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ABSTRACT

A major goal of genomic medicine is to quantify the disease risk of genetic variants.
Here, we report the penetrance of 37,772 clinically relevant variants (including those
reported in ClinVar' and of loss-of-function consequence) for 197 diseases in an
analysis of exome sequence data for 72,434 individuals over five ancestries and six
decades of ages from two large-scale population-based biobanks (BioMe Biobank and
UK Biobank). With a high-quality set of 5,359 clinically impactful variants, we evaluate
disease prevalence in carriers and non-carriers to interrogate major determinants and
implications of penetrance. First, we associate biomarker levels with penetrance of
variants in known disease-predisposition genes and illustrate their clear biological link to
disease. We then systematically uncover large numbers of ClinVar pathogenic variants
that confer low risk of disease, even among those reviewed by experts, while
delineating stark differences in variant penetrance by molecular consequence.
Furthermore, we ascertain numerous variants present in non-European ancestries and
reveal how increasing carrier age modifies penetrance estimates. Lastly, we examine
substantial heterogeneity of penetrance among variants in known disease-
predisposition genes for conditions such as familial hypercholesterolemia and breast
cancer. These data indicate that existing categorical systems for variant classification
do not adequately capture disease risk and warrant consideration of a more quantitative

system based on population-based penetrance to evaluate clinical impact.
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The advent of high-throughput sequencing has led to an exponential increase in
genetic tests for health-related purposes?3. The American College of Medical Genetics
& Genomics (ACMG) recommends clinical action if a pathogenic genetic variant is
found in one of 59 genes (hereafter ACMG59)*. This “genetics-first” approach is feasible
if variant pathogenicity is ascertained with high confidence and veracity. A large
database of human variation and phenotypes, ClinVar', classifies variant pathogenicity
in a scheme that informs clinical interpretation of genetic test results (e.g., “pathogenic”,
“uncertain significance”, “benign”)°. However, most ClinVar variants are of uncertain
clinical significance, and misclassification of 12% of pathogenic and 90% of conflicting
variants has inflated their pathogenicity®. Variants implicated in diseases from breast
cancer to cardiomyopathy have been scrutinized for overestimated claims of
pathogenicity’” and many variants classified as pathogenic were recently downgraded to
lower ClinVar classes®. Any unreliability of pathogenicity, already a categorical rather
than quantitative metric of disease risk, further diminishes its clinical value. There is
therefore a critical need to provide accurate information for a variant’s effect on disease
to guide patient care.

Penetrance, the probability of a disease phenotype given a particular genotype®,
is unknown for the vast majority of variants in ClinVar and genetic databases. Well-
known exceptions include ~60% of carriers of certain BRCA1 and BRCAZ2 variants
develop breast cancer by 70 years of age'® and 73% of individuals heterozygous for
LDLR variants present with hypercholesterolemia. Findings of highly penetrant

variants immediately guide treatment, such as statins, and screening, such as
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mammograms'213, Penetrance thus gives meaningful and actionable information for
variants by quantifying a carrier’s disease risk.

Until recently, penetrance has been primarily derived from family-based or
clinical cohort studies'#~'". These typically focus on a small number of genes and
inherently maximize penetrance estimates by recruiting patients with disease or family
history of disease, and are therefore susceptible to ascertainment bias'®. Small sample
size and genetic or environmental modifiers further limit their ability to reliably appraise
penetrance. In contrast, the recent introduction of the UK Biobank (UKB) and other
population-based biobanks has created a trove of genetic and phenotypic data for large
numbers of unrelated individuals?>2!. Exome sequences coupled to electronic health
records (EHRs) provide an unprecedented opportunity for using a population-based
method to measure penetrance on a large scale with less ascertainment bias than
traditional studies?2. In addition, multi-ethnic biobanks such as Mount Sinai’s BioMe
Biobank (BioMe)?® enable the analysis of penetrance across diverse ancestries. Recent
studies have begun to use a population-based approach to explore penetrance of genes
in breast cancer?* and familial hypercholesterolemia (FaH)?°, yet the population-based
penetrance of most variants, genes, and diseases remains uncharacterized.

Here, we perform a comprehensive analysis of variant penetrance observed in
two large-scale EHR-linked population-based biobanks (BioMe and UKB). We
measured the penetrance of 37,772 variants, including a high-quality set of 5,359
clinically impactful variants, for 197 diseases of dominant inheritance using exome
sequences from 72,434 individuals. Penetrance was analyzed in all individuals and

separately in five ancestries across six decades of ages. We investigated determinants
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of penetrance, including ClinVar pathogenicity, variant molecular consequence, and
carrier ancestry and age. The clinical manifestation of variants was scrutinized by
examining metabolite levels, biological measurements, and physician notes for carriers,
and clinically significant variants and genes were highlighted. This highly scalable,
population-based approach of generating penetrance estimates for thousands of
clinically relevant variants expands our knowledge of the genetic influences on disease

and has the potential to advance genomic medicine.
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RESULTS

