667 MHz DDR4 2019 MacBook Pro.
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the local prevalence rate I to 0.5% from 2% has an insignificant effect on the number of infections within
the classroom due to the population size being small (N = 30). Namely, we would have required at
least a prevalence rate of I = 3.3% to infect at least one student per simulation by wider population
transmission. Although changing the compliance has the obvious influence on the quantitative results the
qualitative results remain the same from the perspective of intervention efficacy. Hence, in the following
figures all simulations have a background infection prevalence of I = 2% and a compliance of C = 100%.

3.1.1 Without testing

Figure 2 presents the simulations under the assumption of no LFD testing. Thus, in the cases where
isolations occur, isolations are only able to occur when a student becomes symptomatic (3 days post
infection) and/or when those who have been exposed to possible infection are asked to isolate.

Figure 2(a) presents the worst-case scenario where individuals are exposed to a presymptomatic
infectious individual under circumstances when school contacts are not isolated. Thus, if there are no
interventions then eventually everyone becomes infected within a four-week period (i.e. the black pie
chart is always at 30 on the x-axis). Note that, since there are no isolations, we have not isolated any
healthy people, thus, the pie charts are fully coloured. Equally, due to having no isolations, even from
students showing symptoms, there are no absences, thus, all pie charts lie on the x-axis. In Figure 2(b)
only the single symptomatic infected individual isolates, whereas in figures 2(c) and 2(d) the school has
been notified and either the table group, or entire class, respectively, has been asked to isolate, as well.

We note from Figure 2(a), which is true over all subfigures and subplots that the level of intervention
is increased fewer people become infected. Moreover, although having both masks and ventilation is the
best policy, increased ventilation is the better single intervention, because of the substantial impact of
diffusing high contagion regions and therefore mitigating risk of infection by removing the particles from
the air. This is seen through noting that the green and blue pie charts are much more left in all cases
than the red and black pie charts.

Comparing rows and columns in each subfigure shows that increasing R increases the average number
of infected individuals as expected. An increase in the percentage of individuals who display symptoms
(Ps) reduces the total number of infected people symptomatic individuals self-isolate (compare figures
2(a) and 2(b)). As an indirect consequence, a reduced number of infections feeds through into a lower
average number of days in isolation per individual (Figure 2(b)). A reduction in R similarly leads to
a reduction in both infection and isolation metrics.Critically, although influencing both parameters is
beneficial for our purposes, we are unable to physically influence Ps as this is an intrinsic property of
the infection. Noting that these observations of altering R and Ps remains true over all simulations then
in future figures we only focus on simulations where R is varied as this is the parameter that NPIs can
influence.

Another result that is consistent across all our simulations and across the secondary, FE and HE
scenarios is that isolating larger subgroups of the population is one of the surest ways of reducing the
average total number of infections. The contribution of contact isolation becomes greater when good
ventilation and mask use is not in place. However, this strategy increases both the number of days
in isolation and the number of healthy individuals isolating. Specifically, as the isolation group size
is increased from the individual, to the table group and, finally, to the entire class (figures 2(b)-2(d),
respectively) the pie charts move left, up and the white sector becomes larger.

3.1.2 With testing

Figure 3 represents the same intervention strategies as those shown in Figure 2, however, we consider
multiple testing scenarios. As mentioned, testing frequency is denoted by pie chart transparency. Namely,
as the testing frequency is increased the pie charts become more transparent. Note that the no testing
data from Figure 2 has also been included as the opaque pie charts, to allow for comparison against the
base case.

The simulations appearing in the left column of Figure 3 all assume that testing only occurs after a
first symptomatic individual appears (“reactive” testing), whereas the right column has a fixed testing
strategy from the beginning of the simulation. Clearly, the outcome difference between these two strate-
gies is minimal, although they may not differ for cost of implementation. The reason is that, even at
a symptomatic (to asymptomatic) prevalence of 20%, a symptomatic individual is generated extremely
quickly through secondary infections, which cause the testing strategies to begin almost as soon as the
fixed strategies (random testing for asymptomatic students).

