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ABSTRACT 

 

Introduction: The metabolic activity of the gut microbiota plays a pivotal role in the gut-brain 

axis through the effects of bacterial metabolites on brain function and development. In this study 

we investigated the association of gut microbiota composition with language development of 

three-year-old rural Ugandan children. 

Methods: We studied the language ability in 139 children of 36 months in our controlled 

maternal education intervention trial to stimulate children’s growth and development. The 

dataset includes 1170 potential predictors, including anthropometric and cognitive parameters at 

24 months, 542 composition parameters of the children’s gut microbiota at 24 months and 621 of 

these parameters at 36 months. We applied a novel computationally efficient version of the all-

subsets regression methodology and identified predictors of language ability of 36-months-old 

children scored according to the Bayley Scales of Infant and Toddler Development (BSID-III). 

Results: The best three-term model, selected from more than 266 million models, includes the 

predictors Coprococcus eutactus at 24 months of age, Bifidobacterium at 36 months of age, and 

language development at 24 months. The top 20 four-term models, selected from more than 77 

billion models, consistently include Coprococcus eutactus abundance at 24 months, while 14 of 

these models include the other two predictors as well. Mann-Whitney U tests further suggest that 

the abundance of gut bacteria in language non-impaired children (n = 78) differs from that in 

language impaired children (n = 61) at 24 months. While obligate anaerobic butyrate-producers, 

including Coprococcus eutactus, Faecalibacterium prausnitzii, Holdemanella biformis, 

Roseburia hominis are less abundant, facultative anaerobic bacteria, including Granulicatella 

elegans, Escherichia/Shigella and Campylobacter coli, are more abundant in language impaired 

children. The overall predominance of oxygen tolerant species in the gut microbiota of Ugandan 

children at the age 24 months, expressed as the Metagenomic Aerotolerant Predominance Index 

(MAPI), was slightly higher in the language impaired group than in the non-impaired group (P = 

0.09). 

Conclusions: Application of the all-subsets regression methodology to microbiota data 

established a correlation between the relative abundance of the anaerobic butyrate-producing gut 

bacterium Coprococcus eutactus and language development in Ugandan children. We propose 

that the gut redox potential and the overall bacterial butyrate-producing capacity could be factors 

of importance as gut microbiota members with a positive correlation to language development 

are mostly strictly anaerobic butyrate-producers, while microbiota members that correlate 

negatively, are predominantly oxygen tolerant with a variety of known adverse effects.  
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INTRODUCTION 

There is an accumulating amount of evidence for a role of the gut microbiota in brain function 

and development via the so-called microbiota-gut-brain-axis, as recently reviewed by (Cryan et 

al., 2019). The communication along this axis is bidirectional. Communication from the brain to 

the gut occurs through signals to change bowel movements and intestinal permeability, which in 

turn changes the enteric microbiota composition, its metabolic activity and response signal. The 

gut microbiota signals to the brain via stimulation of intestinal host immune cells, eliciting a 

cytokine response. In addition, signals are transferred to the brain through bacterial metabolites, 

including short chain fatty acids. This results in altered neurotransmitter release, hormone 

secretion and induction of vagus nerve signaling to the brain (Rhee et al., 2009;Bienenstock et 

al., 2015;Jameson et al., 2020).  

In this study we investigated the correlation between gut microbiota composition with the 

language ability of three-year-old rural Ugandan children, as assessed by the Bayley Scales of 

Infant and Toddler Development (BSID-III) composite scores for language development (Albers 

and Grieve, 2007). The scales provide comprehensive development measures for children up to 

42 months and have been adapted for appropriate use among children in rural Uganda (Muhoozi 

et al., 2016). The data used in this study were collected during a follow-up trial of a two-armed, 

open cluster-randomized education intervention regarding nutrition, child stimulation and 

hygiene among mothers of children in the Kisoro and Kabale districts of South-West Uganda 

(Muhoozi et al., 2018). The intervention did not lead to any significant changes in the gut 

microbiota diversity compared with the control group at phylum or genus level. Neither did we 

observe any significant differences between the two study groups in the Shannon diversity index 

at 20-24 and 36 months, respectively. However, the Shannon diversity index of the gut 

microbiota increased significantly in both study groups from 20-24 to 36 months (Atukunda et 

al., 2019). Further analysis of the changes associated with the gut microbiota in the transition 

from 24 months to 36 months revealed that there was a notable shift from autochthonous 

(endogenous) to allochthonous (plant-derived) Lactobacillus species, and a correlation of 

Lactobacillus with stunting, most probably resulting from the change in the children’s diet from 

breast milk to solid, plant-based foods (Wacoo et al., 2020). As follow-up to this study we 

further investigate here correlations between  the gut microbiota of these children with language 

development.   

It should be noted that predictors for current cognition parameters in children may not only be 

found in past values of these parameters, but also in current and past gut microbiota 

compositions. This is supported by longitudinal studies that indicate a maturation program of the 

human gut microbiome in the first three years of life, consisting of distinct phases of microbiome 

progression (Backhed et al., 2015;Stewart et al., 2018). Suitable predictors are usually found by 

fitting models including the predictors being assessed and comparing the fit of the model with 

the fit of a model that does not include these predictors. This poses a nontrivial problem, because 

the number of different models that can be fitted grows exponentially with the number of 

potential predictors, so it is not feasible to fit all possible models and compare their fit. In 

addition, the predictors can be correlated so that different sets of predictors can explain the 

response variable of interest equally well. In the present paper, we successfully address the above 

mentioned problems in data analysis of the gut microbiota from rural Ugandan children. Our key 

finding is that abundance of butyrate-producing bacterium Coprococcus eutactus in the gut 

microbiota at 24 months predicts language development in these children at 36 months. 
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MATERIALS AND METHODS 

Study Design and Data Collection 

The data used in this study were collected during a follow-up trial of a two-armed, open cluster-

randomized education intervention regarding nutrition, stimulation and hygiene among 

impoverished mothers of children in the Kisoro and Kabale districts of South-Western Uganda 

(Muhoozi et al., 2018). The purpose of the study by Muhoozi et al. was to assess the effects of a 

nutrition education intervention, delivered in group meetings to impoverished mothers, on child 

growth, cognitive development and gut microbiota in rural Uganda. Developmental outcomes 

were assessed with the Bayley Scales of Infant and Toddler Development (BSID-III) composite 

scores for cognitive (primary endpoint), language and motor development. Other outcomes 

included gut microbiota compositions.  