Analysis of penetrance of clinical variants

A graphical abstract is provided (Supplementary Figure 1). Whole-exome
sequencing, quality control, and filtering were performed on 80,773 samples from two
population-based EHR-linked biobanks (Methods) to generate a final dataset with
72,434 individuals (Table 1). Demographics, self-reported ancestry, biological
measurements, and International Classification of Disease 10 (ICD-10) diagnosis codes
were available for individuals in the final dataset. We defined case-control status for
over 400 non-recessive diseases in ClinVar sourced from the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT)?® using ICD-10 codes?’, of
which 197 had at least one case in the final dataset (Supplementary Table 1). We
analyzed 37,772 variants that were either reported in ClinVar for at least one of the
aforementioned diseases or were of predicted loss-of-function (LoF) consequence
(Supplementary Table 2). A stringent set of 5,359 clinically impactful (impactful)
variants—defined by pathogenic/likely pathogenic classification in ClinVar or LoF
annotation (splice acceptor/donor, stop gained/lost, frameshift, start lost) with Variant
Effect Predictor?® in a gene mediating disease via LoF mechanism, and in a gene with
non-recessive inheritance—was used for downstream analyses unless otherwise stated
(Supplementary Figure 2). We identified carriers with at least one allele (hereafter
referred to as carriers) for each variant and computed the proportion of carriers affected
with disease to determine penetrance. Variant penetrance was estimated in all carriers

and separately in carriers of five diverse ancestries and six age ranges. The proportion
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of non-carriers affected with disease was also quantified for each variant to ascertain

disease prevalence among the population in the absence of a scorable variant.

Validation of phenotyping and penetrance approach

We performed a series of analyses to validate our population-based approach of
phenotyping and computing penetrance. First, we selected nine diseases from a variety
of systems—age-related macular degeneration (AMD), arrhythmogenic right ventricular
cardiomyopathy (ARVC), FaH, familial breast cancer (FBC), type 2 diabetes (T2D),
etc.—and identified cases using both ICD-10 diagnosis codes and previously published
clinical algorithms?®-37. We then evaluated and compared the penetrance of 208 ClinVar
pathogenic variants corresponding to the diseases in BioMe using both phenotype
approaches (Supplementary Table 3). Similar penetrance values were observed for all
diseases. Three diseases (Brugada syndrome, hepatocellular carcinoma, and
pulmonary arterial hypertension) had equivalent mean variant penetrance with both
approaches; mean variant penetrance of the other six diseases varied by 8% or less. A
tabulated list of these results is provided (Supplementary Table 4).

Second, we further assessed the accuracy of our phenotyping approach by
manually reviewing physician notes in the problem list (PL) for cases and controls of six
representative diseases: Alzheimer’s disease (AD), AMD, FaH, FBC, stroke, and T2D.
We randomly sampled 50 ICD-10-based cases and controls for each disease and
examined their PL for symptoms or findings indicative of a diagnosis while blinded to
ICD-10 disease status (Supplementary Table 5). We observed high concordance in

case-control classification between ICD-10- and PL-based phenotyping, ranging from
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100% (for AD) to 93% (AMD, FaH). Case concordance ranged from 88% (AMD, FaH)-
100% (AD, FBC, T2D), while control concordance ranged from 94% (T2D)-100% (AD,

stroke).

Biomarker levels linked to variant penetrance

We investigated metabolite and clinical measurements of carriers of impactful
variants with different penetrance in genes with clear biological links to three diseases:
FaH'2, maturity-onset diabetes of the young (MODY)?%, and obesity3®4° (Figure 1).
Carriers of penetrant variants for FaH in LDLR had greater low-density lipoprotein
cholesterol (LDL-C) and total cholesterol levels than carriers of incompletely and
nonpenetrant variants (Figure 1a). Using linear regression, we observed robust
association between variant penetrance and LDL-C (effect size [3]=0.53 mg/dL per 1%
increase in penetrance, standard error [SE]=0.12; P=0.004) and total cholesterol levels
(B=0.98 mg/dL, SE=0.18; P=0.002) adjusting for clinical covariates and statin use.
Analogously, carriers of penetrant variants for MODY in hepatocyte nuclear factor-1a
(HNF1A) had elevated glucose and hemoglobin A1c (HbA1c) levels compared to
carriers of incompletely penetrant variants (Figure 1b). Variant penetrance was
significantly associated with glucose (3=0.76 mg/dL, SE=0.19; P=0.008) and HbA1c
levels ($=0.083% [2.4 mg/dL], SE=0.020 [0.57 mg/dL]; P=0.01) adjusted for clinical
covariates and diabetes medication use. Lastly, carriers of penetrant variants for obesity
in uncoupling protein 3 (UCP3) had higher body mass index (BMI) than carriers of
incompletely and nonpenetrant variants (Figure 1c¢). Variant penetrance was strongly

associated with BMI (8=0.24 kg/m?, SE=0.044; P=6x10*) and weight (3=1.3 Ibs [0.59
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kg], SE=0.26 [0.12 kg]; P=8x10*) adjusting for clinical covariates. Together, these
analyses using published phenotype algorithms, physician notes, and biological
measurements support the validity of our population-based penetrance method and

illustrate the clinical presentation of impactful variants.

Distribution of observed variant penetrance and disease risk

We examined the distribution of disease risk conferred by 5,359 impactful
variants and 157 corresponding diseases. Risk difference (RD) is the difference
between the prevalence of disease in carriers and non-carriers, and represents the
excess risk of disease attributed to the variant of interest. A summary of mean variant
RD for all 157 diseases is provided (Supplementary Table 6). We observed 565 (11%)
variants with RD exceeding 0.05 for 55 (35%) diseases (Figure 2). In contrast, we
detected a very large number of weakly penetrant and nonpenetrant variants that confer
little to no disease risk (4,794 [89%] variants with RD<0.05), which can be attributed in
part to ClinVar pathogenic variants from traditional studies that maximize penetrance
estimates and have biased ascertainment'®. Recent studies have demonstrated
overestimation of the disease rates of these variants®-8, indicating a need for
population-based approaches to more unbiasedly gauge penetrance.

