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Abstract 

Background and Purpose: A pilot study to determine feasibility of detecting changes in structural 

connectivity (SC) and resting-state functional connectivity (RSFC) occur alongside motor 

improvements after participation in the Targeted Ballet Program (TBP) in adults with relapsing-

remitting multiple sclerosis (RRMS). 

Methods: Five participants (four female) with RRMS between the ages of 38-64 with the 

following characteristics at baseline: Expanded Disability Status Scale 2.0-6.0, International 

Cooperative Ataxia Rating Scale (ICARS) > 7, Symbol-Digit Modality Test > 22, and no relapses 

or initiation of medications indicated to affect mobility within the past 30 days. Participants were 

asked to complete 12 weeks (one hour, twice per week) of the TBP. Magnetic resonance imaging 

data was collected pre- and post-intervention for SC and RSFC network analysis. 

Results: Increases in two RRMS-related graph theoretical measures (mean strength and mean 

clustering coefficient) for RSFC (p < 0.05) are detectable alongside significant reduction in ataxia 

(ICARS: p = 0.01012, Smoothness Index: p = 0.04995), and increase in balance (Mini-BESTest: 

p = 0.01474) following participation in the well-tolerated TBP. 

Discussion and Conclusions: Significant increases in mean strength and mean clustering 

coefficient of RSFC suggest functional neurological improvements after participation in the TBP. 

The relationship between these network changes and clinical improvements in balance and 

amelioration of ataxia after participation in the TBP requires a larger randomized-controlled 

clinical trial of the TBP in persons with RRMS. 
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Introduction 

Multiple sclerosis (MS) is an autoimmune-mediated disease with brain demyelination and 

axonal loss causing impaired mobility and ataxia, which affect an estimated 75% and 80% of 

persons with MS respectively 1-3. Ataxia presents as varied combinations of unsteady gait, limb 

trajectory errors, trunk instability, motor sequencing and timing errors, speech impairment, 

decreased tone, abnormal stretch reflexes, and body or head tremor 4. An estimated 900,000 

persons in the U.S. suffer from MS, which has no known cure 5 or effective pharmacological 

treatment for restoring mobility and decreasing ataxia 6,7.  Pharmacological treatment of MS 

consists of disease-modifying drugs that slow down disease progression by targeting immune 

system function. However, these drugs do not induce remyelination of the CNS and, therefore, 

loss of motor and sensory functions persists. 

Studies in mice and in healthy adult humans suggest that myelination is required for motor 

learning 8. Learning complex motor tasks – such as juggling, balancing on an unstable board, 

rhythmically cued finger movements, and dance – has been shown to increase white matter 

integrity and structural connectivity (SC) in fiber tracts in the cerebellum and areas involved in 

visuo-motor coordination and intra- and interhemispheric communication in both healthy adults 

and after stroke 8-17. Resting-state functional connectivity (RSFC) 18,19 analyses have shown 

changes in magnetic resonance imaging (MRI) in healthy adults due to bimanual visual tracking 

training and musical performance training. However, it is not yet known whether learning complex 

motor movements causes similarly significant changes in brain connectivity in persons with MS. 

A classical ballet-based program for complex motor learning delivered in a group setting, 

targeted to improve balance and reduce ataxia in persons with MS has shown positive results 

beyond those of other physical  rehabilitation interventions  20. Regarding dance research, evidence 
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shows positive training effects of classical ballet on balance21, postural control22, joint position 

sense23, and a shift from vision to proprioception in the coordination of movements24,25 in healthy 

adults, beyond the existing evidence for the benefits of social dance forms (e.g. salsa and ballroom 

dancing) 23-32. The foundation of the targeted ballet program (TBP) lies in complex motor learning 

intrinsic to western classical ballet training 20. Motor learning in ballet training organizes 

movement and its instruction hierarchically while requiring active allocation of proprioceptive, 

auditory, visuospatial, emotional, and attentional resources. Classical ballet training hierarchy is 

based on a set of postures organized in anatomical Cartesian planes. Trained ballet postures are 

akin to letters in the alphabet. Learning complexity evolves by connecting postures to create 

movement words and phrases20. This  approach to movement composition resembles theories of 

motor control based in the compositionality of dynamic primitives: movements that connect 

consecutive postures may be thought of as the dynamic ballet primitives 33-35. By modulating the 

dynamics of movement phrases, specific movement qualities such as smoothness and static and 

dynamic equilibrium are explicitly trained. This process is amenable to the training of movement 

patterns for transfer to everyday functional mobility, thereby unlocking ballet’s potential for 

movement rehabilitation. Movement narratives with meaning during training enhance motivation 

and cognitive engagement during complex motor learning.  

