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Abstract

S-LDSC is a widely used heritability enrichment method that has helped gain biological insights
into numerous complex traits. It has primarily been used to analyze large annotations that
contain approximately 0.5% of SNPs or more. Here, we show in simulation that, when applied to
small annotations, the block jackknife-based significance testing used in S-LDSC does not
always control type 1 error. We show that the inflation of type 1 error for small annotations is
due both to the noisiness of the jackknife estimate of the standard error and to the non-normality
of the regression coefficient estimates. We use the percent of 0.01 centimorgan blocks in the
genome overlapped by the annotation to quantify the size of an annotation and the extent to
which the SNPs in the annotation cluster together, and we find thresholds on this value above
which type 1 error is controlled. We have implemented a test in the LDSC software that informs
users when they compute LD scores for an annotation if the annotation does not pass the
threshold for producing controlled type 1 error.

Author Summary

Genetics is a rapidly evolving field that allows us to link our genetic code to the physiological
manifestations of disease. A key part of this work is finding regions of the genome that
contribute disproportionately to the genetic underpinnings of a disease. A commonly used tool
to provide such insight is stratified LD score regression (S-LDSC). S-LDSC allows us to
estimate how much a set of genomic regions contributes to the overall heritability of a
phenotype, and to test whether this is more than we would expect by chance. Here we show
that when we apply S-LDSC to a small set of genomic regions, it does not give an accurate test
of whether this set of genomic regions contributes more than we would expect by chance to the
phenotype. We characterize what it means to be a “small” set of genomic regions, and we set
thresholds to restrict which annotations we test to prevent false positive results.This helps to
ensure that as we continue to pursue genetic analyses at scale, we report only truly significant
results that will help us further understand the etiology of many of the traits we study.

Introduction

Genome-wide association studies of complex traits have yielded thousands of associated
variants; however, such results rarely point to conclusive biological mechanisms. A commonly
used tool to gain insight into the biological underpinnings of these traits is enrichment analysis.

Stratified LD score regression (S-LDSC)° is a widely used enrichment method that estimates the
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heritability enrichment of a functional annotation, defined as the proportion of heritability
explained by the annotation divided by the proportion of SNPs in the annotation. S-LDSC also
estimates the contribution of an annotation to per-SNP heritability in a joint model with other
annotations. S-LDSC uses the block jackknife®, a commonly used statistical tool in population

genetics™***, for standard error estimation and significance testing.

S-LDSC is typically applied to large annotations covering approximately 0.5% of SNPs or more.
Here, we show in simulation that when S-LDSC is applied to small annotations, block jackknife-
based significance testing does not always control type 1 error, especially for less polygenic
traits. Specifically, we use the percent of 0.01 centimorgan blocks in the genome overlapped by
the annotation as a way to quantify the size of an annotation and the extent to which the SNPs
in the annotation cluster together, and we find thresholds on this value above which type 1 error
is controlled and below which there can be inflation of type 1 error for the different statistical
tests conducted by S-LDSC. We then show that for annotations that do not pass this threshold,
the type 1 error inflation can be explained by a combination of non-normality of the test statistic
and noisiness of the jackknife estimate of the standard error. We have implemented a test in the
LDSC software that informs users when they compute LD scores for an annotation if the

annotation does not pass the threshold for producing controlled type 1 error.

Methods

We implemented a simulation framework using 50,000 white British individuals from the UK
Biobank and 9.3 million imputed variants to produce three sets of 1250 phenotypes with 200,
1000, and 10000 causal SNPs, respectively. We simulated heritable phenotypes, with h? = 0.6.

The causal SNPs and their effect sizes were chosen independently of any annotation, so the
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true value of 7. was 0 for every annotation ¢ except the base annotation containing all SNPs,

and every simulated phenotype.