Next, we investigated the prevalence of disease in carriers (i.e., penetrance) and
non-carriers of impactful variants according to ClinVar pathogenicity (pathogenic,
uncertain, conflicting, benign) (Figure 3a), ClinVar review status (expert reviewed,
multiple submitters, single submitter, no assertion criteria) (Figure 3b), and molecular

consequence (Figure 3c). We hypothesized that variants reported as pathogenic in
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ClinVar, reviewed by experts, or with LoF consequence have greater a priori evidence
of disease risk and are expected to have higher penetrance than variants reported as
benign, without criteria assertion, or of synonymous consequence. In agreement with
these expectations, we observed that mean variant penetrance was highest among
pathogenic (6.9% vs. 0.86% next highest mean for uncertain class; P=5x10279), expert
reviewed (18% vs. 6.4% next highest mean for multiple submitters; P=9x10'7), and
frameshift variants (10% vs. 4.1% for missense; P=2x10-'3). The mean penetrance of
ClinVar variants with conflicting (0.75%), uncertain (0.86%), and benign clinical
significance (0.085%) was similar, warranting caution when interpreting variants that do
not fully meet the ACMG's strict pathogenic criteria*'. We also note that the mean
penetrance of ClinVar pathogenic variants was only 6.9% and only 18% for those with
the highest review status (expert reviewed), indicating that these broad classifications
do not adequately capture all variants with large effect on disease as measured by
penetrance.

We conducted several sensitivity analyses to account for differing sample sizes
of penetrance estimates. Penetrance distributions according to ClinVar pathogenicity,
review status, and molecular consequence remained similar when stratified by
increasing thresholds of sample sizes (Supplementary Figure 3). Singletons (very rare
variants appearing only once) comprised a large portion of the impactful variants
(3,507/5,359 [65%]) and statistically are completely penetrant or nonpenetrant. To test
the validity of singleton penetrance, we evaluated the proportion of penetrant singletons
by ClinVar pathogenicity, review status, and molecular consequence (Supplementary

Figure 4). If singleton penetrance were accurate, the proportion of penetrant singletons
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among pathogenic, expert reviewed, or LoF singletons would be expected to exceed
that of benign, non-expert reviewed, or non-LoF singletons, respectively. We observed
that the proportion of penetrant singletons was in fact greatest among pathogenic (13%
vs. 2.6% in next highest class of conflicting; P=2x10-1%), expert reviewed (41% vs. 12%
in next highest group of multiple submitters; P=4x10-""), and frameshift singletons (16%
vs. 7.8% for missense; P=1x10). We therefore retained penetrance estimates of

smaller sample sizes in our analyses.

Ancestral and temporal dimensionality of penetrance data

Most penetrance studies to date have focused on one ancestry, typically
European*?43, with few notable exceptions''2344_ Yet it is well-known that allele
frequency (AF) and disease risk of variants can vary substantially in different
populations**4¢, Thus, we computed penetrance among multiple self-reported
ancestries, including European, African, Hispanic, and Asian ancestries. To
demonstrate this diversity, we identified numerous ancestry-specific impactful variants.
Out of 2,209 impactful variants in BioMe, we observed 75 (3.4%), 43 (1.9%), 17
(0.77%), and 71 (3.2%) variants exclusively present in African, Hispanic, Asian, and
European ancestry, respectively. Out of 3,408 impactful variants in UKB, we observed 8
(0.23%), 11 (0.32%), and 235 (6.9%) variants specific to African, Asian, and European
ancestry, respectively. Furthermore, we identified ancestry-specific variants that were
highly penetrant, such as an Asian ancestry-specific pathogenic frameshift variant in
HBB (NC_000011.10:¢.5226994 _5226995insC) associated with a greatly increased risk

of thalassemia (RD=0.99; P=9x10) and a European ancestry-specific pathogenic
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frameshift variant in PALB2 (NC_000016.9:¢.23647358 23647359del) associated with
a significantly elevated risk of breast cancer (RD=0.92; P=0.007).

We also delineated variant penetrance based on different age thresholds of
carriers ranging from at least 20 years (220) to at least 70 years (=270). Age of disease
onset is pertinent for estimating penetrance: congenital or early onset diseases will have
manifested in older carriers of penetrant variants, whereas later onset diseases may not
have presented yet in younger carriers. To address temporality, we characterized the
observed change in variant penetrance with increasing carrier age for 157 diseases
corresponding to the impactful variants, stratified by age of disease onset (Figure 4;
Supplementary Figure 5). We first annotated and grouped the diseases by age of
onset: Earlier (congenital, childhood, or adolescent), Later (adulthood), or Any
(Supplementary Table 7). For each disease group, we then calculated the change in
variant penetrance (APenetrance) between the lowest carrier age threshold and
increasing age thresholds (e.g., variant penetrance for 220 versus 230, 220 versus 240,
etc.). As expected, the mean APenetrance increased in the Later disease group with
higher carrier age thresholds in BioMe (Figure 4a). The largest mean APenetrance was
+1.8% in the Later disease group when comparing 220 and =70, while mean
APenetrance remained ~0% in the Earlier and Any disease groups. In UKB, no
significant differences in mean APenetrance were observed in the Later disease group
(Figure 4b) likely due to its older age range of carriers (40-69 years) whereby Later
diseases would have manifested. Thus, penetrance estimates of diseases with early or
any age of onset remained stable over time, while penetrance estimates of diseases

with later age of onset predictably increased with higher carrier ages.
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Clinical utility of variant penetrance data