Stool samples were collected from 139 children at the age of 20-24 months and at 36 months and 

shipped to the Netherlands for DNA extraction (Atukunda et al., 2019). Quantitative PCR was 

performed to determine the relative amount of bacterial template and amplicon sequencing was 

carried out as previously described (de Boer et al., 2015;Parker et al., 2018). In summary, V4 

16S rRNA gene amplicon sequencing was carried out by paired end sequencing conducted on an 

Illumina MiSeq platform (Illumina, The Netherlands). Taxonomic names were assigned to all 

sequences using the Ribosomal Database Project (RDP) naïve Bayesian classifier with a 

confidence threshold of 60% (Wang et al., 2007) and the mothur-formatted version of the RDP 

training set v.9 (Schloss et al., 2009). All 16S rRNA amplicon paired end reads of the gut 

microbiota samples sequenced in this study are accessible at BioProject PRJNA517509 (Kort, 

2019).  

Language development was determined by the Bayley Scales of Infant and Toddler Development 

3rd edition (BSID‐III) using the language subscale. The BSID-III provides comprehensive 

development measures with children up to 42 months and has been adapted for appropriate use 

among children in rural Uganda (Muhoozi et al., 2016;Muhoozi et al., 2018). The BSID-III 

language component focuses on prelinguistic behaviors, communication and social routines in 

addition to expressive and receptive language skills. The children’s performance was scored 

according to the guidelines in the administration manual and the raw scores from expressive and 

receptive subscales were summed up and converted to composite scores using BSID‐III 

conversion tables. In the reference material of US children the mean score after conversion is 

100.  

Model Selection using Mixed Integer Optimization 

Model selection strategies should reveal sets of predictors that explain the data equally well, if 

such is the case. Best subset selection (Miller, 2002) based on Ordinary Least Squares (OLS) 

returns the best k models with p predictors each, so that the common predictors in the best 

models form a solid basis to explain the response variable of interest and the predictors that 

differ among the best models point to alternative interpretations to explain the same variable. 

However, until recently, subset selection could only be performed when the total number of 

predictors t is fairly small, say, t < 30. Therefore, best subset selection used to be a less attractive 

model selection technique for research that assesses many parameters. Obviously, one could 
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perform OLS-based forward selection to select predictors (Miller, 2002). This approach has the 

disadvantage that the resulting models comprise a single path in multidimensional space. That is, 

there is one model for each number of predictors up to p. There is no guarantee that the model 

with p predictors corresponds with the model of the same size from best subset selection. 

 

(Bertsimas et al., 2016) proposed methodology to select the best model with p out of t predictors 

with t in the 100s. Their approach is based on Mixed Integer Optimization (MIO). The key 

innovation is that searching unpromising sets of predictors is cut off in an early stage of the 

calculations so that not all of the models with p predictors have to be assessed. In the original 

form, just one model with p predictors is returned along a range of values for p extended the 

original form to obtain the second-best up to k-th best models of given size as well (Vazquez et 

al., 2020). The method thus results in a list of models compatible with the data. The authors 

further employ a powerful visualization method to reveal possible alternative ways to explain the 

same variable. For example, one might observe that either the effect of predictor X or the effect 

of predictor Y is in the best ten models that link language development to four predictors, but the 

models do not include both of them.  

 

For ease of reference, we call the method of (Vazquez et al., 2020) MIO after its core element. It 

was developed primarily with applications in statistical design of industrial experiments in mind. 

The data in these cases usually have few observations and many controllable experimental 

factors. This is similar to field studies on human microbiota compositions where the number of 

cases is much smaller than the number of species.  

 

A key element of MIO is best-subset selection, which finds the best fitting model with p 

parameters as measured by the model’s residual sum of squares. Current state-of-the-art 

algorithms for best-subset selection, as implemented in SAS 9.4 or JMP 14, or in the ‘leaps’ 

package in R, which is based on (Furnival and Wilson, 1974), do not allow solving the problem 

when the search is over more than t=30 predictors (Vazquez et al., 2020). (Bertsimas et al., 2016) 

proposed a formulation for the best subset selection in terms of a mixed integer optimization 

problem. Modern optimization solvers such as (Gurobi, 2017), do permit searching over a large 

number of potential predictors. The goal function to be minimized is 

min
�̂�,�̂�,𝑧

�̂�𝑇�̂� − 2(𝑋𝑇𝑦)𝑇 + 𝑦𝑇𝑦   (1) 

In this equation, �̂� is an N x 1 vector of fitted values, �̂� is a t x 1 vector of coefficients for the 

regression equation, y is the N x 1 vector of observations, X is an N x t matrix of predictors, and z 

is a t x 1 indicator vector that indicates whether or not the corresponding elements of �̂� are 

nonzero. The goal function (1) is a version of the residual sum of squares rewritten to reduce the 

number of quadratic variables from t to N. This is useful because in our application there are 

many more potential predictors than there are subjects.  

An optimization model allows for the minimization of the goal function under constraints. The 

constraints proposed by (Bertsimas et al., 2016) are: 

𝑧𝑢 ∈ {0,1}, 𝑢 = 1, ⋯ , 𝑡  (2), 
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(1 − 𝑧𝑢)�̂�𝑢 = 0, 𝑢 = 1, ⋯ , 𝑡  (3), 

∑ 𝑧𝑢 ≤ 𝑝𝑡
𝑢=1     (4), and 

�̂� = 𝑋�̂�    (5). 

Constraint (2) defines the individual elements zu of the vector z as binary variables. Constraint 

(3) features the regression coefficients for the individual predictors �̂�𝑢. The constraint specifies 

that  �̂�𝑢 can be nonzero if zu equals 1 and that �̂�𝑢 is exactly zero if zu equals 0. Constraint (4) 

restricts the regression model to at most p nonzero parameters. Finally, constraint (5) defines �̂� 

as the fitted values matching the coefficients in �̂�. The model (1)-(5) returns for each value of p 

specified by the data analyst the best fitting model as measured by the residual sum of squares. 