We created 94 annotations with varying size, varying number of jackknife blocks overlapped out
of 200 total, and varying average segment length. To create the annotations, we randomly
sampled either a set of genes or a percentage of SNPs from the genome from a specified
number of jackknife blocks. For example, if we were to create an annotation of 100 genes that
overlapped 30 blocks, we would randomly sample 100 genes from 30 of the default 200
jackknife-blocks such that at least 1 gene came from each block. We simulated annotations with
0.25,0.1, 0.5, 1, 2, 3, or 5 % of SNPs, or 10, 30, 100, 200, 300, 450, or 600 genes, contained in
2,4,6, 8, 10, 30, 60, 80,100, 150 or 200 jackknife blocks, excluding impossible combinations
of parameters such as 5% of SNPs in 2 jackknife blocks. In addition to these simulated
annotations, we included 100 real gene sets sampled from MSigDB as well as the 52

annotations in the baseline_v1.1 model®, leading to a total of 246 annotations (Table S2).

For each simulated phenotype and each annotation, we ran S-LDSC with the annotation plus
the baseline_v1.1 model and calculated both one-sided and two-sided p-values for 7, as well as
two sided p-values for the heritability enrichment estimates. For each of these three tests, we
assessed type 1 error control, in aggregate over annotations and simulated phenotypes, in three
ways: first, using the proportion of rejections at P=0.05; second, defining a false positive as
anything that passed significance after Bonferroni correcting for the 3750*246 hypotheses

tested; and third, by visual inspection of a Q-Q plot.

Results


https://doi.org/10.1101/2021.03.13.21249938
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.03.13.21249938; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

S-LDSC is a method for modeling the contributions of functional annotations to heritability using
summary statistics. The method jointly models tens of overlapping annotations and reports two
types of output: first, a joint-fit regression coefficient estimate for each annotation c, denoted 7,
that quantifies the contribution of that annotation to per-SNP heritability; and second, the total
heritability explained by SNPs in the annotation, including heritability attributable to other
overlapping annotations. The former is typically used to identify phenotype-relevant tissues and
cell types, while the latter is used to estimate heritability enrichment. S-LDSC uses the block
jackknife to estimate standard errors and error covariance for the vector of estimates £ .of ..
The standard errors are then used to compute z-scores to test either the null hypothesis

thatr, <0 (one-sided test) or the null hypothesis that 7, =0 (two-sided test). To test the null
hypothesis of no heritability enrichment -- i.e., to test the null hypothesis that the proportion of
heritability in a category equals the proportion of SNPs in that category -- the null hypothesis is
transformed into a linear condition on T and the jackknife covariance of ¢ is used to test the

null hypothesis.

We used S-LDSC to test the null hypothesis of no heritability enrichment, the null hypothesis
thatr, <0 (one-sided test), and the null hypothesis that 7. =0 (two-sided test) for each of 3,750
phenotypes simulated with no functional enrichment (true 7,=0) and each of a set of 246
annotations including many annotations much smaller than is typical for S-LDSC input (see

Methods).

Aggregated over all 3,750 simulated phenotypes and over all 246 annotations, our analyses
showed controlled type 1 error at a cutoff of P=0.05 but an inflation of very small P-values.
Specifically, 3.14% of results were significant at P=0.05, but 78 results passed Bonferroni

correction for all annotations and all phenotypes (P < 0.05/(3750*246)) and so were called false
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positives. Q-Q plots showed extreme inflation of type 1 error for both the one-sided test of 7, <
0 and the two-sided test of 7, =0, and very mild inflation of type 1 error for the two-sided test of
heritability enrichment =1 (Figure 1). While results were mostly consistent across polygenicities
(Figure S1), we observed more false positives for the two least polygenic settings than for the
more polygenic setting for the two-sided test (Figure S2). Restricting to the annotations of the

baseline model, we found controlled type 1 error for all three tests (Figure S3).