A genotype-first approach in genomic medicine must identify penetrant variation
in clinically significant genes to inform screening, management, and treatment. The
ACMG recommends reporting secondary findings of pathogenic variants in the
ACMG59, but acknowledges that insufficient data on penetrance requires ongoing study
and revision*®. BRCA1 and BRCAZ2 are both in the ACMG59, and a recent study
estimated the population-based penetrance of pathogenic variants in these genes for
FBC using data from the UKB®C. However, penetrance was estimated at the gene level,
and non-ClinVar variants were omitted as were variants in other genes that have been
shown to confer significant risk of breast cancer, such as PALB2, CHEK2, ATM, PTEN,
and others?*. Thus, we investigated the penetrance of impactful variants in 10 known or
suspected breast cancer-predisposition genes (BRCA1, BRCA2, PALB2, CHEKZ2, ATM,
PTEN, CDH1, BARD1, BRIP1, and RAD51D) to illustrate the clinical value of a
population-based approach of determining penetrance at the variant level (Figure 5a).
The highest disease risk on average was conferred by impactful variants in BRCA1
(mean variant penetrance=38%, mean RD=0.32; P=2x10%), BRCA2 (mean variant
penetrance=38%, mean RD=0.32; P=1x10-'%), and PALB2 (mean variant
penetrance=26%, mean RD=0.20; P=0.009).

These data clarify the disease risk of previously reported variants in ClinVar and
novel variants not yet reported in ClinVar or the literature. We highlighted examples of
variants that are significantly associated with risk of seven diseases, including FBC, to

demonstrate this dual utility (Supplementary Table 8). Many impactful variants in
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BRCAZ2 were strongly associated with FBC, such as a known pathogenic frameshift
variant (NC_000013.11:¢.32340301del; penetrance=47%, RD=0.39; P=9x10%) and a
previously unreported frameshift variant (NC_000013.11:¢.32340630_32340631del;
penetrance=100%, RD=0.96; P=4x10-13). Evidence of high penetrance strengthens a
candidate variant’s case for clinical significance, while assertions of pathogenicity are
refined by quantitative disease risk estimates.

Notably, we observed substantial heterogeneity in the penetrance of variants
even within the same disease-predisposition gene. Impactful variants in LDLR, for
instance, exhibited a wide range of penetrance for FaH (Figure 5b). Similarly, there was
a large distribution of penetrance associated with impactful variants in BRCA1 (variant
penetrance standard deviation [SD]=45%, RD SD=0.44), BRCAZ2 (variant penetrance
SD=46%, RD SD=0.46), and PALBZ2 (variant penetrance SD=42%, RD SD=0.42) for
FBC (Figure 6a). Instead of coarsely categorizing variants as simply pathogenic versus
non-pathogenic and collapsing all variants in a gene, these data reveal granularity and

nuance in the penetrance of individual variants.
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DISCUSSION

A major goal of genomic medicine is to tailor clinical care of patients to their
unique genetic composition, especially penetrant variants. Scalability and accuracy are
crucial for determining penetrance and employing its information in a clinical setting.
Conventional penetrance estimates from family-based or clinical cohort studies typically
focus on one variant or gene at a time'4~'" (limited scalability), and have small sample
size, ascertainment bias, inconsistent carrier screening, and genetic/environmental
confounders'®'9 (limited accuracy). A proliferation of population biobanks, such as UKB
and BioMe, has made available thousands of genetic and phenotypic records?%:2"-23,
This raises the possibility of using a population-based method to measure penetrance
whereby large numbers of unrelated carriers are assessed??. Here, we performed a
comprehensive assessment of variant penetrance using 72,434 exomes from two large-
scale population-based biobanks, with the dataset freely accessible and provided in
Supplementary Tables 9 and 10.

Reliable penetrance estimates depend on reliable phenotyping of carriers. We
performed robust validation analyses to support our phenotyping and penetrance
strategy. First, we computed penetrance for nine diseases using both diagnosis codes
and previously published clinical algorithms, finding high concordance in all diseases
tested. Second, we manually curated physician notes for six diseases to verify ICD-10-
based diagnoses. Third, we extracted laboratory and clinical test results (e.g., levels of
lipids, glucose, HbA1c, and BMI) for carriers and observed that penetrance was strongly
associated with relevant quantitative traits, adjusted for medications and clinical

covariates. Hence, by validating our phenotyping and penetrance method, and
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evaluating penetrance for thousands of variants in a high-throughput manner, we
ensure both accuracy and scalability. As penetrance studies grow, similar validation
analyses should be implemented to certify fidelity of penetrance estimates.

While several efforts have begun to probe the upward bias of penetrance
estimates in traditional studies, there has not yet been a systematic investigation of the
pervasiveness of overestimated penetrance. In the present study, we examined the
distribution of disease risk associated with a high-quality set of 5,359 impactful variants
and 157 diseases. Persistently lower disease risk was observed for many diseases, with
a few exceptions of highly penetrant variants such as in BRCA1 and BRCAZ2. This can
be interpreted in light of a few important considerations: 1) small sample size and
stochasticity for rarer variants may contribute to variable penetrance estimates;
however, a number of analyses supported the accuracy of our penetrance
measurements with respect to sample size, including for singletons (Supplementary
Figure 3, Supplementary Figure 4); 2) ascertainment of cases in conventional studies
has been shown to inflate the disease risk of variants'®'® and recent population-based
studies with lower penetrance estimates for FaH and developmental disorders bolster
this explanation'??; 3) reported pathogenicity does not equate with penetrance, as we
found by interrogating whether existing qualitative classification systems in ClinVar
capture the quantitative disease risk of variants. ClinVar pathogenic variants were more
penetrant than variants of other ClinVar classes yet still weakly penetrant overall, in line
with previous studies®® and consistent with ClinVar’s definition of pathogenic that

includes “low penetrance” variants (https://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/).

We then examined a major driver of variation in penetrance among ClinVar pathogenic
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variants: when stratified by ClinVar review status (evidence for clinical significance of a
variant), pathogenic variants that were not expert reviewed had lower penetrance.