The overall trends mentioned in Figure 2 remain the same when comparing the different levels of
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(a) No isolation (b) Single isolation

(c) Table group isolation (d) Class isolation

Figure 2: Mean number of infected students and average number of days absent per individual when
no testing is employed, over a variety of isolation strategies and interventions in a secondary school
environment. Each symbol represents a different intervention, see legend at the top of the figure for
details and see Section 2.1 for a description of how each intervention influences the parameter values.

testing, namely: reducing R is the best way of reducing further infections; ventilation is better than
masks; and isolating more people greatly reduces the overall number of infections but increases the
number of absences and the number of healthy people being isolated.

Notably, we see that the addition of weekly, or daily tests does reduce the number of overall infections,
but more tests lead to more absences as more cases are found earlier in the infection cycle (the pie charts
move left and up as they become more transparent). Critically, although testing does help, we see
that reducing R is much more important, particularly due to the time-lag between being infectious and
being detectable by LFD (td > ti) and so testing will never be able to fully remove infections from the
population under our assumptions. As a result, simply wearing a mask and having no testing is as good
as daily testing without a mask in a majority of the test scenarios (the opaque red pie chart is always
lower and left of the most transparent black pie chart).

When considering ‘test-to-release’ strategies, we note that infection rates were lower when pupils are
asked to isolate if they have been in contact with infected individuals. Namely, in Figure 3(e) where
R = 1.7 and Pfn = 0.5, the black, red, blue and green rates (solid colour; no testing) at 14, 11, 7 and
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(a) Single isolation, testing from first symptomatic (b) Single isolation, testing fixed from the beginning of
the simulation

(c) Table group isolation, testing from first symp-
tomatic

(d) Table group, testing fixed from the beginning of the
simulation isolation

(e) Class isolation, testing from first symptomatic (f) Class isolation, testing fixed from the beginning of
the simulation

Figure 3: Mean number of infected students and average number of days absent per individual when
testing is employed, over a variety of isolation strategies and interventions in a secondary school envi-
ronment. Each symbol represents a different intervention, see legend at the top of the figure for details
and see Section 2.1 for a description of how each intervention influences the parameter values.

3 respectively. By contrast the equivalent numbers for pupils who are tested and released back to the
School Population in a ‘test-to-release’ strategy (in Figure 3(a) R = 1.7 and Pfn = 0.5, the black, red,
blue and green rates (transparent colour; daily testing) are 28, 26, 20 and 5. This would suggest that,
if the primary policy goal was to minimise infections, that ‘test-to-release’ would increase infections by
comparison with either the table-isolation or whole-class isolation strategies.

3.2 Higher Education environments

The cohort size in this case is the population of a typical Halls of Residence, N = 204. These individuals
are separated into flats, or ‘kitchen groups’ of size Ng = 6, or Ng = 12. We fix the symptomatic
prevalence to be Ps = 40% and the compliance to be C = 81%.

Here, we mainly focus on trying to understand the influence of the flat size on the results and timing
of the test. Specifically, see Section 2.2, where we discuss the start of term and middle of term testing
scenarios.
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3.2.1 Start of term

The start of term simulations starts a week prior to student mixing. Hence, all initially infected indi-
viduals are potentially detectable by the first administered LFD test in both strategies. Therefore, the
lag time between being exposed to the virus, being infectious and being detectable has no effect on the
initial transmission within the student population. In this scenario we consider the effect of a test prior
to returning to the Halls of Residence. Namely, in Figure 4, the blue pie charts represent the case in
which students are tested two days prior to arrival (Friday of week 1), followed by weekly tests, every
Monday, starting on the day of arrival (Monday of week 2). The red pie charts represent the case where
there is no test before returning. However, weekly tests are administered, every Monday, starting on the
day of arrival (Monday of week 2), as in the blue pie chart case.

Figure 4 demonstrates that the addition of a test prior to arriving only has a significant benefit in
high prevalence and high R number environments. The disparity in the total number of infections is
particularly prominent in the cases of poor social distancing restrictions as the opaque pie charts are
further apart (see figures 4(b) and 4(d)).

(a) Size 6 flat, I = 0.5% (b) Size 6 flat, I = 2%

(c) Size 12 flat, I = 0.5% (d) Size 12 flat, I = 2%

Figure 4: Considering the effects of a pre-term LFD test across flats of different occupancy (noted below
each subfigure).