(Vazquez et al., 2020) extended the application potential by proposing further constraints to 

obtain the second best, third best etc. model for each value of p. For example, if parameters 1 and 

2 define the best fitting model with p=2 terms, the constraint  z1+z2 < 2 is added to the 

constraints (2)-(5) and the model is rerun. The constraints prevent simultaneous inclusion of 

parameters 1 and 2 in the new model so that a second best model results. (Vazquez et al., 2020) 

implemented the mixed integer optimization model in Python using (Gurobi, 2017) as the solver 

of the optimization and used the raster plots of (Wolters and Bingham, 2011) to visualize the 

models. For this purpose, the predictors are rescaled so that they all have the same length. The 

raster plot represents each model with p parameters as p pixels that are darker or lighter 

according to the size of the respective coefficients. Each predictor has its own horizontal 

coordinate and each model has its own vertical coordinate. The models are ordered according to 

the number of nonzero coefficients and, subsequently, their residual sum of squares. Predictors 

that often occur in the models form a band in the plot. 

Promising predictors of the language development of 139 children at 36 months of age were 

selected for the MIO approach described above. The data included a total of 1170 potential 

predictors (supplemental file S1), including one parameter indicating whether or not the mother 

of the child was included in the education intervention group), six anthropometric and cognitive 

parameters when the children were 24 months 542 gut microbiota composition related 

parameters at 24 months and 621 parameters at 36 months. Subsequently, the 20 best models 

were established with 1-4 predictors in terms of their residual standard deviation. The best 4-

term models were selected from more than 77 billion models, which is the number of ways one 

can choose 4 objects out of 1170.  

In order to compare the results obtained by the MIO approach to those obtained by a 

conventional statistical method, the same data were also evaluated by the nonparametric Mann-

Whitney U test (Mann and Whitney, 1947). Using this test we investigated which bacterial 

species had a different abundance in the gut microbiota of children that scored equal or above 

average for language development when compared with those that scored lower than average. 

For this purpose, all the 139 children at the age of three years old were divided into a ‘language 

impaired’ or ‘language below average’ group with a BSD-III score below the mean value of 100 

(n = 61), and a ‘language non-impaired’ or ‘equal or above average’ group with a BSID-III score 

of 100 or higher (n = 78).  
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PCR-based Identification of Coprococcus eutactus in Stool Samples 

For the experimental identification of C. eutactus in stool samples, species-specific primers were 

designed for the 16S rRNA gene via primer-BLAST™ (Ye et al., 2012): forward-primer 785F 

5’-GGGTTCCAAAGGGACTCGG-3’ and reverse primer 1412R 5’-

CAGCTCCCTCTTGCGGTT-3’. The oligonucleotides were manufactured by Biolegio™ 

(Nijmegen, The Netherlands) and delivered in 100 μL TAE-buffer with a concentration of 100 

μM. DNA was released from the stool samples in nuclease-free milliQ by heating an Eppendorf 

tube at 95°C for 10 minutes. The PCR mix  contained 12.5 μL GoTaq™ mastermix, 2.5 μL of 10 

μM forward primer, 2.5 μL of 10 μM reverse-primer, 5.0 μL nuclease-free milliQ, 2.5 ul 

template DNA. PCR-samples were placed in the PCR machine (Biometra™, model Tgradient) 

with 1 cycle of 95°C for 5 minutes; 30 cycles of 95°C for 30 seconds, 60°C for 30 seconds and 

72°C for 1 minute, completed 72°C for 5 minutes. Products were analyzed by the use of a 1.5% 

agarose gel with ethidium bromide in TAE-buffer. The PCR was validated by the use of genomic 

DNA from the cultivated C. eutactus type strain ATCC 27759 as a positive control. This strain 

was obtained from the German Collection of Microorganisms and Cell Cultures (DSM strain 

number 107541) and cultivated under anaerobic conditions in chopped meat casitone (CMC) 

medium as described by the supplier. 

The Core Microbiota of Ugandan children at 24 and 36 Months of Age 

For the definition of the core, the bacterial 16S rRNA gene amplicon sequencing dataset of the 

Ugandan children’s feces cohort (139 subjects, measured at 24 months) was used, obtained from 

the study of (Atukunda et al., 2019). The 1163 bacterial V4-region 16S rRNA gene sequences, 

delivered in Microsoft™ Excel format, were annotated to bacterial genus and species via the 

local BLAST in CLC Workbench™ Version 20.0 computational software. All sequence 

abundances were grouped to species-level and ordered by most prevalent to least prevalent. 

Bacterial V4-region 16S rRNA amplicon sequences with hits of more than three species with 

identical identity-scores were grouped to genus level (e.g. Bifidobacterium). The core was 

composed by the top 50 most prevalent bacterial species at a 0.1% relative abundance detection 

threshold, as described previously (Shetty et al., 2017). From the composed core a heat map was 

created by MeV™ software (Saeed et al., 2003), thereby including a 0.1 to 100 logarithmic scale 

for the x-axis threshold at percentage of relative abundance and representing the prevalence via 

color-scaling for each of the 50 relative abundance detection thresholds.  

Assessment of Metagenomic Aerotolerant Predominance Index (MAPI) 

To assess aerobic/anaerobic balance in the gut microbiota samples of our cohort we used the 

Metagenomic Aerotolerant Predominance Index (MAPI)  (Million and Raoult, 2018), based on a 

previously published database with a list of bacteria and their aerotolerant or obligate anaerobic 

metabolism (Million et al., 2016). This MAPI index indicates the ratio of the metagenomic 

relative abundance of aerotolerant species and the relative abundance of strict anaerobes. From 

the taxonomic assignment of ASV’s of each of the 139 stool bacterial communities of Ugandan 

children  (Supplemental file S1), we calculated the total number of reads that corresponded to 

strict aerotolerant or anaerobic bacteria. We then calculated the ratio of aerotolerant relative 

abundance to strict anaerobic relative abundance. This ratio was > 1 for aerotolerant 

predominance and < 1 for strict anaerobic predominance. In order to fit a lognormal distribution, 
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the natural logarithm of the aerotolerant ratio was calculated for each metagenome for further 

analysis. The metagenomics aerotolerant predominance index (MAPI) corresponds to the 

variable ‘ln(Ae/Ana)’.  