In light of these findings, it is incumbent to discuss whether variants reported as
pathogenic but empirically shown to have low penetrance should be classified
differently, or whether categorical systems of disease risk (pathogenic versus non-
pathogenic) should be complemented with a quantitative system based on penetrance’.
Recent commentary by Khera and Hegele proposed a new paradigm for classifying FaH
based on two parameters: carrier status for a pathogenic LDLR variant and severity of
hypercholesterolemia®’. This advanced schema for disease classification, and others
like it, would greatly benefit from knowledge of penetrance for pathogenic LDLR variants
to better stratify disease risk and personalize medical care.

We also emphasize the importance of including diverse ancestries and age
ranges when characterizing variant penetrance. Populations differ by AF and disease
factors*®48, yet most genetic studies have focused on Europeans®?53. Here, we capture
ancestry-specific penetrance in detail, identifying over a hundred variants in non-
European ancestries. While past studies have reported age-dependent penetrance in
age-related diseases such as FBC'"54, amyotrophic lateral sclerosis®®%, and obesity®’,
these typically estimate gene-based penetrance whereby all variation in a gene is
aggregated. In contrast, we evaluate age-dependent penetrance at the variant level. As
expected, early onset diseases showed stable penetrance over time while later onset
diseases had increasing penetrance with older carriers. For example, the observed

penetrance of an expert reviewed ClinVar pathogenic frameshift variant in BRCA2
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(NC_000013.11:¢.32340301del) increased from 38% in European ancestry carriers 240
years of age to 56% in those =60 years of age.

There were several study limitations. First, ICD-10 diagnosis codes from the EHR
were used to define case-control status?%?’” (Supplementary Table 1). While commonly
used in EHR-linked biobank studies®'62, there may be some misclassification®3-6.
Though several validation analyses reinforced the soundness of our phenotyping, these
were completed for a subset of the diseases. Second, we cannot exclude the possibility
of potential bias in our datasets. BioMe is predominantly composed of individuals
recruited from the Mount Sinai Health System and may have a higher burden of
diseases and therefore penetrance estimates. In contrast, the preponderance of healthy
volunteers in UKB may lead to conservative estimates of penetrance. Third, though our
sample size exceeded 72,000 exomes and enabled us to ascertain rare variants, many
penetrance estimates for rare variants (e.g., singletons) are based on low numbers of
carriers and may produce variable estimates. We included raw counts of carriers and
non-carriers for each variant in the dataset so that estimates may be interpreted
accordingly. Fourth, we mapped variants to diseases based on disease genes reported
in ClinVar from pathogenic variant submissions. Inaccuracies in ClinVar submissions,
and therefore our mapping from variant to disease, are possible, though we manually
checked mappings extensively against the literature for accuracy.

In conclusion, we present a large-scale, systematic investigation of variant
penetrance that leveraged thousands of exomes linked to the EHR. While we made
available the penetrance measurements of all 37,772 variants for full transparency, we

utilized a stringent set of 5,359 impactful variants that were ClinVar pathogenic or LoF in
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a non-recessive gene for many analyses. We demarcated differences in disease risk
among variants of distinct ClinVar pathogenicity classes, review status, and molecular
consequences. We also accessed a rich resource of clinical phenotypes to thoroughly
explore penetrance: detailed physician notes, medications, biological measurements,
and laboratory results. Critically, we investigated multiple dimensions of penetrance
data spanning five ancestries and six decades of age thresholds. This study provides a
blueprint for future studies to efficiently and accurately determine variant penetrance,
the results of which will greatly improve our understanding of the genetic underpinnings

of human disease.
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METHODS

Study populations and sample filtering

A flowchart of the study design is provided (Supplementary Figure 1). We
evaluated penetrance from individuals in two large-scale electronic health record (EHR)-
linked population-based biobanks: The BioMe Biobank (BioMe) and UK Biobank (UKB).
The study protocols were approved by the Institutional Review Board (IRB) of the Icahn
School of Medicine at Mount Sinai. Use of data from UKB was completed and approved
using the UK Biobank Resource under Application Number 16218. Informed consent
was obtained for all study participants in both BioMe and UKB through the approved
IRB protocols. An overview of the demographics and clinical traits for both study
populations is provided (Table 1). BioMe is an EHR-linked biobank for ~50,000 patients
of African, Hispanic, European, and Other (Asian, Native American, and miscellaneous)
self-reported ancestry who are recruited from the Mount Sinai Health System in
Manhattan, NYC from 2007 onwards. All BioMe participants consented to providing
biological and DNA samples linked to de-identified EHRs. A subset of the individuals
(n=31,250) was exome sequenced before undergoing quality control. A total of 229
samples with discordance between genetic sex and sex listed in the manifest, low
coverage, contamination, low call rate, or duplications were excluded, leaving 30,813
samples. In addition, samples lacking complete demographic data (n=345), younger
than 20 years of age (n=610), or without International Classification of Diseases-Clinical
Modification 10 (ICD-10) diagnosis data (n=819) were removed to generate the final

study set of 29,039 samples.
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The UKB is a population-based longitudinal cohort of ~500,000 individuals chiefly
of British self-reported ancestry between 40-69 years of age who were enrolled at
various sites across the United Kingdom between 2006-20102%"67. All individuals
consented to providing medical history, demographic data, and DNA samples. A subset
of 49,960 individuals had their exome sequenced and passed standard quality control
(QC) filters, described extensively elsewhere®®. We further excluded samples that
lacked complete demographic information (n=2), or did not have ICD-10 diagnosis

codes available (n=6,563), leaving a final study set of 43,395 samples for analysis.