In a pilot study, this TBP was well-tolerated and showed evidence that it leads to improvements 

in motor measures in persons with relapsing-remitting MS (RRMS) 20. Prior to this work, the 

largest improvements due to physical activity interventions in MS were 11.5% for balance and 

15.2% for a timed 10-meter walk test 36,37. TBP increased Mini-Balance Evaluation Systems Test 

(Mini-BESTest) scores by 42% (p = 1e-4, Cohen’s d = 1.2) and decreased International 
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Cooperative Ataxia Rating Scale (ICARS) scores by 58% (p = 7.11e-5, Cohen’s d = 2.6) 20. 

However, we did not collect data on concurrent brain connectivity changes.  

Brain imaging of SC before and after participation in TBP may provide evidence of 

neuroplasticity underlying motor improvements in persons with MS. Along with SC, RSFC 

measures the effective active communication between regions 38. RSFC correlates with SC 39, but 

may provide differential sensitivity to indirectly connected networks in MS. Previous research 

supports the potential of this method in MS. RSFC has been shown to be reproducible in patients 

with stable RRMS according to a recent study of 20 RRMS patients compared with 14 healthy 

controls 40. Due to simultaneous use of multiple sensory modalities and cognitive networks, we 

expect increases in RSFC network measures after participating in the TBP. 

Methods 

This research was approved by the Institutional Review Board at the University of Illinois at 

Urbana-Champaign in accordance with the Declaration of Helsinki. All participants gave 

voluntary informed consent after approval for participation. This preliminary study is registered in 

ClinicalTrials.gov under the trial identifier NCT04073940 

(https://clinicaltrials.gov/ct2/show/NCT04073940). 

Participants and Setting:  

Inclusion criteria were: age 18-64 years, informed consent, confirmation of RRMS diagnosis 

and movement training approval from participant’s neurologist, Expanded Disability Status Scale 

scores of 2.0-6.5, relapse-free for 30 days, and absence of other central nervous system conditions. 

Exclusion criteria were: Symbol Digit Modalities Test < 23, pregnancy, education level < 8th grade, 

change in disease modifying therapy within 6 months, initiating medications that influence 
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mobility within 30 days, orthopedic or musculoskeletal conditions, and contra-indications for MRI. 

Recruitment began upon IRB approval on June 6th of 2018 and ended on September 19th of 2019. 

Pre-intervention assessments began on August 20th of 2019 and ended on September 19th of 

2019. Post-intervention assessments were performed between December 3rd of 2019 and 

December 13th of 2019. All motor assessments and TBP classes were performed at the University 

of Illinois at Urbana-Champaign in the ballet studio of the Neuroscience of Dance in Health and 

Disability Laboratory. MRI data was collected at the Biomedical Imaging Center of the Beckman 

Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign. 

The University of Illinois at Urbana-Champaign is located in a semi-rural community. 

Intervention:  

Participants were asked to perform 12 weeks (one hour, two days/week) of group TBP classes 

led by a Bolshoi-certified ballet instructor (CLO). Weekly make-up classes were made available 

to account for pre-existing time conflicts expressed by multiple participants. TBP classes were 

taught from August 28th, 2019 to December 2nd, 2019. Every class consisted of a seated warm up 

and ballet technique (20 min), followed by exercises using ballet barres (15 min), exercises across 

the floor (20 min), and a cool-down (5 min) 20. The seated warm-up focuses on articulating feet 

and hands, with progression from distal to proximal movements throughout the body, emphasizing 

selective control of each joint. As participants gain selective joint control, the warm-up transitions 

to smoothly connected, whole-body movements that link proximal to distal joints and vice versa. 