By comparing the results of Figure 4 across flat size, we observe that larger flat sizes result in a small
decrease in average total number of infections, but a small increase in the average length of isolation
period. Thus, although, a 12-person flat has an increased risk of someone bringing in an infection to the
flat, once a positive test result occurs we remove more non-infected people from circulation. However,
because we are only tracking infections to the point of isolation, we must be cautious regarding this
interpretation. Specifically, once a flat has been isolated unless all remaining healthy individuals practice
extremely good hygiene it is highly likely that most in the flat will succumb to the infection, meaning
that the small reduction in total number of infections that is apparent in the results would not exist and
in fact the larger flats would lead to a gain in average total of infections. Critically, this comes down to
the responsibility of the individuals of an infected flat. Once a positive test has been received the flat
should be clearly informed of their options and best practices that will keep the individuals safe.

In all cases we see that the coloured part of the pie chart is in the minority. Thus, at the point of
isolation, we are isolating more healthy people than infected people. In particular, in larger flat sizes
over 70% of all students isolating in every scenario are healthy in the 12-person flat simulations (see
figures 4(c) and 4(d)). Though, it is not substantially less in the smaller 6-person flat, it is worth noting
that increasing the flat size increases the number of healthy people isolating.
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3.2.2 Middle of term

We next consider the situation where students have returned and are continuously mixing for a 28-day
period. In every infection scenario we simulated, we show that increasing the testing frequency greatly
reduces the total number of infections, i.e. , the green and black pie charts are the closest and furthest
markers from the origin, respectively, in all subplots of Figure 5. Further, in all subplots of Figure 5, we
observe the benefit of including spatial compartments to the model by the restriction of social interactions
from the whole population (opaque markers) to ‘kitchen groups’ (transparent markers), particularly in
the cases of R = 1.7, as the spatial component of the model considers the allocation of infections between
the infective’s group and rest of the student population (see Section 2). Critically, when the R number
is large, we have a distinct disparity between the opaque and transparent markers, thus, enhanced social
distancing measures reduces both the number of infections and days in isolation.

(a) Size 6 flat, I = 0.5% (b) Size 6 flat, I = 2%

(c) Size 12 flat, I = 0.5% (d) Size 12 flat, I = 2%

Figure 5: Considering the effects of a mid-term LFD test across flats of different occupancy (noted below
each subfigure).

Critically, as in the secondary school case of Section 3.1, although testing is able to reduce the
average total number of infected individuals it is much better to reduce the R value through encouraging
enhanced social distancing measures. Specifically, in all cases, the transparent black pie chart is always
closer to the origin than the green opaque pie chart.

Finally, our simulations suggest that increasing the flat size improves the efficacy of the enhanced
social distancing measures, as all transparent pie charts are closer to the origin in the 12-person flats
than their associated pie chart in the 6-person flat simulations. This observation is explained by the
fact that increasing the size of a flat increases the number of healthy students that have to isolate when
at least one infected student is found. Again, as mentioned in the previous section, we should critically
examine this claim because unless the isolated individuals practice good hygiene the infection will spread
through the isolating flat, thus generating more cases than expected. Future iterations of the model will
contain this additional ability, see Section 4.2.

4 Discussion

Due to the time delay between becoming infectious and being detectable by a LFD [43], testing is never
going to be able to stop infection spread, no matter how often it occurs. This would even be true in the
case of PCR tests, which are more accurate (in terms of false negatives) and can produce results earlier
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in the incubation cycle. However, the time delay in obtaining results from RT-qPCR assays means that
there may still be approximately one day between becoming infectious and becoming detectable. The
only benefit would be a reduction in the proportion of false negatives (Pfn), which, as we have seen, is
not an important parameter to focus on.

We have observed that testing can help reduce the total number of infections as LFDs enable us
to find asymptomatic individuals, who would be able to spread the disease, even if they themselves do
not suffer. Although testing as much as possible will partially mitigate transmission, we must turn to
alternative interventions if we want to have a significant impact on disease spread.

Here we have focused on several interventions across diverse educational contexts, both classrooms
and Halls of Residence. Throughout all of our results we have seen that the simplest and cheapest way
of reducing infection numbers is simply to isolate larger groups of individuals. At the extreme, isolating
the entire population ensures that infections cannot be transmitted between individuals. Of course, such
extreme solutions are unlikely to be desirable because we isolate many healthy individuals, whereby they
miss educational and social aspects of everyday life [58]. Further, the ability to apply such a lockdown
is impossible as “isolation fatigue” sets in and people’s compliance with harsh rules will likely diminish
[59, 60].