Ethical Approval  

All mothers gave written or thumb-printed, informed consent to participate and could decline an 

interview or assessment at any time. The study was approved by The AIDS Support Organisation 

Research Ethics Committee (no. TASOREC/06/15-UG-REC-009) and by the Uganda National 

Council for Science and Technology (no. UNCST HS 1809) as well as by the Norwegian 

Regional Committee for Medical and Health Research Ethics (no. 2013/1833). The trial was 

registered at clinicaltrials.gov (NCT02098031).  

 

RESULTS 

Abundance of Coprococcus eutactus is a predictor for language development 

The application of the MIO approach to identify predictors for language development in 

Ugandan children at 36 months of age resulted in the raster plot of Figure 1A. For this 

visualization, we normalized the predictors and the language development score such that their 

means are zero and their standard deviations are one. A coefficient thus expresses the increase in 

the response, in terms of multiples of its standard deviation, if a predictor is increased by one 

standard deviation. As co-occurrences can only be recorded in models with two or more 

parameters, we ignore models with a single parameter in our evaluation. The red vertical band 

with horizontal axis label 5 shows that, with a few exceptions, the best models with 2-4 

parameters include the language development of the children at 24 months and that its coefficient 

is positive. This parameter is included in 52 of the 60 models with 2-4 parameters. The figure 

shows that in 7 of the 8 remaining cases, cognition at 24 months (horizontal axis label 4) replaces 

language development at 24 months in the model. The MIO methodology shows here alternative 

explanations of the same data by correlated predictors. Indeed, the Pearson correlation 

coefficient of the language ability and cognition parameters equals 0.7. In spite of this 

correlation, the much higher frequency of occurrence of the language ability at 24 months 

suggests that this parameter should be included in favor of cognition at 24 months. Further red 

bands can be observed at horizontal axis labels 281 and 563, respectively. These bands 

correspond with relative abundances of Coprococcus eutactus, and Bifidobacterium from the gut 

microbiota at 24 months  and 36 months of age, respectively. The abundance of C. eutactus 

occurs in 42 of the 60 models with 2-4 parameters, while the abundance of Bifidobacterium 

occurs in 19 of these models. A total of 18 of the models include both parameters. Species 

identities were verified with the BLAST tool. They led to a species assignment on the basis of  a 

100% identity match with the partial 16S rRNA sequence of Coprococcus eutactus strain ATCC 

27759 (Holdeman and Moore, 1974) over the total length of the sequenced V4 region of 253 

base pairs. The assignment of the species Coprococcus eutactus is unambiguous, but sequences 

of Bifidobacterium longum and Bifidobacterium breve are both aligning to the 16S rRNA V4 

sequence with a match of 100% identity, therefore we refer to parameter 563 as a match to the 

Bifidobacterium longum group (see also below).   
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Figure 1A further shows that some predictors enter the fitted models occasionally. The most 

frequently occurring parameter after the Bifidobacterium longum group is Intestinibacter 

bartlettii  (previously known as Clostridium bartlettii) at 24 months of age (horizontal label 

348). This identification was based on a  unique 100% identity match of the V4 amplicon with 

the partial 16S rRNA gene sequence of the type strain Intestinibacter bartlettii strain WAL 

16138 (Song et al., 2004). As this parameter enters only in 8 out of the 60 models, there is no 

powerful evidence that it should be included in a regression model. The residual standard 

deviations for the 80 models in Figure 1A were plotted against the number of predictors in the 

models (Figure 1B). The figure shows that, for four predictors, many of the 20 subsets explain 

the data equally well, so this application of a method to reveal the common elements in these 

subsets is warranted. Exploration of the common elements points to a 3-parameter model with 

parameters 5 (language development of the children at 24 months), 281 (abundance of C. 

eutactus) and 563 (abundance of the B. longum group at 36 months), respectively. This model 

turns out to be the best 3-parameter model. The figure shows that its residual standard deviation 

clearly stands out from the remaining 19 models. We conclude that a model including these 3 

parameters explains the data best. 
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Figure 1. The 20 best fitting models of 1 up to 4 terms linking language development of children aged 36 

months to membership of the intervention or control group, values of 6 developmental parameters of the 

same children when aged 20-24 months, their microbiota composition at that age, and microbiota 

composition at 36 months. A) Predictors in the models. Language development and all predictors are 

normalized to a mean of 0 and a standard deviation of 1. Horizontal labels correspond with the predictors’ 

identification number in the data file. The parameters include the following scores at 24 months: the 

intervention indicator (0); height to age, HAZ (1); weight to age, WAZ (2); weight to height, WHZ (3); 

cognition (4); language development (5); motoric development (6). These are followed by the gut 

microbiota parameters at 24 months (parameters 7-548) and at 36 months (parameters 548-1169). Vertical 

coordinates 1-20, 21-40, 41-60 and 61-80 show best fitting models with 4, 3, 2 and 1 terms, respectively. 

Blue pixels correspond with negative coefficients and red pixels correspond with positive coefficients. 

Intensity of the pixels increases with size of the model coefficients. B) Residual standard deviations 

plotted against the number of terms in the models for language development; language development in 

original units.  

 

A 

B 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.15.21253665doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.15.21253665
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

The linear regression model for BSID-III language development at 36 months with all 

parameters on their original scale is summarized in Table 1. For the intercept and each predictor 

in the model, the entries in the last four columns show the regression coefficient, its standard 

error, the ratio of the coefficient to its standard error (t Ratio) and the P-value of this ratio. The 

residual standard deviation of the model is 11.7 based om 135 degrees of freedom. This measure 

quantifies the variability unexplained by the model. The model’s F value equals 21.5. This 

measure indicates how much larger the model mean square is when compared to the unexplained 

variance. Finally, the adjusted R2 value of 31% is the percentage of variation accounted for by 

the model, adjusted for the number of parameters.  

All the model coefficients are positive so that higher values of previous BSID-III language 

development,  previous abundance of C. eutactus and current abundance of B. longum  point to 

higher language development at 36 months.  