We anticipated that type 1 error control for an annotation would depend on both the number of
variants in an annotation and the extent to which they cluster together. Thus, we characterized
each annotation using six metrics: (1) the percent of SNPs in the annotation; (2) the percent of
0.01 centimorgan (cM) blocks of the genome overlapped by the annotation; (3) the percent of
0.1 cM blocks of the genome overlapped by the annotation; (4) the percent of 1 ¢cM blocks of the
genome overlapped; (5) the percent of jackknife blocks (average size = 18 cM) overlapped by

the annotation; and (6) the effective number of independent SNPs'® in the annotation, defined

2
as L where [(j, C)is the LD score of SNP j to annotation C.
Zjec 100

For each characterization metric except for number of jackknife blocks overlapped, we found
that the most significant P-values tended to occur for annotations with smaller values of the
metric: annotations with false positives, on average, had fewer SNPs, overlapped fewer 0.01,
0.1, and 1 cM blocks, and had a smaller effective number of independent SNPs. Specifically, for
each annotation, we computed the minimum P-value obtained with the annotation for any of the
simulated phenotypes, and for each characterization metric we plotted these minimum P-values
across all annotations against the value of the metric (Figure 2a, S4). We then computed the
mean value of each metric within annotations with false positives and among all annotations,
and found that the mean value of the metric was smaller for annotations with false positives

than for all annotations for each of the three statistical tests and five of the six metrics
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considered (all except for number of jackknife blocks overlapped). Overall, the two-sided test of
7. =0 had worse type 1 error inflation than the other two tests, and the inflation was captured

less well by the six metrics than the other two tests.

We then evaluated each metric as a diagnostic tool that could be used to exclude annotations
with inflated type 1 error. For each characterization metric and each of the three tests, we found
the threshold such that excluding all annotations with values of the metric below the threshold
would exclude all false positives. We then counted the number of remaining annotations; more
remaining annotations indicates that the characterization metric would make a more specific
diagnostic tool (Figure S5). We found that results differed for different characterization metrics
and for the three tests, but that the percent of 0.01 cM blocks overlapped was a good metric for
all three tests (number of remaining annotations = 132, 93, and 161 for the one-sided, two-
sided, and enrichment test at a threshold of 1.7, 4.9 and 0.83 percent of 0.01 centimorgan
blocks overlapped, respectively.) For the one-sided test and the heritability enrichment test,
these thresholds restored type 1 error control. For the two-sided test, a more stringent threshold
of 8.3% was needed to restore type 1 error control. We note that the annotations of the baseline
model all pass the thresholds for the one-sided and enrichment tests, which are the two most
commonly used tests. Because we have shown that type 1 error is controlled for all three tests
when restricting to the baseline annotations (Figure S3) we do not recommend excluding

annotations from the baseline model even when performing the two-sided test.

Having found that excluding annotations that overlap a small percentage of 0.01 cM blocks of
the genome restores type 1 error control, we next sought to understand the source of type 1
error inflation for the annotations that do not pass this threshold. To do this, we focused only on
the one- and two-sided test for 7.,and we considered the z-score of the coefficient used to test

for significance in these cases. The z-score of the coefficient is equal to the estimate of the
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coefficient divided by the estimated standard error. This z-score will have the correct null
distribution if the estimate of the coefficient is unbiased and normally distributed, and if the
estimated standard error is equal to the true standard deviation of the estimate. We found that
the coefficient estimate and standard error estimate were both approximately unbiased (Figure
S6), and so we focused on noisiness of the standard error estimate and non-normality of the

coefficient estimate as potential explanations for the type 1 error inflation.

To investigate the effect of the noisiness of the standard error estimate on type 1 error inflation,
we replaced the jackknife estimate of the standard error in the denominator of the z-score with
the true standard deviation of 7, over simulations. This had the effect of increasing significance
for simulations for which the standard error was overestimated and decreasing significance for
simulations for which the standard error was underestimated. Overall, this reduced type 1 error
inflation by a small amount. However, there was still severe inflation in type 1 error even with
this correction (Figure 3a,b). Moreover, while in the original analysis, most false positives for the
two-sided test were for negative 7.(2492/2591), after correcting the standard error, most false

positives were for positive £.(723/724; Figure S7).

Having found that correcting the standard error did not suffice to control type 1 error, we then
investigated non-normality of the coefficient estimates as a potential explanation for the type 1
error inflation. To do this, for each annotation, we transformed the estimates of 7.to be normally
distributed, preserving the standard deviation. Specifically, for each annotation we first chose
3,750 random samples from a normal distribution with mean zero and standard deviation
matching the standard deviation of the Z.for that annotation; we then quantile transformed the
values of .for the annotation to these values. We used the transformed .and jackknife

standard errors to compute P-values. Overall, this quantile normalization exacerbated the type 1
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error (Figure 3a,c, Figure S8a,c). In contrast to the standard error correction, most false
positives were for negative 7.both before and after quantile normalization (Figure S9). While
neither standard error correction nor quantile normalization sufficed to restore type 1 error

control, when applied together they did (Figure 3d, Figure S8d).