Thus, how, when and who should be isolated are all important questions that should be carefully
considered. Critically, isolating individual flats, classes or table groups hugely reduces the average total
number of infections. However, this does not dictate total isolation, but encourages effective social
distancing to limit infection spread.

We now look towards more proactive interventions that have a financial cost, namely: supplying
personal protective equipment (e.g. masks); or investing in classroom sized ventilation units. Clearly,
from the results of Section 3 we observe that the interventions we consider are always going to have
positive influence on reducing disease transmission. Moreover, including multiple interventions offers
bigger gains than each individual intervention. Based on the work of [41], we were able to show that
although masks are a cheap and simple way of reducing disease spread, additional ventilation may be
superior to masks in their ability to reduce the total number infections.

Specifically, additional ventilation influences our simulations by drastically reducing the localised
density of contagion in the air. Though the additional air flow increases the spread of the contagion,
the lower overall density greatly reduces the probability of infection for any individual both local and
non-local, thus, it reduces the number of secondary infections that can occur overall. Namely, with good
room ventilation test-to-release becomes a viable option (see the blue pie charts in Figure 3). Specifically,
even under worst-case parameter values, good ventilation means that we only need to isolate table groups
to ensure the greatest reduction in total cases.

4.1 Impact

Our work has already helped to influence Welsh Government policy in relation to the development of
FE and HE workplace and residential policy. Our model was used to assess the impact of testing and
interventions for students returning to colleges, or their Halls of Residence from their permanent home
addresses. Our analysis was considered by the Welsh Government’s Technical Advisory Group (TAG),
Further Education and Higher Education Task Group dealing with Covid-19. Further, the work was
also presented to the Environmental Science policy committee, for use in advising how to open up more
general social spaces, such as places of worship. Our work has also been communicated to colleagues in
the English Government, Scottish Government and Northern Ireland Executive and is currently being
used by Bethan Cradock, (Head of Policy HE Covid-19) and Marian Jebb (head of post-16 quality and
data management for the Welsh Government) to develop policy for safely returning students back to
their places of study.

4.2 Future work

Due to the continued existence of the pandemic there is still plenty be done. Much of the work could
focus on making the simulation more accurate. Namely, rather than fixing parameters we could use a
Bayesian approach to sample from realistic parameter distributions, which can be generated from data
[61, 62, 63, 64]. Equally, current research is focused on generating estimates of real time simulations of
airborne particle spread. This could be encompassed into our simulation, but we would need to increase
the time resolution from days to hours.

The quickest gain for making the simulation more realistic, particularly in the HE case, would be
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to nest the algorithm within itself. Nesting the algorithm within itself would give us access to multiple
spatial compartments. Namely, one level of the algorithm could be running a Halls of Residence on the
scale of grouping everyone into flats, then a second level of the algorithm could be running on the scale
of individuals within flats. This would allow the removal of the current restriction of tracking infections
up until the point of group isolation.

The development of a nested algorithm would also allow us to simulate infection propagation over
multiple classes within the same school. As a result, we would be able to elucidate the impact of the
teachers moving from class to class, i.e. the existence of “super spreaders” from internal and external
class interactions. Namely, in a next iteration we could track not only when someone is infected, but
who infected them. We could then extract the number of secondary infections linked to each infected
person and observe whether there are specific individuals that infect others at a rate significantly larger
than others. From this point, we could reverse engineer the situations in which the super spreaders find
themselves, to see if there are any commonalities which could be perturbed leading to a reduction of their
highly infectious nature. Furthermore, the construction a transmission network between all agents would
allow for further analysis on the existence of a “super spreader” within the population by determining
connectivity bottlenecks from its spectral properties [65].