Whole-exome sequencing and quality control

In BioMe, variant call files (VCFs) produced by lllumina v4 HiSeq 2500 contained
9,202,884 variants that were called in the samples. Goldilocks Filter (GF) was
implemented on the VCFs. For single nucleotide polymorphisms (SNPs), cells with
depth-normalized quality scores <3 or depth of coverage <7 were set to missing. For
insertions and deletions (indels), cells with depth-normalized quality scores <5 or depth
of coverage <10 were set to missing. Variant sites were then filtered, whereby sites of
heterozygous variation failed the Allele Balance (AB) cutoff and were removed. SNP
sites required =1 sample to carry an alternate AB 215% and indel sites required =1
sample to carry an alternate AB 220%. Together, these site filters removed 441,406
sites, leaving 8,761,478 variants after GF. Next, sites with missing genotypes for >2% of
individuals in the dataset (267,955 sites) were removed. AB was calculated for biallelic
SNPs and 320,877 sites with AB <0.3 or >0.8 were removed, leaving 8,172,646 sites.

Lastly, the dataset was filtered to regions within the target regions of the exome capture
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platform (4,256,827 sites) and separated into 2 file sets for biallelic and multiallelic sites
(3,948,623 and 308,204, respectively) due to differences in QC procedures.

In UKB, exome data from the first tranche of exome sequence data generated
with the Functional Equivalence pipeline®® was used. Sequence data and QC for UKB

are described elsewhere?':67,

Variant curation and annotation

Using exome data from the 72,434 study samples, 37,772 variants associated
with ClinVar' diseases were ascertained using PLINK version 2.0%°. To enrich for
penetrant variants, we selected a strict subset of 5,359 clinically impactful (impactful)
variants for most downstream analyses. These were defined by curating variant
summary information in ClinVar VCF files released in December 2019, functional
annotations from Variant Effect Predictor (VEP)?® version 99.2, and genic mode of
inheritance from Online Mendelian Inheritance in Man (OMIM)?°. An overview of variant
selection is provided in Supplementary Figure 2. First, we included variants of
pathogenic and/or likely pathogenic classification in ClinVar, and previously unreported
variants with a damaging molecular consequence (splice acceptor/donor, stop
gained/lost, frameshift, or start lost; collectively defined as LoF) annotated by VEP. LoF
variants in a gene were mapped to disease based on prior pathogenic variant
submissions in ClinVar linking genes to diseases (e.g., BRCA1 LoF variants were
mapped to breast cancer based on prior pathogenic variant submissions in ClinVar
linking BRCA1 to breast cancer). This filtered out benign variants or variants with

uncertain or conflicting clinical significance in ClinVar and variants with synonymous
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molecular consequence. As missense variants have varying and uncertain degrees of
pathogenicity, non-ClinVar missense variants were also excluded. We also noted the
review status for each ClinVar variant, which summarizes the level of evidence
supporting a variant’s claim of clinical significance ranging from the lowest level of no
assertion criteria (review status=0), to single submitter or multiple submitters with
conflicting interpretation (review status=1), to multiple submitters with no conflict of
interpretation (review status=2), to reviewed by an expert panel such as ClinGen’"
(review status=3), to the highest level of practice clinical guidelines (review status=4).
Second, we excluded variants in genes with exclusively recessive mode of inheritance
reported in OMIM. The gene for each variant was retrieved from NCBI reference
sequences (RefSeq’?) and corroborated with genomic coordinates in OMIM. The mode
of inheritance was mined for all phenotypes reported for each gene in OMIM and genes
were then summarized as Dominant (only dominantly inherited phenotypes), Both (both
dominantly and recessively inherited phenotypes), or Recessive (only recessively

inherited phenotypes).

Phenotyping of carriers

In both UKB and BioMe, we obtained case status using ICD-10 diagnosis codes.
ICD-10 codes are commonly used in genetic population studies to define cases of a
disease®'-%? and they map directly to ClinVar diseases in the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT)?’. All of the 29,039 BioMe
samples and 43,395 UKB samples in the final dataset had ICD-10 diagnosis codes

available. Cases were identified by the presence of a corresponding ICD-10 code while
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controls were identified by the absence of all corresponding ICD-10 codes. We thereby
defined case-control status for over 400 SNOMED CT diseases of non-recessive
inheritance in ClinVar (disease inheritance was retrieved from NCBI's MedGen

database at https://www.ncbi.nlm.nih.gov/medgen/); 197 of the diseases were present

with at least one case in the final dataset. A complete list of the cases, controls, and
ICD-10 diagnosis codes for each disease is provided in Supplementary Table 1.
Validation of the ICD-10-based phenotyping method was performed in a set of
three analyses in BioMe. First, penetrance estimates using the ICD-10 phenotypes were
compared against results using clinical algorithms from the literature for nine
diseases?®3": age-related macular degeneration (AMD), arrhythmogenic right
ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), familial
hypercholesterolemia (FaH), familial breast cancer (FBC), hepatocellular carcinoma
(HCC), idiopathic pulmonary arterial hypertension (IPAH), prostate cancer (PCa), and
type 2 diabetes (T2D) (Supplementary Table 3, Supplementary Table 4). Second, we
verified ICD-10 phenotypes by manually reviewing physician notes in the problems list
(PL) for six diseases: Alzheimer’s disease (AD), AMD, FaH, FBC, ischemic stroke, and
T2D (Supplementary Table 5). For each disease, we extracted physician notes for a
random sample of 50 ICD-10-based cases and 50 ICD-10-based controls. The
presence of symptoms or findings indicative of a diagnosis corroborated ICD-10-based
cases, while the absence of symptoms or findings corroborated ICD-10-based controls.
Third and lastly, we examined the association of biomarker levels with penetrance
estimates for variants in genes with clear biological roles in three diseases: LDLR'? in

FaH (measured by LDL-C and total cholesterol), HNF1A3 in MODY (measured by
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glucose and hemoglobin A1c), and UCP3%%4% in obesity (measured by BMI and weight).
We extracted median biological measurements for carriers and medication usage
relevant to FaH (statins) and T2D (insulin, insulin analogs, pramlintide, glucagon-like
peptide 1 agonists, metformin, sulfonylurea, dipeptidyl peptidase 4 inhibitors, glitazone,
sodium-glucose transport protein 2 inhibitors, or alpha-glucosidase inhibitors) to control

for the effect of medications on biological measurements in association analyses.