We were surprised to find that correcting the standard error left severe inflation of type 1 error
and that quantile normalizing 7.in fact exacerbated type 1 error, but that performing both
corrections simultaneously restored type 1 error control. Investigating this further, we found two
related phenomena. First, for many annotations there was a positive correlation across
independent simulated phenotypes between 7.and the standard error estimate, and this
correlation tended to be higher for the two least polygenic sets of phenotypes than for the most
polygenic set of phenotypes (Figure S10). This correlation resulted in higher standard error
estimates and thus more conservative p-values when the coefficient estimate was positive, and
lower standard error estimates and thus less conservative p-values when the coefficient
estimate was negative. The second phenomenon we observed was that for most annotations
that were non-normal (P < 0.05 using a Kolmogorov-Smirnov test for normality), the distribution

of 7. had a right skew (mean > median for 183 out of 191 annotations).

Together, these two phenomena explain several aspects of our results. Because the original
distribution of 7.tended to be right-skewed, quantile normalizing the 7.distributions mostly
reduced right skew and increased left skew, thus mostly increasing significance for the most
significant negative .. Because of the correlation between 7 and jackknife standard error
estimate, standard error correction had the opposite effect: it mostly increased the significance
of positive 7. while decreasing the significance of negative 7. In the original analysis, the

dominant contributor to type 1 error inflation was underestimated standard error for negative 7.
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Quantile normalization exacerbated this problem and standard error correction ameliorated it;
hence quantile normalization increased type 1 error inflation while standard error correction
decreased it. After standard error correction, right-skewed non-normality became the main

source of type 1 error, and most false positives were for positive 7.

Finally, we ran MAGMA?®, a commonly used gene set enrichment method, on our simulated
phenotypes and gene-based annotations to determine whether it also resulted in inflated type 1
error. Aggregated across annotations and phenotypes, MAGMA had mildly inflated type 1 error

(Figure S11).

Discussion

We applied a simulation framework to characterize the performance of the block jackknife-
based significance testing used in S-LDSC. Using 3750 simulated phenotypes with varying
levels of polygenicity, we ran S-LDSC on 94 simulated annotations, the baseline_v1.1
annotations, and 100 real gene sets sampled from MSigDB. For small annotations, we observed
significant inflation in the reported one-sided and two-sided p-values for £, but only mild inflation
in the heritability enrichment p-values from S-LDSC. The inflation is due both to the noisiness of
the jackknife estimate of the standard error, and to the non-normality of the regression
coefficient estimates. This inflation can be remedied by restricting to annotations that overlap at
least 1.7% of 0.01 cM blocks for standard analyses (i.e., for the one-sided test of 7, and the
two-sided test of heritability enrichment) and 8.3% of 0.01 cM blocks for the two-sided test of

70 = 0. We have implemented a test in the S-LDSC software to warn the user when their
annotation does not meet the criteria required to produce statistically valid p-values. For small
and/or clustered gene sets, MAGMA may provide better type 1 error control; we leave a

thorough investigation of type 1 error for MAGMA to future work.
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For small annotations, our simulations showed perfect type 1 error control at P=0.05 but a
severe inflation of very small P-values. This highlights the need to assess type 1 error control of
new methods by looking not only at a single fixed cutoff, but also by examining the tail. This is
particularly important for tools such as S-LDSC that are often used to test a very large number

of hypotheses, with stringent cutoffs for significance after multiple testing correction.

It is possible that the true null distribution of regression coefficient estimates for a given
annotation could be derived or simulated and then used for hypothesis testing for small
annotations. However, our results indicate the null distribution will depend on the genetic
architecture of the trait being studied, presenting a challenge. Moreover, derivations will involve
higher moments of the genotype matrix, leading to potential difficulties in both computation and
reference panel mismatch. Since LD score regression controls type 1 error for annotations that
are not very small, we propose here a simple restriction on input instead of a new method for

significance testing.