4.3 Summary

We asked whether it was suitable for Lateral Flow Devices (LFD) to be used as a means of getting
students back to school, or university. Our simulated results show repeated testing does help reduce the
average number of total infections, as asymptomatic individuals can be found and isolated, resulting in
the reduction of infectious individuals. However, we have also found that it is not worth investing in
better tests that reduce the false positive probability of the LFD, which has been its major criticism.
Instead, time, effort and money are better spent investing in personal protective equipment (e.g. masks)
and increasing the quality of ventilation in enclosed environments.
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A Individual based model interpretation and implementation

As we developed our computational framework to be used independent of technical background, we
supply a list of example real-world infection events and how these events are interpreted within our
model (see Table 3). We intend for the model to be analysed, adapted and extended to suit the local
requirements, thus Table 3 should allow a user to prescribe the inputs required in their particular case.

Figure 6 provides a flowchart depicting the full algorithm for infection propagation throughout a
discrete population, colour-coded in agreement with Figure 1 to highlight optional sub-routines of the
algorithm. In addition we provide Table 4, which presents a summary of parameter values used in each
scenario in Section 3. Finally, Table 5 provides the reader with definitions of every input parameter to
the model.
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Real-world event
Infection

classification

Infectious to
the population
at post event

Maximum number
of days infectious

prior to event (days)

Maximum number
of days infectious
post event (days)

Isolation status
post event

Susceptible status
post event

Presymptomatic student
attending school

Asymptomatic 3 0 td − ti 7 7

Non-compliant symptomatic
student attending school

Asymptomatic 3 td − ti tr − td 7 7

Symptomatic student with
a true-positive test result compliant
with isolation policy

Symptomatic 7 tr − ti 0 3 7

Symptomatic student with
a false-negative test result compliant
with isolation policy

Asymptomatic 3 tr − ti 0 3 7

Asymptomatic student with
a true-positive test result compliant
with isolation policy

Asymptomatic 7 tr − ti 0 3 7

Asymptomatic student with
a false-negative test result

Asymptomatic 3 tr − ti tr − ti 7 7

Non-infected student with
a false-positive test result
from random testing

Non-infected 7 0 0 3 3

Non-infected student with
a true-negative test result
from random testing

Non-infected 7 0 0 7 3

Asymptomatic student in
close contact with a positively
identified infected student

Asymptomatic 7 tr − ti 0 3 7

Non-infected student in
close contact with a positively
identified infected student

Non-infected 7 0 0 3 3

Table 3: A table representing real-world infection events as interpreted by the model framework presented
in this study.

Number
of agents

Testing
Agent
mixing

Wider pop.
infections

Isolation
group sizes

Probability
of symptomatic

Probability
of compliance

Secondary school
(no testing)

30 7 Weekdays 7 1, 5 & 30 0.2 & 0.5 1.0

Secondary school
(with testing)

30 3 Weekdays 7 1, 5 & 30 0.2 & 0.5 1.0

Halls of residence
(start of term)

204 3

1 week isolated
followed by 3 weeks
continuous mixing

7 6 & 12 0.4 0.8

Halls of residence
(middle of term)

204 3 Everyday 7 6 & 12 0.4 0.8

Table 4: A summary of parameter values used for secondary school and HE simulations. See Section 2.2
for information on various testing regimes.
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Day	is	over:	
decrease	each	timer	

for	all	agents

Is	this	the	last	
day	of	the	
simulation?
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be	symptomatic	
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Agent	obtains	a	
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result	with	
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Is	the	
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infected?

End	simulation

Figure 6: Flowchart illustrating the algorithm developed for the individual based model of infection
spread. We highlight various subroutines using colours: grey is base infection routines, green is testing,
red is secondary infection estimation and blue represents infections from outside the population. SI
corresponds to secondary infections.
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Parameter Definition

Probability of false-positive, Pfp
The likelihood that a LFD test identifies
a non-infected agent with a positive result.

Probability of false-negative, Pfn
The likelihood that a LFD test does not
identify an infected agent with a positive result.

R number, R
The average number of secondary cases expected
from an infected agent to generate prior to locality
affects.

Local R number, Rl

The proportion of R that accounts for the number
of secondary infections within a subgroup of the
population.

Nonlocal R number, Rn

The proportion of R that accounts for the number
of secondary infections to those outside the
infectives subgroup.

Background prevalence, I(%)
The rate at which the wider population introduces
an infection to an agent.

Probability of compliance, C
The likelihood that an agent is compliant with
testing and isolation policies.

Probability of symptomatic, Ps
The likelihood that an infected agent will
become symptomatic.

Total population size, N The total number of agents in the simulation.