Statistical analysis

All statistical tests and plots were made using R statistical software version
3.5.37°, Differences in categorical variables were assessed with a Fischer’s exact test,
while differences in continuous variables were tested with a two-sided t-test.
Significance level was set at P<0.05 for comparisons between two groups. Risk
difference (RD) between the prevalence of disease in carriers and non-carriers was
computed, and significance was evaluated with Fisher’s exact test. A strict Bonferroni
correction was applied to P-values in analyses involving multiple comparisons, including
comparisons of mean penetrance for five ClinVar pathogenicity classes, mean
penetrance for four ClinVar review status levels, and mean penetrance for eight
molecular consequences. Phenotype validation using PL physician notes was
performed by computing the ratio of PL-based cases to ICD-10-based cases and PL-
based controls to ICD-10-based controls to determine case and control concordance,
respectively. Association analyses of variant penetrance with biomarker levels were

performed using a multivariable linear regression, adjusted for clinical covariates of age,
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sex, BMI (except in the analysis of obesity), 10 genetic principal components (PCs), and

medication usage where relevant.

Data availability

The UKB data may be browsed at http://biobank.ndph.ox.ac.uk/showcase/ and

access to data can be requested at https://www.ukbiobank.ac.uk/reqgister-apply/. More

information about BioMe can be found at

https://icahn.mssm.edu/research/ipm/programs/biome-biobank/researcher-fags. The

complete penetrance dataset and gene disease map used for all analyses
(Supplementary Tables 1, 9 and 10) will be made available upon peer review with no

restrictions on the data released.
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FIGURES
Figure 1. Biomarker levels in carriers of clinically impactful variants with varying

penetrance for three diseases in the BioMe Biobank.
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variants are reported as pathogenic/likely pathogenic in ClinVar or are loss-of-function
in a gene that mediates disease via loss-of-function mechanism, and in a gene with
non-recessive inheritance. Mean of measurements is compared between penetrance
strata with two-tailed t-test: *, P<0.05; **, P<0.01; ***, P<0.001. a, Variants in low-
density lipoprotein receptor (LDLR) are stratified by penetrance for familial
hypercholesterolemia (Low [0%], Medium [greater than 0 and less than 100%], and
High [100%]) and shown as box plots with measurements of low-density lipoprotein
cholesterol (LDL) and total cholesterol (cholesterol) levels in carriers. b, Variants in
hepatocyte nuclear factor 1-a (HNF1A) are stratified by penetrance for maturity-onset
diabetes of the young (Low [0%], Medium [greater than 0 and less than or equal to
50%], and High [greater than 0 and less than 100%]) and depicted as box plots with
levels of glucose and hemoglobin A1c (HbA1c) in carriers. No impactful variants in
HNF1A were of Low penetrance. ¢, Variants in uncoupling protein 3 (UCP3) are
stratified by penetrance for obesity (Low [0%], Medium [greater than O and less than
100%], and High [100%]) and displayed as box plots with body mass index (BMI) and

weight of carriers.
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reported as pathogenic/likely pathogenic in ClinVar or are loss-of-function in a gene that mediates disease via loss-of-
function mechanism, and in a gene with non-recessive inheritance. Diseases are sorted by descending mean variant risk
difference (diamonds), with all variant risk difference estimates plotted (points) along with the standard deviation (error

bars) per disease. A complete tabulated list of results is provided in Supplementary Table 6.
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Figure 3. Penetrance of 34,301 variants stratified by ClinVar pathogenicity, ClinVar review status, and molecular

consequence.
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molecular consequence. Penetrance distributions are shown as violin plots in red, purple, and green color on a base-10

logarithmic scale with the mean penetrance overlaid as points, alongside disease prevalence in non-carriers shown as

violin plots in grey color with the mean disease prevalence superimposed as points. Pathogenic/likely pathogenic variants

are grouped as pathogenic and benign/likely benign variants are grouped as benign. *, two-tailed t-test P<0.05; **,

P<0.01; ***, P<0.001; ****, P<0.0001. a, Penetrance is stratified by classification of variant pathogenicity in ClinVar.
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Pathogenic variants on average have the highest penetrance (6.9% vs. 0.86% next highest mean penetrance in uncertain
class; P=5x102"9). Only pathogenic variants confer a significantly increased risk of disease on average to carriers
compared to baseline disease risk in non-carriers (risk difference [RD]=0.046; P=1x10-22). Other pathogenicity, variants
with a ClinVar pathogenicity classification other than pathogenic, benign, conflicting, or uncertain. b, Penetrance is
stratified by variant review status in ClinVar as reviewed by experts (review status=3), multiple submitters (review
status=2), single submitter (review status=1), or no assertion criteria (review status=0). Variants reviewed by experts
(review status=3) have the highest penetrance on average (18% vs. 6.3% next highest mean penetrance in review
status=2 group; P=9x10-"7). Pathogenic variants of review status=3, =2, and =1 confer a significantly increased risk of
disease on average, with RD=0.15 (P=1x10""3), RD=0.042 (P=3x10"°), and RD=0.020 (P=4x10-3), respectively. c,
Penetrance is stratified by molecular consequence annotated with Variant Effect Predictor (VEP). Frameshift variants on
average have the highest penetrance (10% vs. 4.1% for missense; P=2x10"3). There was a significantly elevated risk of
disease on average with frameshift (RD=0.064; P=3x10""°), splice acceptor (RD=0.020; P=5x10-3), splice donor