We note three limitations of our work. First, the null simulations performed here are of heritable
phenotypes with no enrichment in any functional annotation. We caution that, as noted in earlier
work>®, model misspecification such as enrichment in a category not included in the model can
also lead to bias and inflated type 1 error. Model misspecification is best addressed by fitting as
flexible a model as possible, and will not be fixed by the threshold on 0.01 cM blocks overlapped
introduced here. Second, we simulated a range of annotations including both gene sets and
sets of random SNPs, and while we believe these annotations represent typical S-LDSC input,
we cannot guarantee that our results extend to arbitrary annotations. Third, all annotations
tested in this work are binary annotations. We leave characterization of type 1 error for

Ill

continuous annotations, including those of the baseline-LD model™, to future work.
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In conclusion, S-LDSC produces well-calibrated p-values when annotations are large and
spread throughout the genome, regardless of the level of polygenicity of the trait tested. We
recommend performing standard S-LDSC analyses only on annotations that span at least 1.7%
of 0.01 cM blocks of the genome, and performing two-sided tests for .= 0 only on annotations

that span at least 8.3% of 0.01 cM blocks.
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Figure 1: Results of null simulations, aggregated over annotations and simulated phenotypes.

Q-Q plots for the (a) one-sided test of tauhat <= 0, (b) two-sided test of tauhat = 0, and (c) two-
sided test of heritability enrichment.
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Figure 2: Control of type 1 error is restored by restricting to annotations overlapping sufficiently
many 0.01 cM bins. (a,b,c) Dependence of type 1 error on the proportion of 0.01 cM bins
overlapped by the annotation for the one-sided, two-sided, and enrichment test respectively.
Each dot represents one of the 246 annotations tested. Any p-value below the false positive
threshold of P < 0.05/(3750*246) was set to that value for visualization and denoted with a red
star. The dashed black line indicates the threshold used to recover a well controlled type 1 error.
All annotations overlapping more than 50% of 0.01 cM bins were thresholded to 50% for
visualization. (d,e,f) Q-Q plots for the one-sided, two-sided, and enrichment test respectively,
restricting to annotations that pass the threshold depicted in a, b, and c, respectively.
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Figure 3: Dependence of type 1 error control on normality of  and on the accuracy of the
standard error estimate. (a) Q-Q plot for the two-sided test of  using the jackknife standard
error. (b) Q-Q plot for the two-sided test of  using the corrected standard error. (¢) Q-Q plot for
the two-sided test of the quantile normalized  using the jackknife standard error. (d) Q-Q plot
for the two-sided test of the quantile normalized  using the corrected standard error.
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Baseline_v1.1 Annotations
CTCF_Holfman.bed
CTCF_Hoffman.extend 500.bed
DGF_ENCODE.bed
DGF_ENCODE extend 500 bad
OHS_peaks_Trynka.bed
DHS_Trynka bed
DHS_Trynka.extend.500 bad
Enhancer_Andersson.bed
Enhancer_Andersson.edend.500.bed
Enhancer_Hofiman bed
Enhancer_Hofiman.extend.500.bed
FotalDHS  Trynka bed
FetalDHS_Trynka.extand 500.bad
H3K27ac_Hnisz bed
H3K27ac_Hnisz axtend S00.bad
H3K27ac_PGC2 bed
H3K27ac_PGC2.extend.500.bed
H3K4me1_peaks_Trynka bed
H3Kdme1_Trynka bed
H3Kame1_Trynka extend 500.bed
H3Kdmed_peaks_Trynka.bed
HaKamed_Trynka. bed
HaK4me3_Trynka.exiend.500.bed
H3KBac_peaks_Trynka.bed
H3KTac_Trynka bed
HaKgac_Trynka.extend. 500 bad
Intron_UCSC bed
Intron_UICSC.axtend 500 bad
PromoterFlanking_Hoffman.bed
PromoterFlanking_Hoffman.extend.500.bed
Promoter_UCSC bed
Promoter_UCSC extend.500.bed
Repressed_Hoffman bed
Repressed_Hoffman extend 500, bed
SuperEnhancer_Hnisz.bed
SuperEnhancer_Hnisz extend.500.bed
TFBS_ENCODE.bed
TFBS_ENCODE sxtend 500.bed
Transeribed_Hoffman. bed
Transcribed Hotfman.extend.500.bed
TS5_Hofiman bed
TSS_Hoffman.axtand. 500 bad
UTR_3_UCSC.bed
UTR_3_UGSC.extend.500.bad
UTR_5_UCSC bed
UTR_5_UCSC.extend.500.bed
WeakEnhancer_Holfman.bed
WeakEnhancer_Hoffman.extend.500.bed
Coding_UCSC.bed
Coding_UCSC.axtend. 500.bed
Canserved_LindbladToh bed
Conserved_LindbladToh.extand. 500.bed