During the seated ballet section of the TDP, participants execute movements starting with the with 

the lower limbs in parallel position and progressing to first position of the feet with external 

rotation at the hips, from which they perform exercises in an adapted manner. The seated exercises 

were developed to provide the motor coordination foundations for the ballet barre and across the 
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floor exercises. Movement adaptations focus on maintaining key characteristics of each ballet 

movement 41. Exercises were selected to target movement deficits observed in the group. 

Whenever possible, participants performed all movements to the front, side, and back directions. 

Movements were performed in the allowable range of motion of the joints of each participant, to 

minimize the possibility of injury. All instruction conformed to the principles of classical ballet 

technique and focus on control of the trunk with awareness of all joints in postures and movements. 

Movement difficulty was comparable to the Royal Academy of Dance and the Cecchetti Council 

of America Ballet I-II Syllabi 42,43. The instructor and assistants ensured that participants 

performed the intervention with the equivalent of the moderate level of the Borg Rating of Perceive 

Exertion Scale44, with focus on motor learning over aerobic or muscular exertion. University-level 

graduate and undergraduate trained assistants at a ratio of 1:1 to 2:1 facilitated fidelity in the 

execution of the movement presented and adherence to the prescribed movement. Movements 

were performed in time with piano recordings from Dmitri Roudnev’s Ballet Class Music Series 

45. 

Main Outcome Measures:  

Feasibility 

 Recruitment and retention rates were calculated as basic measures of trial feasibility. A 

retention rate of 80% or better was considered feasible due to similar rates observed in prior MS 

studies in our setting. Adherence to protocol was determined by the number of hours of TBP 

instruction time completed by each participant in comparison to the 24 hours of prescribed 

instruction time. Other dance forms have been well-tolerated in MS 46, thus we expected the TBP 

to be well-tolerated as seen in our prior pilot study 20. Tolerability was measured by the ability of 

participants to complete each TBP class without related adverse events or issues of 
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thermoregulation preventing participation. Testing burden was deemed feasible if participants 

could complete all testing measures within the prescribed testing window without requesting 

adjustment to protocol. Detection of significant motor improvements and changes in SC and RSFC 

metrics served as critical measures of effect-detection feasibility. 

Motor function 

 We clinically assessed ataxia using ICARS, the leading comprehensive clinical measure of 

ataxia in MS with strong inter-evaluator reliability and validity 47-49. Higher ICARS scores indicate 

increased ataxia. We assessed balance ability using the Mini-BESTest, which has been validated 

in MS 50-52. Lower scores for the Mini-BESTest indicate better control of balance. Using a Qualisys 

motion capture system (Qualisys AB, Goteborg, Sweden), we assessed ataxia quantitatively using 

the spectral arc length metric yielding a bilateral smoothness index (s-index) 20,53,54 calculated 

using the SpectralArcLength.m function from https://github.com/siva82kb/smoothness 53. 

MRI Connectivity 

We calculated three graph theory metrics (GTMs): mean strength, global efficiency, and mean 

clustering coefficient that have been used previously in MS to characterize disruptions in SC and 

RSFC in relation to sensorimotor function 55-58. We expected to detect increases in these GTMs 

for both SC and RSFC based on large increases in associated motor function seen in our prior pilot 

of the TBP 20. 

Acquisition 

 For diffusion-weighted imaging (DWI) on the Siemens 3 T Prisma (Siemens, Erlangen, 

Germany) using a 64-channel head coil, the CMRR multiband sequence 

(https://www.cmrr.umn.edu/multiband/; 59,60) was used for both the fMRI and DWI data achieving 

whole brain coverage with 2.5 mm isotropic resolution, multiband factor of 4. DWI data had 64 
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diffusion encoded directions in 2 shells (b-value = 1500 and 3000 s/mm2). Blood-oxygen-level 

dependent (BOLD) fMRI data (TR 2 s, TE 40 ms, 96 slices of 2.5 mm slice thickness, flip angle 

52°)  was collected for a 9-minute acquisition using a visual fixation point as performed for MS in 

Bollaert et al 61. Standard structural data including a 0.9 mm isotropic T1-weighted 3D MPRAGE 

(TR 2.3 s, TE 2.32 ms, TI 900 ms, flip angle 8°) and 1.0 mm isotropic T2-weighted flow attenuated 

inversion recovery (FLAIR) acquisition were acquired as in our prior RRMS research 62.  