ID Parameter Estimate Std Error t Ratio Prob>|t| 

 Intercept 54 7.6   

5 language (24 mo) 0.43 0.08 5.4 < 0.001 

281 Coprococcus eutactus (24 mo) 1884 420 4.5 < 0.001 

563 Bifidobacterium longum group (36 mo) 407 111 3.7 < 0.001 

 
Table 1. Coefficients for the prediction model for language development.  Coefficients were 

calculated for the BSID-III scores of children aged 36 months by the MIO approach as indicated in  

Figure 1. ID, identification number in data file; Std Error, standard error; Prob >| t|, P-value. Residual 

standard deviation = 11.7; degrees of freedom = 135; model F value = 21.5; Adjusted R2 (%) = 31.  

 

The large values of the abundance coefficients can be explained by the measurement scale. The 

observed relative abundances of C. eutactus at 24 months (ID 281) and B. longum at 36 months 

of age (ID 563) are at most 4.5% (see Figure 2 for scatter interval plots of the relative 

abundances of C. eutactus and B. longum). The model in Table 1 includes the language 

development score recorded when the children were at the age of 24 months. The interpretation 

of this finding is that children that had the same development score when they were of that age, 

differ in their subsequent language development according to their microbiota composition at 

that age and the composition at their current age. 
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Figure 2 Scatter interval plots of the fraction or relative abundance of C. eutactus and 

Bifidobacterium. A) Fraction of Coprococcus eutactus (amplicon sequence variant ID 281) in the gut 

microbiota of 139 Ugandan children at the age of 24 and 36 months, B) Fraction of Bifidobacterium 

longum group (amplicon sequence variant ID 563) in the gut microbiota of Uganda children aged 24 and 

36 months. P-values were calculated with the two sided Mann-Whitney U test for language impaired (n = 

61) and language non-impaired groups (n = 78) of the children.  

A 
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Increased prevalence of Coprococcus eutactus in the core gut microbiota over time  

In order to evaluate the prevalence of C. eutactus in the microbiota of children of 24 months and 

36 months in relation to other highly abundant members of the intestinal microbiota, we carried 

out a comparative analysis of the core gut microbiota from the Ugandan children at 24 and 36 

months (Figure 3). It should be noted that for this analysis all ASV’s assigned to the same 

species have been pooled together. Both cores appear to be rather comparable in composition 

(80% of the species are present in both cores). However,  at 24 months only the top three species, 

including Faecalibacterium prausnitzi Prevotella copri, and Blautia wexlerea, were highly 

prevalent (> 90%, detection threshold 0.1%), while a set of ten species is highly prevalent among 

Ugandan children at 36 months, in line with a decrease in the variation in the gut microbiota 

composition among children at higher age. The overall prevalence and abundance of 

Bifidobacterium species increased at 36 months compared to 24 months (from position 24 to 10), 

although this is not the case for ASV’s matching to Bifidobacterium longum (see ASV ID 563, 

Figure 2B), in agreement with the notion that the relative abundance of this species reduces when 

children are no longer breast fed. The butyrate producing species Faecalibacterium prausnitzii 

was the most prevalent bacterial species in the datasets of both ages and is present in all Ugandan 

children in our study at the age of 36 months. Noteworthy, both microbiota cores clearly show a 

typical Prevotella gut microbiota type, in agreement with previous observations that led to the 

assignment of Bacteroides and Prevotella as biomarkers of diet and lifestyle in Western and non-

Western subjects, respectively (Gorvitovskaia et al., 2016), and references herein. Accordingly, 

Prevotella species, such as P. copri, show much higher relative abundance among the majority 

of subjects in both heat maps of 24 and 36 months than Bacteroides species, represented in the 

core only by B. xylanolyticus. The gut bacterium C. eutactus is also represented in both cores, be 

it at relatively low prevalence and abundance levels; species position 44 at the age of 24 months 

and position 37 at the age of 36 months. The prevalence of the C. eutactus ASV ID 281 among 

the Ugandan children in this study increased from 24 months to 36 months from 62% to 81%, 

although the average relative abundance was slightly lower (Figure 2A). This increased 

prevalence over time was also evident in the core gut microbiota; all 11 ASV’s matching to C. 

eutactus showed an increase from 38% to 44% at 0.1% abundance threshold (Figure 3). These 

observations and our best fitting model are in agreement with the notion that early acquirement 

of C. eutactus (before or at 24 months) is a beneficial factor for language development.   
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Figure 3. Heat maps of top 50 most prevalent bacteria in the fecal microbiota of Ugandan children at the 

age of 24 months (A) and 36 months (B), as determined by 16S rRNA gene amplicon sequencing. The 

color gradient indicates the prevalence (see top- legend) at the detection threshold of the relative 

abundance (%) presented at the x-axis with a logarithmic scale. The y-axis indicates the order of most 

prevalent bacteria at a detection threshold of 0.1% abundance. Unambiguous species assignments include 

Dialister succinatiphilu, D. propionicifaciens; Lactobacillus salivarius, L. ruminis; Clostridium 

saudiense, C. disporicum: Varibaculum anthropi, V. cambriense; Prevotella oris, P. albensis, P. salivae; 

Clostridium amygdalinum, C.  methoxynbenzovorans. 

Butyrate-producing species more abundant in children with above average language 

development  

The presence of the butyrate-producing bacterium C. eutactus was confirmed in the fecal 

samples of the Ugandan children in our cohort by PCR using specific primers designed in this 

study for C. eutactus. PCR-analysis of a random set of stool samples from the rural Ugandan 

children showed a product in 75% of the fecal samples in line with the prevalence range (62% to 

81%) found for C. eutactus in our 16S rRNA gene sequence data from the children’s stool 

samples. In order to further substantiate the results obtained by the MIO approach, we also 

checked with a conventional statistical method (the Mann-Whitney U test) which bacterial 

species had a different abundance in children that scored equal or above average for language 

development when compared with children that scored below average. We first checked for the 

presence of the specific amplicon sequence variants (ASV’s) predicting language development 

by the MIO approach. We found that the relative abundances of the identified ASV’s in our best 

fitting model of  C. eutactus at 24 months (ID 281) and Bifidobacterium at 36 months (ID 563) 

were significantly different in both groups according to the two sided Mann-Whitney U test, with 

P-values of 0.003 and 0.03, as presented in Figure 2. 