Table S1: The annotation metrics for the baseline_v1.1 annotations.

% of 1 cM blocks overlapped % of 0.1 cM blocks overlapped % of 0.01 cM blocks overlapped Number of
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134680.27 100
13840825 100
25973.04 100
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B2639.74 100
FaDi14.18 100
12500856 100
137199.48 100
104538.78 100
109040.68 100
10112092 100
105840.71 100
115076.83 100
12432184 100
131420.88 100
62737.84 100
6730012 100
85438.90 100
T1828.14 100
B82509.93 100
83633.26 100
T1275.16 100
T2571.37 100
34881.10 100
52207.37 100
43005.05 100
44208.41 100
B5666.20 100
5762 86 100
55186.19 100
5575233 100
105635.30 100
123802.87 100
8820470 100
112670.86 100
33208.51 100
41261.36 100
30205.45 100
35388.45 100
20688.02 100
35856.61 100
To218.57 100
91264.02 100
4108825 100
5117917 100
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239
7.10
1381

5407
11.20
16.80
48.73
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356
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B85
1.6
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Figure S1: Results are consistent across polygenicities. (a) The results from the one-sided test
of . (b) The results from the two-sided test of . (c) The results from the enrichment test.
Polygenicity increases from left to right in each case.
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Figure S2: The number of false positives (P<0.05/(3750*246)) for the two-sided test is higher