Preprocessing for Resting-State Functional Connectivity 

Structural and fMRI data were preprocessed with fMRIPrep 20.0.6 63, based on Nipype 64 1.4.2. 

T1-weighted (T1w) volumes were corrected for intensity non-uniformity using 

N4BiasFieldCorrection 65 and skull-stripped using antsBrainExtraction.sh v2.1.0 using the NKI 

template. Brain surfaces were reconstructed using FreeSurfer recon-all v6.0.1 66. Spatial 

normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 67 was performed 

through nonlinear registration with antsRegistration 68.  

Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 69 and motion 

corrected using mcflirt 70. Motion correcting transformations, field distortion correcting warp, 

BOLD-to-T1w transformation and T1w-to-template (MNI) warp were concatenated and applied 

using antsApplyTransforms using Lanczos interpolation.  

Resting-State Functional Connectivity 

RSFC processing was performed using the 36 parameter confound regression and motion de-

spiking pipeline design (see 

github.com/PennBBL/xcpEngine/blob/master/designs/fc36p_despike.dsn) in xcpEngine 

71.Pearson’s correlations were then quantified for regions of interest in the Automated Anatomical 
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Labeling Atlas 72. Network-based statistics 55,56 were calculated for the whole-brain network 

comprised of these regions of interest using the Brain Connectivity Toolbox (BCT) 55,73.  

Preprocessing for Structural Connectivity 

Preprocessing was performed using QSIPrep 0.12.2, which is based on Nipype 1.5.1 64. Many 

internal operations of QSIPrep use nilearn 74 and DIPY 75. The T1-weighted (T1w) image was 

corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection65, and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped using 

antsBrainExtraction.sh (ANTs 2.3.1), using OASIS as target template. Spatial normalization to the 

ICBM 152 Nonlinear Asymmetrical template version 2009c 67 was performed through nonlinear 

registration with antsRegistration68 (ANTs 2.3.1), using brain-extracted versions of both T1w 

volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 

and gray-matter (GM) was performed on the brain-extracted T1w using FAST76 (FSL 

6.0.3:b862cdd5).  The DWI time-series were resampled to ACPC, generating a preprocessed DWI 

run in ACPC space. 

Structural Connectivity 

Reconstruction was performed using QSIprep 0.12.2, which is based on Nipype 1.5.1 64 

Gorgolewski et al. (2018). Multi-tissue fiber response functions were estimated using the 

Dhollander algorithm. Fiber orientation distributions (FODs) were estimated via constrained 

spherical deconvolution 77,78 (CSD) using an unsupervised multi-tissue method 79. Reconstruction 

was done using MRtrix380. FODs were intensity-normalized using mtnormalize 81. Three GTMs 

describing network properties that reflect communication disruption caused by MS were calculated 

using the BCT 55,73. 

Statistical Analysis 
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Outcome differences were tested for normality using the Shapiro-Wilk Test (p < 0.05) and 

visual assessment of QQ-plots and boxplots 82-84. We then conducted single-tailed paired t-tests in 

R (R Core Team, Vienna, Austria) 85. Given that this was a single-center pilot study, feasibility 

measures were not statistically tested due to low generalizability of such statistics. 

Results 

Twenty-one  potential participants expressed interest in the study, six of whom were available 

to regularly attend the TBP classes and complete eligibility screening. Safety precautions related 

to COVID-19 prevented offering TBP classes for four potential participants. One potential 

participant was ineligible due to age outside of the range approved for inclusion. Five participants 

were eligible, provided informed consent, and completed the study: four female, one left-handed, 

two retired and three employed, three Caucasian, one Hispanic/Latinx, and one African-American. 

Participants had the following characteristics at baseline and hours of participation (see Table 1): 

Table 1 Baseline Participant Characteristics and Intervention Participation 

Mean ± standard deviation for each baseline participant characteristic. SDMT = Symbol-Digit 

Modality Test, EDSS = Expanded Disability Status Scale, ICARS = International Cooperative 

Ataxia Rating Scale. 

One participant stopped at 50% of the intervention duration due to an unrelated knee injury. 