(RD=0.011; P=4x10?2), stop gained (RD=0.018; P=3x107), and missense variants (RD=0.022; P=4x10%).
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Figure 4. Association between age of disease onset and age-dependent change in

penetrance for 157 diseases.
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Association between age of disease onset and age-dependent change in penetrance for
157 diseases. Diseases correspond to the 5,359 clinically impactful variants and are
grouped according to their age of onset: Earlier, Later, or Any. Change in penetrance is
displayed as a violin plot for each age of onset group when comparing two carrier age
thresholds with the mean change in penetrance superimposed as a point. APenetrance
(%), change in variant penetrance represented as a percent (+ values indicate greater
penetrance estimate with the older age threshold and - values indicate greater
penetrance estimate with the younger age threshold); age comparison, two carrier age
thresholds for which penetrance is compared (e.g., 20-70 compares penetrance with
carriers 220 years old and penetrance with carriers 270 years old); onset, disease

groups according to age of onset; *, two-tailed t-test P<0.05; **, P<0.01; ***, P<0.001;
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*rxx P<0.0001. A complete plot including diseases with APenetrance >5% or
APenetrance <-5% is provided (Supplementary Figure 5). a, The BioMe Biobank has
carriers of age 20-90 years old and APenetrance is assessed over five carrier age
thresholds: Later diseases have greater APenetrance on average than Earlier diseases
for 20-40 (P=0.006), 20-50 (P=0.002), 20-60 (P=0.02), and 20-70 (P=0.02) age
comparisons. b, UK Biobank has carriers of age 40-69 years old and APenetrance is
evaluated over two carrier age thresholds: there is no difference in APenetrance
between Later and Earlier diseases for either 40-50 (P=0.2) or 40-60 (P=0.2) age

comparisons.
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Figure 5. Disease risk associated with clinically impactful variants in disease-

predisposition genes for breast cancer and hypercholesterolemia.
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Disease risk associated with clinically impactful variants in known breast cancer- and
hypercholesterolemia-predisposition genes. Clinically impactful (impactful) variants are
reported as pathogenic/likely pathogenic in ClinVar or are loss-of-function in a gene that
mediates disease via loss-of-function mechanism, and in a gene with non-recessive
inheritance. a, Penetrance of impactful variants in 10 known or suspected breast
cancer-predisposition genes is displayed as pink violin plots with the mean penetrance
overlaid as a point, alongside disease prevalence in non-carriers shown as grey violin
plots with the mean prevalence superimposed as a point. Violin plots are sorted by
genes with descending mean penetrance, with the highest mean variant penetrance of
38% in BRCA1 (n=48 variants, mean risk difference [RD]=0.32; P=2x10°) and 38% in
BRCA2 (n=92 variants, mean RD=0.32; P=1x107"°). *, two-tailed t-test P<0.05; **,

P<0.01; ***, P<0.001; ****, P<0.0001. b, Heterogeneity in the penetrance of 59 impacitful
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low-density lipoprotein receptor (LDLR) variants is shown. The number of variants is
plotted as a histogram across four quartiles of penetrance. [0, 25), penetrance less than
25%; [25, 50), penetrance greater than or equal to 25% and less than 50%; [50, 75),
penetrance greater than or equal to 50% and less than 75%; [75, 100], penetrance

greater than or equal to 75%.
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TABLES
Table 1. Overview of baseline demographic and clinical traits for 72,434 individuals

from two population-based biobanks.

Trait BioMe UKB
(n=29,039) (n=43,395)
Male, n (%) 11,684 (40%) 19,330 (45%)
Age, mean (SD) 59 (16) 57 (8)
European ancestry, n (%) 9,376 (32%) 40,447 (93%)
African ancestry, n (%) 7,190 (25%) 916 (2%)

Hispanic ancestry, n (%)
Asian ancestry, n (%)

Mixed ancestry, n (%)

BMI in kg/m2, mean (SD)
SBP in mmHg, mean (SD)
DBP in mmHg, mean (SD)
LDL-C in mg/dL, mean (SD)
Total cholesterol in mg/dL, mean (SD)
HbA1c in %, mean (SD)
Glucose in mg/dL, mean (SD)
HTN, n (%)

T2D, n (%)

FBC, n (%)

AMD, n (%)

(
8,528 (29%)
1,349 (5%)
2,028 (7%)
28 (7)

127 (20)

73 (12)

98 (36)

177 (45)

6 (2)

106 (47)
12,962 (45%)
7,044 (24%)
1,488 (5%)
1,041 (4%)

1,088 (3%)
344 (0.8%)
28 (5)

140 (19)
82 (11)

63 (16)
102 (21)

6 (3)

93 (20)
11,094 (26%)
2,820 (6%)
1,581 (4%)
352 (0.8%)

Overview of baseline demographic and clinical traits for 72,434 individuals from two

population-based biobanks: BioMe Biobank (BioMe) and UK Biobank (UKB). n, number;

SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure;

LDL-C, low-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; HTN, hypertension;

T2D, type 2 diabetes; FBC, familial breast cancer; AMD, age-related macular

degeneration; --, no Hispanic ancestry individuals are in UKB.
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