for the two less polygenic sets of phenotypes than for the most polygenic set, while the number
of false positives for the one-sided test and enrichment test are stable across polygenicities.
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Figure S3: The baseline_v1.1 annotation results have well controlled type 1 error for the (a)
one-sided, (b) two-sided and (c) enrichment results.
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Figure S4: Relationship between significance and the annotation characteristics for the three
tests. The annotation characteristics are: (a-c) proportion of jackknife blocks overlapped by the
annotation, (d-f) percent of SNPs in the annotation, (g-i) number of independent SNPs in the
annotation, (j-I) proportion of 0.01 cM bins overlapped by the annotation, (m-0) proportion of 0.1
cM bins overlapped by the annotation, (p-r) proportion of 1 ¢cM bins overlapped by the
annotation. The tests are (a,d,g,j,m,p) one-sided test, (b,e,h,k,n,q) two-sided test, and
(c.f,i,j,0,r) test for heritability enrichment. False positives are denoted with red stars.
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Figure S5: Proportion of annotations remaining after imposing a filter that excludes all false
positives. Color denotes the annotation metric used to define the filter.
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Figure S6: The coefficient estimates and standard error estimates are approximately unbiased.
(a) Histogram of coefficient estimates over all annotations and phenotypes. The true value for all
annotations and phenotypes is =0. (b) The true standard error vs. the jackknife standard error
for each of the annotations.
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Figure S10: Correcting the jackknife standard error to the true standard deviation tended to
increase significance for positive  while decreasing significance for negative
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Figure S9: Quantile normalizing the distributions had the effect of mostly reducing right skew
and increasing left skew, thus mostly increasing significance for the most significant negative
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Figure S10: Correlation between  and standard error estimate. (a-d) Example of inflated type
| error in the two-sided test of ~ for an annotation with 0.25% of SNPs overlapping 100 blocks
driven by a strong positive correlation between the coefficient estimate and standard error
estimate over the mid-polygenic set of phenotypes. (a) QQ-plot of p-values from two-sided
results. (b) Histogram of standard error estimates for  over 1250 identical simulations. (c)
Histogram of  over 1250 identical simulations. (d) Scatter plot of against the standard error
estimate, colored by the -log;oP of from the two-sided test of . Each point is one of 1250
identical simulations. (e) Density of correlations for each annotation between the coefficient and
coefficient standard error estimate, colored by the level of polygenicity.
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Figure S11: For gene set-based annotations, MAGMA exhibits only mild enrichment. Q-Q plots
of MAGMA results on all gene set-based annotations at different levels of polygenicity, ranging
from least polygenic to most polygenic (a-c). The inflation in panels (a) and (b) appear to be
driven by annotations with fewer than 30 genes.
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MSigDB: ACTIN_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS
MSigDB; AMINOPEPTIDASE_ACTIVITY
MSigDB: AMYLOID_PRECURSOR_PAOTEIN_METABOLIC_PROCESS
MSigDB: BASS0_B_LYMPHOCYTE_NETWORK
MSigDE: BIOCARTA_AKAPCENTROSOME PATHWAY
MBEighE: BIOGARTA_GARDIAGEGF_PATHWAY
MSigDE: BIDCARTA_CLASSIC_PATHWAY
MSigDB: BIOCARTA_HIVNEF_PATHWAY
MSigDB: BIDCARTA_IL4_PATHWAY
MSigDE: BIOCARTA_PDGF_PATHWAY
MSiGDB: BIOCARTA_TOB1_PATHWAY
MSigDB: CELLULAR_PROTEIN_METABOLIC_PROCESS
MSiDB: GELLULAR_RESPONSE_TO_STRESS
MSigDR: CELL_RECOGNITION
MSigDB: CHEN_HOXAS_TARGETS_SHA_DN
MSigDB: CHEOK_RESPONSE_TO_HD_MTX_DN
MSiGDB: CORTICAL_ACTIN_CYTOSKELETON
MSigDB: CORTICAL CYTOSKELETON
MSigD8: CTGCAGY_UNKNOWN
MSigDB: CTGRYYYNATT_UNKNCWN
MSigDB: CYTOSKELETON
MSigDB: CYTOSKELETON_DEFENDENT_INTRAGELLULAR_TRANSPORT
MSKDE: CYTOSKELETON_ORGANZATION_AND_BIOGENESIS
MSigDE: DAVICIONI_MOLECULAR_ARMS_VS_ERMS_DN
MSigDB: FALVELLA_SMOKERS WITH_LUNG_CANCER
MSigDB: FLOTHO_PEDIATRIC_ALL_THERAPY_RESPONSE_DN
MSigDB: GALE_APL_WITH_FLT3 MUTATED_ DM
MSigD8: GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_BLACK DN
gl LOVIC. | _TO_OKIDIZED IPIDS_YELLOW_DN
MSigDB: GCM_SMO
MSigDB: GLYCOLIPID_METABOLIC_PROCESS
MSigD8: GLYGOPROTEIN_METABOLIG_PROCESS.
MSigDB: GNF2_SMC1L1
MSigD8: GRAHAM_GML_QUIESCENT_VS_NORMAL_DIVIDING_UP
MSigDB: GRESHOCK_CANCER_COPY_NUMBER_DN
MSigDB: HANN_RESISTANGE_TO_BGL2_INHIBITOR_DN
MSKDB: HUANG_DASATINIB_RESISTANCE_UP
MSigDB; HUMORAL_IMMUNE_RESPONSE

MSigDB: HYDAOLASE_ACTIVITY_ACTING_ON_ACID_ANHYI YZING_] MOVEMENT_OF_SUBSTAMCES

MSigDB: HYDROLASE_ACTIVITY_ACTING_ON_GLYCOSYL BONDS
MEigDB: INOSITOL_OR_PHOSPHATIDYLINOSITOL_PHOSPHATASE_ACTIVITY
MSigDB: INTERLEUKIN_BINDING
MSigD8: INTERMEDIATE_FILAMENT_CYTOSKELETON
MSigDE: KALMA_E2F1_TARGETS
MEigDB: KEGG_JAK_STAT_SIGNALING_PATHWAY
MSigDB: KEGG_PORPHYRIN_AND_CHLOROPHYLL METASOLISM

Table S2: List of 246 annotations used in simulations.