However, this participant performed all post-intervention testing and is included in statistical 

analysis. This retention rate of 80% in the intervention is in line with previous studies on MS in 

our group and setting. The TBP was well-tolerated, with no adverse events related to participation 

Age 

(Years) 

Sex Handedness SDMT  EDSS  ICARS 

Base 

Hours of 

Participation 

in TBP 

Outside hours of 

other Physical 

Activity 

45.6±13.

9 

 

4 Female 

1 Male 

4 Right 

1 Left 

56±15.6 3.5±1.5 15.9±10 21.8±4.65 25±7.1 
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and with successful thermoregulation of the dance studio and availability of trained assistants for 

comfortable completion of each class. All motor testing was completed within a two-hour block 

of testing and MRI scans were completed in less than one hour per session. 

Table 2 Motor function outcomes. 

Motor Function 

Participant ICARS 

Score 

Pre 

ICARS 

Score 

Post 

ICARS 

Posture 

Gait 

Pre 

ICARS 

Posture 

Gait 

Post 

Mini-

BESTest 

Score Pre 

Mini-

BESTest 

Score Post 

Bilateral 

s-index 

Pre 

Bilateral s-

index Post 

1 10 8 2 1 23 26 -79.7311 -77.5589 

2 33 31.5 12 7.5 16 18 -101.2925 -100.0835 

3 9 4.5 5 1.5 22 26 -85.6486 -86.6932 

4 17 16 2 2 23 23 -88.6886 -83.7198 

5 10.5 6.5 3.5 0 25 27 -89.4498 -85.5882 

Paired t-

test 

p =  0.01012* p =  0.02128*  p =  0.01474*  p = 0.04995*  

Cohen’s d 

[95% CI] 

-1.67 

[-4.55, 1.21] 

-1.31 

[-4.05, 1.42] 

1.48 

[-1.32, 4.29] 

0.95 

[-1.67, 3.57] 

Hedge’s g 

[95% CI] 

-1.21 

[-3.18, 0.751] 

-0.95 

[-2.86, 0.951] 

1.08 

[-0.854, 3.01] 

0.69 

[-1.17, 2.55] 

For paired t-tests, * denotes p-value < 0.05. ICARS = International Cooperative Ataxia Rating 

Scale, Mini-BESTest = Mini-Balance Evaluation Systems Test, s-index = smoothness index, 95% 

CI = 95% confidence interval. Participant numbers have been deidentified.  

Paired t-tests showed reduction in ataxia (ICARS: p = 0.01012; bilateral s-index: p = 0.04995) 

and increased balance (Mini-BESTest: p = 0.01474). Mean strength and mean clustering 

coefficient increased for RSFC data (p < 0.05) (see Table 2). No significant changes were detected 

in structural connectivity analysis. Raw data for these outcomes are available upon request. 
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Table 3 Brain Connectivity Outcomes 

 Structural Connectivity Resting-State Functional Connectivity 

Participant % 𝚫 Global 

Efficiency 

% 𝚫 Mean 

Strength 

% 𝚫 Mean 

Clustering 

Coefficient 

% 𝚫 Global 

Efficiency 

% 𝚫 Mean 

Strength 

% 𝚫 Mean 

Clustering 

Coefficient 

1 0.05171 0.04623 0.05894 -0.2194 -0.1845 -0.02534 

2 -0.05888 -0.02900 -0.03739 0.08331 0.2422 0.5232 

3 0.005209 0.001800 0.01926 3.1845 2.907 0.8463 

4 0.08198 0.07607 0.08625 1.236 1.042 0.2145 

5 -0.02414 -0.02105 -0.03118 1.639 1.5201 0.4386 

Paired t-

test p-

value 

0.639 0.750 0.749 0.0678 0.0491* 0.0142* 

Cohen’s d 

[95% CI] 

0.172 

[-2.32, 2.66] 

 

0.329 

[-2.17, 2.83] 

0.332 

[-2.17, 2.83] 

0.834 

[-1.75,3.42] 

0.961 

[-1.66,3.58] 

1.49 

[-1.31, 

4.31] 

Hedge’s g 

[95% CI] 

0.125 

[-1.68, 1.93] 

0.239 

[-1.57,2.05] 

0.241 

[-1.57,2.05] 

0.607 

[-1.24, 2.45] 

1.37 

[-1.16, 2.56] 

1.09 

[-0.85, 

3.03] 

For percent change t-tests and paired t-tests, ** denotes p-value < 0.01, 95% CI = 95% 

confidence interval. Participant numbers have been deidentified. 