Subgroup size, Ng
The number of agents that make up a
subgroup within the total population.

Infectious time, tf
The time between becoming infected to
becoming infectious.

Detectable time, td
The time between becoming infected to
becoming detectable by a LFD.

Recovery time, tr
The time between becoming infected
to recovery from infection.

Table 5: A table of model parameters with their associated definitions.
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B Open-access online COVID-19 Intervention Simulator

An online simulator was developed to encourage the use of the stochastic agent-based model for policy-
makers (https://bit.ly/CV19 INTER IBM). Namely, the applet requires no previous coding experience to
operate and allows the user to reproduce the results presented in this study in addition to testing new
scenarios with current infection data. The online applet contains all features of the original model which
are outlined in Section 2 with some additional features to aid the decision process of policy surrounding
NPIs as the circumstances evolve throughout the pandemic. The additional features of the applet are as
follows:

1. Immunity of individuals in the population (vaccinations / recent infections);

2. Optional automatic Welsh infection data retrieval (included to aid the Welsh TAG);

3. Export simulation input data and output data into a downloadable excel document for further
analysis.

The inclusion of these features allow the users to have up to date model predictions as new data is
presented, and therefore reduce the time between data collection and policy action.
The applet was developed in collaboration with the Welsh TAG education policy sector to improve
usability among policy-makers. In addition, tutorial videos are embedded into the applet to ensure
appropriate usage of the software. Figure 7 demonstrates an application of the applet testing the use of
masks in a large population.

Figure 7: An application of the COVID-19 Intervention Simulator to compare the effect of masks on
infection transmission in a population of 100 individuals that regularly mix with the wider community
over the period of a month.
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C NPI parameter estimation from airborne transmission model

The NPI parameter values presented in Table 1 where estimated by simulating the semi-analytical
solutions of equations 1 and 2 in a characteristic classroom environment using model parameters in Table
6 as in [41]. Specifically, an infectious person is placed at the centre of the room and the concentration
of contagion particles are simulated at locations 2 (local) and 4 (nonlocal) metres away from the centre,
over a period of 5 hours. These simulations were conducted with all combinations of masks and overhead
ventilation (Figure 8) for both the best and worst-case infectious scenarios of Table 2. The full set of
results can be found in tables 7-10. For explicit details on model construction and applications, see
[41]. We note that the authors provide open-access code to simulate the airborne transmission model
(equations 1 and 2) in their maintained repository at https://github.com/zechlau14/Modelling-Airborn

e-Transmission.

Figure 8: Recirculating airflow in the simulated classroom.

Parameter Value Source
Classroom Dimensions 8 m × 8 m × 3 m
Airflow speed 0.15 m/s [48]
Room air exchange rate Very poor ventilation: 0.12 h−1 [66]
(ACH) Poor ventilation: 0.72 h−1 [66]

Pre-pandemic recommended ventilation: 3 h−1 [67]
Updated recommended ventilation: 6 h−1 [68]

Eddy diffusion coefficient Very poor ventilation: 8.8 ×10−4 m2/s [50]
Poor ventilation: 5.3 ×10−3 m2/s
Pre-pandemic recommended ventilation: 2.2 ×10−2 m2/s
Updated recommended ventilation: 4.4 ×10−2 m2/s

Breathing rate 1.3× 10−4 m3/s [69]
Generation rate of At rest: 0.5 particles/s [70]
infectious particles Low activity: 1.4 particles/s

High activity: 5 particles/s
Efficiency of mask 0.5 [49]
Virus deactivation rate 1.7×10−4 s−1 [71]
Aerosol settling rate 1.1×10−4 s−1 [72]
Median infectious dose 100 particles [73]

Table 6: Parameter estimations for running the model in [41].
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Activity
ACH = 0.12 ACH = 0.72 ACH = 3.00 ACH = 6.00
Al An Al An Al An Al An

At rest with mask 21.1 3.7 8.2 4.3 3.1 2.0 1.7 1.2
At rest no mask 42.2 7.3 16.4 8.6 6.2 4.1 3.5 2.3

Low activity with mask 59.4 10.2 23.0 12.0 8.7 5.8 4.8 3.3
Low activity no mask 118.3 20.5 46.0 24.1 17.5 11.5 9.7 6.6

High activity / Superspreader with mask 202.8 35.1 78.8 41.3 30 19.8 16.6 11.2
High activity / Superspreader no mask 422.4 73.1 164.2 86.1 62.5 41.2 34.6 23.4

Table 7: Steady state local and non-local concentration of airborne contagions in a secondary school
classroom with varying ventilation levels. Calculated from the model in [41] and the parameters in
Table 6.