MSiDB: KEGG_REGLILATION_OF_ACTIN_CYTOSKELETON
MSigDB: KEGH VALINE_LEUCINE_AND ISOLEUCINE DEGRADATION
MSigDB: KEGE_VIBRID CHOLERAE INFECTION
MSigDB: KIM_WT1_TARGETS_8HR_UP
MSigDB: KORKOLA_TERATOMA
MSigDB: KORKOLA_TERATOMA_DN
MEigDB: KORKOLA_TERATOMA_LP
MSgDB: LEE_LIVER_CANCER_DENA_DN
M3SigDB: LINDGREN_BLADDER_CANCER_CLUSTER_2A_UP
MSigD8: LIPOPROTEIN_ METABOLIC_PROCESS
M3igD: MICROBODY
MSigDB: MICROBODY_MEMBRANE
MEigDE: MIGROBODY_PART
MEigDa: MICROTUBLLE_CVTOSKELETON
MSigDB: MIGROTUBULE_GYTOSKELETON_ORGANIZATION_AND_BIOGENESIS
MsigDB: MORF_PTPAB
MSigDB: MULLIGHAN_MLL_SIGNATURE_1_UP
MSigDBE: NEGATIVE_REGULATION_OF_APOPTOSIS
MEgDB; NEGATIVE_REGULATION_OF_CELLULAR_PROTEIN_METABOLIC_ PROCESS
MSigDB: NEGATIVE_REGULATION_OF_CY ETON. | _AND_BIC
MSiDB: NEGATIVE_REGULATION_OF_PROGRAMMED_CELL_DEATH
MSigDB: NEGATIVE_REGLLATION_OF _PROTEMN_METABOLIC_PROCESS
MEigDB: NEGATIVE_REGULATION_OF_RNA_METABOLIC_PROCESS
MSigDB: NUCLEAR_REPLICATION_FORK
igl _CARBON. _METABOLIC
MSigDB: ORGANELLE_INNER_MEMBRANE
MSigDB: POSITIVE_REGULATION_OF_CELLULAR_PROTEIN_METABOLIC PROCESS
MSigDB: POSITIVE_REGULATION_OF_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS
MSigDB: POSITIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS
MSigDB: POSITVE_REGULATION_OF_RNA_METABOLIC_PROCESS
MSigD8: POSITIVE_REGULATION_OF_TRANSFERASE_ACTIVITY
MSigDB: POSITIVE_REGULATION_OF_T_GELL_PROLIFERATION
MSigDB: PROGRAMMED_CELL_DEATH
MSigD8: PROTEIN_METABOLIC_PROCESS
MSigDB: PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY
MEighE: REAGTOME_GOSTIMULATION_BY_THE_GD2B_FAMILY
MSigDB: REACTOME _MITOTIC_M_M_G1_PHASES
MSigDB: REACTOME NUGLECTIDE LIKE_PURINERGIC RECEPTORS
MSIgDB: REACTOME_P75_NTR_RECEFTOR_MEDIATED_SIGNALLING
M3igDB: REACTOME_REGULATION OF GENE_EXPRESSION_IN_BETA_CELLS

MSigD8: AEACTOME_TRAFE_MEDIATED_INDUCTION_OF_THE_ANTIVIRAL_CYTOKINE_IFN_ALPHA_BETA_CASCADE

MSigDB: REGULATION_OF_APOPTOSIS
MSigDB: REGLILATION_OF_CELLULAR_PROTEIN_METABOLIC_PROCESS
MSigDB: REGULATION_OF CELL_MORPHOGEMESIS
MSigDB: REGULATION_OF_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS
MEigDB: KEGE REGULATION OF ACTIN_CYTOSKELETON
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