Out of the 542 gut microbiota ASV parameters at 24 months, 397 matched to a bacterial species 

with an identity score of 97% or higher. Using the latter composition parameters, we employed 

the two sided Mann-Whitney U tests to explore on a per species basis differences in abundance 

of these parameters between three-year old children that scored equal or above average for 

language development and children that scored below average. If these two language groups 

would not differ in microbiota composition, we would expect that 20 out of the 397 tests have P-

values below 0.05. Instead, twenty-five of these tests had such a P-value. Table 2 lists the 

corresponding ASV’s. Nineteen ASV’s were more abundant in the equal or above average group 

and six ASV’s were more present in the below average group. Among these were also other 

unique sequences matching to parameters identified in the predictive models as presented in 

Figure 1, including Bifidobacterium (ID 23), and Intestinibacter bartlettii (ID 348).  

A number of other striking features emerge from this Mann-Whitney U test. The list in Table 2 

contains five unique 16S rRNA gene amplicon sequence variants which show a match with the 

genus Bifidobacterium. Although the V4 16S rRNA gene amplicon sequence does not allow for 

unambiguous assignment of species for this genus, we can assign these ASV’s to three distinct 

Bifidobacterium species  groups: the Bifidobacterium catenelatum, adolescentis and longum 

groups (see Table 2). Members of the first two groups show at 24 months a positive correlation 

with language development. Relative abundance of members of the longum group show at 24 

months a negative correlation with language development, but a positive correlation at 36 
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months (Figure 1; Figure 2; Table 2). At this point it is not clear why the relative abundance of 

the B. longum species group at 24 months, known to be beneficial and dominant in infants, 

correlate negatively with language development, in contrast to species from B. catenulatum and 

adolescentis groups, which are generally more prevalent in adults (Arboleya et al., 2016). Many 

of the bacterial species listed in Table 2, which are more abundant in the above average group, 

are known butyrate producers, including Coprococcus eutactus, Faecalibacterium prausnitzii, 

Holdemanella biformis, Roseburia hominis, Clostridium disporicum and Catenibacterium 

mutsuokai (Vital et al., 2014). The SCFA butyrate has been implicated to play a role in brain 

function, as further discussed below.  
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ID  Bacterial species 

Identity 

(%) P-value 

core 

member 

obligate 

anaerobic 

Species with higher relative abundance in non-impaired language group  

23 Bifidobacterium catenulatum1 99.6 0.003 yes yes 

20 Bifidobacterium adolescentis2 99.6 0.005 yes yes  

357 Faecalibacterium prausnitzii 97.6 0.006 yes yes  

14 Bifidobacterium adolescentis2 100.0 0.008 yes yes  

406 Holdemanella biformis 97.6 0.010 yes yes  

294 Roseburia hominis 100.0 0.010 no yes  

316 Eubacterium eligens 99.2 0.013 yes yes  

513 Campylobacter troglodytis 98.8 0.015 no no 

25 Bifidobacterium adolescentis2 99.6 0.020 yes yes  

466 Faecalibacterium prausnitzii 97.6 0.021 yes yes  

78 Prevotella copri 99.6 0.022 yes yes  

348 Intestinibacter bartlettii 100.0 0.024 no yes  

352 Terrisporobacter petrolearius 99.6 0.032 no yes  

318 Bacteroides xylanolyticus 98.0 0.035 yes yes  

390 Clostridium disporicum3 97.2 0.040 yes yes  

280 Coprococcus eutactus 99.6 0.042 yes yes  

399 Catenibacterium mitsuokai 97.6 0.044 yes yes  

519 Campylobacter troglodytis 98.4 0.047 no no 

Species with higher relative abundance in impaired language group 

219 Granulicatella elegans 100.0 0.0005 no no 

57 Parabacteroides 97.2 0.015 no yes 

31 Bifidobacterium longum4 99.6 0.027 yes no 

529 Escherichia/Shigella 99.6 0.028 yes no 

528 Escherichia/Shigella 100.0 0.034 yes no 

521 Campylobacter coli 97.2 0.041 no no 

 

Table 2. Two-tailed Mann-Whitney U test for relative abundance of bacterial species equal or 

above average and below average language ability groups. A two-tailed test was performed for 

bacterial relative abundances of the gut microbiota of Ugandan children at the age of 24 months for 

language impaired (n = 61; BSID-III scores < 100) and non-impaired groups  (n = 78; BSID-III scores ≥ 

100). Bacterial species (based on BLAST searches of amplicon sequence variants, ASV’s) listed in the 

table had a P-value below 0.05. Species with identity scores below 97% were excluded from the list in the 

table. Unambiguously assigned bacterial species are indicated by superscripts. The ASV-match of 

Bifidobacterium catenulatum1  is identical to that of B. pseudocatenulatum, B. kashiwanohense, B. 

tsurumiense, B. callitrichidarum and B. gallicum (assigned to the catenalatum group);  Bifidobacterium 
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adolescentis2 is identical to that of B. faecale and B. stercoris (assigned to the adolescentis group); 

Clostridium disporicum3 identical to C. saudiense;  Bifidobacterium longum4 to B. breve (assigned to the 

longum group). 

Increased predominance of oxygen tolerant species in children impaired in language 

development  

While 17 out of 19 ASV’s with significant scores in  the above average group matched with 

strictly anaerobic species (all except for Campylobacter troglodytis), we identified only one ASV 

matching with a strictly anaerobic bacterium (Parabacteroides) among the significant scores in 

the below average group (Table 2). This result is in line with the notion that a relatively high 

redox potential in the environment of the gut is an adverse condition for language development. 

It should be noted that majority of the ASV’s in the below average group (4 out of 6) match to 

species with known adverse effects in humans, including Granulicatella elegans (Table 2). 

Although known to be part of the normal intestinal human microbiota, this species has often been 

implicated in adverse conditions. In addition, aerobic Escherichia/Shigella, and Campylobacter 

coli species are known as major foodborne pathogens, causing the widely occurring diseases 

shigellosis and campylobacteriosis, which lead to severe diarrhea, in particular at relatively high 

prevalence among children in the developing world. A box plot of the MAPI indices among all 

the children in both language development groups indicated a slight difference (P = 0.09) 

between the two groups (Figure 4). 