Activity
ACH = 0.12 ACH = 0.72 ACH = 3.00 ACH = 6.00
IAl IAn IAl IAn IAl IAn IAl IAn

At rest with mask 0.267 0.041 0.115 0.058 0.047 0.031 0.027 0.018
At rest no mask 0.462 0.080 0.217 0.113 0.092 0.061 0.053 0.036

Low activity with mask 0.581 0.110 0.289 0.154 0.127 0.084 0.074 0.050
Low activity no mask 0.824 0.207 0.495 0.284 0.238 0.161 0.142 0.097

High activity / Superspreader with mask 0.949 0.329 0.690 0.436 0.372 0.260 0.231 0.161
High activity / Superspreader no mask 0.998 0.534 0.913 0.697 0.621 0.466 0.421 0.306

Table 8: Local and nonlocal infection risk from airborne transmission after 5 hours in a secondary school
classroom with varying ventilation levels. Calculated from the model in [41] and the parameters in
Table 6.

Activity
ACH = 0.12 ACH = 0.72 ACH = 3.00 ACH = 6.00
Rl Rn Rl Rn Rl Rn Rl Rn

At rest with mask 1.47 0.23 1.13 0.57 1.02 0.68 1.02 0.68
At rest no mask 1.45 0.25 1.12 0.58 1.02 0.68 1.01 0.69

Low activity with mask 1.43 0.27 1.11 0.59 1.0 0.68 1.01 0.69
Low activity no mask 1.36 0.34 1.08 0.62 1.01 0.69 1.01 0.69

High activity / Superspreader with mask 1.26 0.44 1.04 0.66 1.00 0.70 1.00 0.70
High activity / Superspreader no mask 1.11 0.59 0.96 0.74 0.97 0.73 0.98 0.72

Table 9: Worst-case local R number, Rl and nonlocal R number, Rn from airborne transmission in a
secondary school classroom with varying ventilation levels. Calculated from the relationRl = IAlR/(IAl+
IAn) and Rn = IAnR/(IAl + IAn), and the values in Table 8 and the worst-case scenario R-value given
in Table 2.

Activity
ACH = 0.12 ACH = 0.72 ACH = 3.00 ACH = 6.00
Rl Rn Rl Rn Rl Rn Rl Rn

At rest with mask 0.69 0.11 0.53 0.17 0.48 0.32 0.48 0.32
At rest no mask 0.68 0.12 0.53 0.27 0.48 0.32 0.48 0.32

Low activity with mask 0.67 0.13 0.52 0.28 0.48 0.32 0.48 0.32
Low activity no mask 0.64 0.16 0.51 0.29 0.48 0.32 0.48 0.32

High activity / Superspreader with mask 0.59 0.21 0.49 0.1 0.47 0.33 0.47 0.33
High activity / Superspreader no mask 0.52 0.28 0.45 0.35 0.46 0.34 0.46 0.34

Table 10: Best-case local R number, Rl and nonlocal R number, Rn from airborne transmission in a
secondary school classroom with varying ventilation levels. Calculated from the relationRl = IAlR/(IAl+
IAn) and Rn = IAnR/(IAl + IAn), and the values in Table 8 and the best-case scenario R-value given
in Table 2.
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H. Bordbar, P. Erästö, R. Grande, et al. Modelling aerosol transport and virus exposure with
numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Safety Science,
130:104866, 2020.

27

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.03.08.21253122doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21253122

	Introduction
	Computational framework
	Interventions
	Testing regimes
	Isolation regimes
	Scenario parameters
	Code availability

	Results
	Secondary school environments
	Without testing
	With testing

	Higher Education environments
	Start of term
	Middle of term


	Discussion
	Impact
	Future work
	Summary

	Acknowledgements
	Individual based model interpretation and implementation
	Open-access online COVID-19 Intervention Simulator
	NPI parameter estimation from airborne transmission model