Discussion  

Originally, additional rounds of the TBP were planned to begin in the Spring semester with 

rolling-enrollment allowing testing and the intervention to minimize conflict with Winter holidays 

and maximize participant recruitment and adherence. However, recruitment for this pilot study 

was limited by the ongoing COVID-19 pandemic. The TBP was well-tolerated and participants 

were able to complete all testing. The intervention retention rate of 80% is in line with prior MS 

research in our setting and was due to outside circumstances unrelated to the intervention. As was 

originally planned for this pilot, future trials will be scheduled to avoid holiday conflicts and 

provide a longer period of TBP class availability to maximize adherence and consistent 

intervention delivery. 
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Motor improvements seen here are consistent with our pilot study of TBP in females with 

RRMS 20, including for the first time a male with RRMS. While still a very large effect, the ICARS 

Cohen’s d = 1.67 was lower than the corresponding Cohen’s d = 2.6 from our pilot study of TBP 

20. These smaller effect sizes were expected due to lower baseline levels of ataxia and ~25% fewer 

intervention hours spent than in the prior study 20. This effect size is also limited by less than full 

completion of the intervention by one participant. Improvements in the bilateral s-index (Cohen’s 

d = 0.95) and Mini-BESTest (Cohen’s d = 1.48) were similar to the respective large and very large 

effect sizes seen previously for TBP 20. Sample size bias-corrected Hedge’s g 86 yielded large effect 

sizes for all clinical outcomes and a medium effect size for the s-index (see Table 2). 

As expected, alongside motor improvements, we observed increases in mean strength and 

mean clustering coefficient in the RSFC data. These metrics have been shown to be lower in 

persons with MS than healthy controls 57,58. Thus, their increases suggest improvement in persons 

with MS, bringing these measures closer to those seen in healthy sensorimotor function 57,58. The 

extent to which each GTM represents disease response to intervention is limited by largely cross-

sectional current literature.  

The lack of expected significant increases in SC measures may be due to the small sample size 

of this preliminary study. Based on these results and accounting for the 80% intervention 

completion rate, a future longitudinal randomized-controlled trial with a repeated measures 

ANOVA statistical design would require recruitment of n = 212 participants achieve a significant 

change at power = 0.80 and α = 0.005 (Bonferroni-corrected for 10 simultaneous comparisons) in 

the GTMs of interest for SC that showed non-negligible changes in this pilot. The same statistical 

design would require recruitment of n = 20 participants for a trial to detect significant changes in 

GTMs for RSFC. However, we acknowledge that this estimation is limited in generalizability to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.10.21252757doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.10.21252757
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 
 

longitudinal and multi-site trials due to the single-center, pre- and post-intervention design of this 

pilot. 

With only five participants, statistical power of a small sample limits conclusions about the 

general RRMS population. We acknowledge that significance of outcome changes is limited by 

the need for appropriate correction for multiple simultaneous comparisons. However, the detection 

of within-participant differences in motor measures, mean strength, and mean clustering 

coefficient in RSFC supports a larger longitudinal study of the TBP in persons with RRMS. This 

would be a longitudinal randomized-controlled trial of the TBP in persons with RRMS, comparing 

the effects of the TBP on the aforementioned connectivity measures in SC and RSFC and motor 

outcomes to those of an intensity-matched version of the National Multiple Sclerosis Society 

Stretching for People with MS group class augmented by walking and lower extremity functional 

exercises known to improve mobility in persons with RRMS 36,87. 

Conclusions 

The detection of significant increases in mean strength and mean clustering coefficient of 

resting-state functional connectivity coinciding with clinical improvements in balance and 

amelioration of ataxia after participation in the TBP supports a larger randomized-controlled 

clinical trial of the TBP in persons with RRMS. Effect sizes seen in this preliminary study may be 

skewed due to a small number of participants but remain large/medium after correction for small 

sample size. Although generalizability to multi-site randomized-controlled trials is limited, 

enrollment, retention rates, and well-tolerated intervention and testing suggest that a larger clinical 

trial is feasible. 
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