 

 

 

Figure 4 The Metagenomic Aerotolerant Predominance Index (MAPI). The index is presented in box 

plots for the groups of language impaired (n = 61) and language non-impaired children ( n = 78). 
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DISCUSSION 

The value of alternative prediction models 

For the analysis presented in this paper, we identified promising predictors of language 

development in a field study from a large set of potential predictors that are likely to be 

correlated. Because of this correlation, it was imperative to use methods that could reveal 

alternative explanations of the same data. In the field data we studied, we  indeed found 

substantial correlations among the observed microbiota abundances that could serve as potential 

predictors (4164 pairwise correlations were larger than 0.5). 

Revealing alternative explanations of the same data requires the fitting of multiple models. We 

used MIO in our model search. The strong point of this approach is that one can impose 

constraints relevant for the data at hand. We used this option in our ranking of the second best 

down to 20th best models. Of particular use were the models with 3 and 4 predictors. There was a 

clear best 3-predictor model among 20 alternative models. This model included the language 

ability of the children at 24 months, the abundance of Coprococcus eutactus in microbiota taken 

at 24 months, and the abundance of Bifidobacterium longum in microbiota taken at 36 months. 

The fact that this model is clearly better than the alternatives suggests that we should include the 

3 predictors mentioned in any case. However, there might still be additional predictors that could 

improve the model fit. This was investigated by fitting 4-parameter models as well. 

There was no clear best 4-parameter model. However, C. eutactus abundance at 24 months was 

consistently present in all 4-parameter models, while the other two predictors in the best 3-

parameter model were included in 14 of the 20 best 4-parameter models. By focusing on the 

common predictors present in the best models, we believe that we avoided overfitting the data. 

The remaining predictors were present in at most 5 out of the 20 best 4-predictor models. We 

conclude that there is no clear evidence favoring inclusion of a fourth predictor. 

A further use of constraints in the MIO approach can help finding good models that include 

synergistic or antagonistic effects of the microbiota species. However, MIO is still limited in the 

size of the models it can handle. In particular, it is computationally infeasible to arrive at the best 

5-term model based on 1170 potential model terms. As there are 1163 individual predictors 

involving microbiota composition, synergistic or antagonistic effects among the species would 

increase this number with 0.5 x 1163 x (1163  - 1) = 675,703 further terms. It is infeasible to have 

a successful model search among this number of terms. 

Importance of early-life acquirement of the butyrate-producing Coprococcus eutactus for 

language development 

One of the most intriguing findings of this work is the correlation between the abundance of 

members of saccharolytic clostridia in the gut of Uganda children at 24 months with the 

composite score for language development of the children at 36 months. We identified 

Coprococcus eutactus (42 out of 60 models) and Intestinibacter bartlettii (8 out of 60 models). 

They belong to the Lachnospiraceae and Peptostreptococcaceae, respectively, both families 

within the Clostridia, a class of obligatory anaerobic spore-forming bacteria. Both species 

produce short chain fatty acids (SCFA’s), the primary end-products of fermentation of non-
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digestible carbohydrates that become available to the gut microbiota and gut epithelial cells. The 

SCFA’s are mainly produced through saccharolytic fermentation of carbohydrates. While C. 

eutactus is known to produce the SCFA’s formate, acetate and butyrate (Holdeman and Moore, 

1974), Intestinibacter bartlettii produces the SCFA’s isobutyrate and isovalerate (Song et al., 

2004). It is well established that SCFA’s, in particular butyrate, are important substrates for 

maintaining the colonic epithelium, elicit effects on lipid metabolism and adipose tissue at 

several levels, in appetite regulation and energy intake, and play a role in regulation of the 

immune system (Morrison and Preston, 2016). In addition, butyrate has been shown to protect 

the brain and enhance plasticity in animal models for neurological disease. In agreement with a 

role for the production of butyrate in the gut for improved language development, studies with 

animal models show that butyrate is able to reverse stress-induced decrease of neurotrophic 

factors  and cognition impairment both at early and later stages of life (Valvassori et al., 2014). A 

number of mechanisms have been attributed to the beneficial role of butyrate in brain function, 

including its action as a histone deacetylase inhibitor and as an activator of G protein-coupled 

receptors (GPR’s); a lower level of histone acetylation is a characteristic of many 

neurodegenerative diseases, and butyrate has been shown to activate GPR109a, potentially 

leading to anti-inflammatory effects in the brain (Bourassa et al., 2016). 

The most consistent predictor in our MIO models for language development at 36 months was 

the abundance of Coprococcus eutactus in gut microbiota when the children were 24 months of 

age. This is in agreement with the concept of a maturation program with distinct phases of 

microbiota compositions, where earlier phases can affect health outcomes later in life (Backhed 

et al., 2015;Stewart et al., 2018). The dynamics of the relative abundance of C. eutactus was 

highlighted  in a study on the human infant gut microbiome in development and in progression 

towards type 1 diabetes (Kostic et al., 2015). This longitudinal study indicated a maximum of C. 

eutactus relative abundance in healthy infants at approximately 24 months, while the abundance 

of C. eutactus type 1 diabetes predisposed children remained at constant, at relatively low levels 

in the first years of life. So far we only have analyzed the gut microbiota in  children at 24 and 36 

months in our cohort, thus at this moment we cannot yet make any substantiated statements 

about the longitudinal development of the gut microbiota in our cohort. However, the results in 

our study are in agreement with a model that holds that relatively high levels of C. eutactus at 24 

months are beneficial, as they are present in the group of children with above average language 

development at 36 months.  

A number of other uncertainties and limitations should be considered in the interpretation of our 

results. Among all hypervariable regions of 16S rRNA gene, the V4 region used in this study 

ranks first in sensitivity as a marker for bacterial and phylogenetic analysis (Yang et al., 2016). 

Nevertheless, these amplicon sequence libraries allow in some cases only a classification of 

microbiota members on the genus level. Therefore, we carefully examined all assignments to the 

species level in this study. Overall, the correlation between genomes of closely related species 

suggests that it may be effective to predict functions encoded in an organism’s genome. A recent 

study showed phylogeny and function to be sufficiently linked that prediction of function from 

16S rRNA gene amplicons can provide useful insights (Langille et al., 2013). However, in our 

view metagenome sequencing to reveal the full genetic capacity of the gut microbiota, 

intervention studies with C. eutactus in a germ-free mouse model and in vivo metabolite 

measurements are required to acquire additional evidence on a beneficial role of butyrate 
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production and additional neuroactive potential of the gut bacterium C. eutactus in cognitive 

development.  

Relative abundance of Coprococcus eutactus correlates to multiple cognitive outcomes  

Interestingly, a recent study on the neuroactive potential of  the gut microbiota with a large 

cohort (Flemish Gut Flora Project; n = 1,054) revealed that butyrate-producing Coprococcus 

bacteria were consistently associated with higher quality of life indicators and depleted in 

depression (Valles-Colomer et al., 2019). The authors of this study performed a module-based 

examination of metabolic pathways by members of the gut microbiota in order to investigate its 

neuroactive potential. They observed that a gene encoding for the synthesis of 3,4-

dihydroxyphenylacetic acid (a metabolite of the neurotransmitter dopamine) was strongly 

associated with the presence of C. eutactus and quality of life indicators. Notably, a second 

metabolic module, which co-varied with quality of life indicators in their cohort, is the synthesis 

of isovalerate. This ability to synthesize this SCFA happens to be present in Intestinibacterium 

bartlettii (Song et al., 2004), which is the species matching to ASV ID 348 in our best fitting 

models.  

A further evaluation of the current scientific literature confirms that the relative abundance of the 

genus Coprococcus, and in particular the species C. eutactus, correlates with other cognitive 

outcomes. A lower relative abundance of Coprococcus was found in autistic patients compared 

to neurotypical controls (Table 3). An independent study confirmed lower levels of fecal acetic 

acid and butyrate in autistic subjects (Liu et al., 2019). A decreased relative abundance of C. 

eutactus was also observed in fecal samples and mucosal biopts from Russian and American 

patients with Parkinson’s disease (PD), respectively (Table 3). In both studies, potentially anti-

inflammatory, butyrate-producing genera, Coprococcus, Faecalibacterium and Blautia were 

significantly more abundant in feces of controls than PD patients, feeding the hypothesis that an 

altered gut microbiota could contribute to inflammation-induced development of PD pathology 

(Keshavarzian et al., 2015). A cross-sectional study on schizophrenia patients also indicated that 

the level of butyrate producing bacterial genera, including Coprococcus, Blautia and Roseburia 

significantly decreased in comparison to healthy controls. The observed differences in 

microbiota compositions were proposed as a basis for the development of microbiota-based 

diagnosis for schizophrenia (Shen et al., 2018). However, it is clear that among these differences, 

i.e. a decrease of a number of butyrate-producing bacterial genera, a similar correlation can be 

observed for very different adverse cognitive outcomes, including the impaired language 

development with Ugandan children in our study.  

We looked in this study for other overall differences between bacterial gut communities in the 

language impaired and language non-impaired groups of children in our study and found higher 

levels of oxygen tolerant species in the first group. This finding concerns specific, potentially 

pathogenic species with significant higher relative abundance in the language impaired group 

(Granulicatella elegans, Escherichia/Shigella, Campylobacter coli), but also to slight differences 

in the overall MAPI index. As this index indicates an aerotolerant predominance for MAPI > 0 

and anaerobic predominance for MAPI < 0, it is clear that both groups have an anaerobic 

predominance of bacterial species in the gut. Apparently, the increase of a number of oxygen 

tolerant species in the language impaired group is not so much reflected by the overall MAPI 

index. Possibly, this results from the fact that the Ugandan children in our study group are not 
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severely malnourished, as they are on average moderately stunted ( -3 < HAZ < -2). More severe 

malnourishment could have led to the overall depletion of anaerobic bacteria and proliferation of 

oxygen tolerant bacteria, as shown in the gut microbiota of severely malnourished children 

(Million et al., 2016). In order to confirm the findings in this study, we propose to repeat the 

analysis and investigate cognitive development as a function of the MAPI index in a similar 

cohort. In parallel, we propose to set up an intervention study aiming at the reduction of the gut 

redox potential as a stimulus to create a better growth environment for beneficial, strictly 

anaerobic gut bacteria, including Coprococcus eutactus and other butyrate producers identified 

in this study.  
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Genus 

species Finding Cohort 

Sample 

size (n) P-value 

Statistical 

test 

Study 

reference 

Coprococcus 

Depleted in cohort 

participants with 

depression  

Flemish Gut 

Flora project 
1054 < 0.05 

Covariance 

test 

(Valles-

Colomer et 

al., 2019) 

Coprococcus 

Depleted in cohort 

participants with 

depression 

Dutch lifeline 

DEEP 
1063 < 0.05 

Covariance 

test 

(Valles-

Colomer et 

al., 2019) 

Coprococcus 

Lower relative 

abundance in autistic 

patients compared to 

neurotypical controls 

American 

children (20 

neurotypical 

and 20 

autistic) 

40 0.001 

Mann-

Whitney U 

test 

(Kang et al., 

2013) 

Coprococcus 

Lower relative 

abundance in 

Parkinson’s-diseased 

patients compared to 

healthy controls 

American 

adults (34 

Parkinson’s 

patients and 

31 healthy 

controls) 

65 0.03 
Kruskall-

Wallis test 

(Keshavarzian 

et al., 2015) 

Coprococcus 

eutactus 

Lower relative 

abundance in Parkinson-

diseased patients 

compared to healthy 

controls 

Siberian 

adults (89 

Parkinson’s 

patients and 

66 healthy 

controls) 

157 0.03 White’s t-test 
(Petrov et al., 

2017) 

Coprococcus 

Relative abundance 

reduced in schizophrenia 

patients 

64 

schizophrenia 

patients and 

53 healthy 

controls 

117 0.004 

 

Principal 

coordinate 

analysis 

Welch's t-

test 
 

(Shen et al., 

2018) 

Coprococcus 

eutactus 

Predictor in gut 

microbiota at 24 months 

for language 

development at 36 

months 

Rural 

Ugandan 

children 

139 < 0.001 
All subsets 

regression 
This study 

 

Table 3. Correlations between Coprococcus eutactus and human mental health outcomes.  The table 

includes information about cohort, sample size, statistical test, P-value and study reference. 
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